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NANO TOPOLOGY INDUCED BY GRAPHS

NECHIRVAN BADAL IBRAHIM 1∗, ALIAS BARAKAT KHALAF 2, §

Abstract. The aim of this paper is to introduce new subgraph types related to given
subgraphs of a graph G. Specifically, these are termed c-subgraph, i-subgraph, and b-
subgraph of a subgraph H from G, denoted as cH , iH , and bH , respectively. The paper
explores various properties and results concerning these new subgraph types and their
complements under certain binary operations. Additionally, it introduces a new type
of nano topological space known as a nano graph topological space, defined in terms of
these new subgraph types. The study also investigates properties of nano closure and
nano interior subgraphs.
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1. Introduction

The study of graph product was introduced in 19th century, some new operations (prod-
ucts) on graphs are defined to obtain new graphs and some properties and applications
of them are discussed. Many papers of graph operations introduced new techniques or
methods to create new types of graphs or subgraphs [4, 5, 6, 7, 13].
In 1982, Pawlak [12], introduced the theory of rough sets , defining a rough set as an
extension of set theory where a subset of a universe is described by a pair of ordinary sets
referred to as lower and upper approximation. The notion of a Nano topology was intro-
duced by Thivagar and Richard [14] in 2013, and they presented a new type of functions
called Nano continuous functions and derived their characterizations in terms of Nano
closed sets, Nano closure and Nano interior. In [10], new forms of Nano topological spaces
were introduced using a neighborhood system of vertices for a directed graph. The authors
also explored the connection between directed graphs and Nano topological spaces, using
the human heart as a real-life example. They demonstrated the practical utility of this
study in addressing the blood flow system within the human heart. In [9], the authors
corrected certain results previously introduced by Thivagar et al. [15]. They also intro-
duced new forms of Nano topology and generalized Nano topology induced by graphs.
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Furthermore, they studied the approximations of various structures using relations that
could potentially find applications in quantum physics and superstring theory. In [8], the
authors introduced a new classification of Nano open sets, specifically Nano hα-open set.
The concept of Nano open mappings, continuous functions, and Nano hα homeomorphism
was proposed. The investigation of properties related to these functions was yielded some
remarks that have been supported by examples. In [1], the author introduced and stud-
ied the concept of Grill Nano generalized closed sets within the framework of Grill Nano
topological spaces. Additionally, presented the expansion of Nano generalized closed sets
through grills. In [11], discussed the graphical isomorphism for undirected graphs through
nano homeomorphism and also checked whether two undirected graphs have similar pat-
tern of connections. moreover, they formalised the structural equivalence of two kinematic
chains.

The main aim of this paper is to introduce novel types of subgraphs derived from
random subgraphs of a graph G. It explores the properties of these subgraph types and
investigates their relationships under specific binary operations. Additionally, the paper
introduces a new type of Nano topology called the Nano graph topological space, defined
in relation to these new types of subgraphs.

2. Preliminaries

Definition 2.1. [2] A graph G comprises a non-empty set V (G) and possibly an empty set
E(G) consisting of subsets of elements from V (G). The elements within V (G) are referred
to as vertices, and those within E(G) are termed edges. The cardinality of vertices (or
edges) in graph G is termed its order (or size) and is denoted by p(G) (or q(G)) respectively.

Definition 2.2. [2] In a graph G, when two or more edges share the same pair of different
end vertices, they are referred to as multiple (or parallel) edges. Denoting an edge with
end vertices u and v as e = uv. An edge with identical end vertices is termed a loop at
the shared vertex. A graph of zero edge is called an empty (null) graph.

Definition 2.3. [2] The removal of a vertex v from a graph G is a subgraph G − v of G
has the vertex set V (G− v) = V (G) \ {v} and the edge set of G− v consists the set of all
edges of G that are not incident with v. The removal of an edge e from G is a spanning
subgraph G− e has the edge set E(G− e) = E(G) \ {e}.

Definition 2.4. [2] The complement Gc of G has the same set of vertices of G and any
two vertices are adjacent in Gc if and only if they are nonadjacent in G.

A graphH is a subgraph from a graph G if and only if V (H) ⊆ V (G) and E(H) ⊆ E(G).

Definition 2.5. [12] Let U be a non-empty set and R be an equivalence relation on U .
The pair (U,R) is said to be the approximation space. Let X ⊆ U and R(x) denotes the
equivalence class determined by x, then

(1) The lower approximation of X with respect to R is denoted by LR(X) and LR(X) =
∪x∈U{R(x) : R(x) ⊆ X}.

(2) The upper approximation of X with respect to R is denoted by UR(X) and UR(X) =
∪x∈U{R(x) : R(x) ∩X ̸= ϕ}

(3) The boundary of X with respect to R is denoted by BR(X) and BR(X) = UR(X) \
LR(X).

Definition 2.6. [14] Let U be a non-empty set and R be an equivalence relation on U .
If X ⊆ U , then the family τR(X) = {ϕ,U, LR(X), UR(X), BR(X)} forms a topology on U
called the nano topology. The elements of τR(X) are called nano-open sets.
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3. New Types of Subgraphs and their Properties

In this section, we present some new types of subgraphs generated by a given
subgraph of a graph G. Some properties and results of these new types of subgraphs and
their complements under some binary operations are investigate.

Definition 3.1. Let G = (V (G), E(G)) be a finite non-empty graph and H = (V (H), E(H))
be a subgraph from G. We say that S is a minimal subgraph of H if V (H) = V (S) and
E(H) ⊂ E(S). The family of all minimal subgraphs of H is denoted by Sj.

Definition 3.2. Let G = (V (G), E(G)) be a finite non-empty graph and H = (V (H), E(H))
be a subgraph from G and let Gk = G ∪Gc, G and Gc are subgraphs in Gk. Let Sj be the
family of minimal subgraphs containing H and Sc

j be a family of complements of members
of Sj, then we define the following concepts:

(1) The c-subgraph of a subgraph H in G is denoted by cH and defined as cH =
∩{(Sj)

c}.
(2) The i-subgraph of a subgraph H in G is denoted by iH and defined as iH =

∪{(Sj)
c}.

(3) The b-subgraph of a subgraph H in G is denoted by bH and defined as bH = iH−cH ,
the operation ”−” is the deletion of edges in cH from edges in iH . Therefore, cH , iH
and bH are subgraphs in Gk and Gk with these subgraphs is called subgraph space
and it is denoted by (GH , Gk). The subgraph H from a graph G is called exact
subgraph in G if and only if cH = iH and is called rough subgraph in G if and only
if cH ̸= iH .

Definition 3.3. If H is any subgraph of G, then we define the following:

(1) (cH)c = Gk − cH .
(2) (iH)c = Gk − iH .
(3) (bH)c = Gk − bH .
(4) (SH)c = Gk − SH .
(5) (Hk)

c = Gk −Hk.
(6) Gc = Gk −G.

Remark 3.1. Throughout this study, the symbols ϕ = ϕk = ϕG = ϕGc and ϕHk
= ϕH =

ϕHc are denoted to be the null graph of Gk and the null graph of Hk = H∪Hc, respectively.

Definition 3.4. Let e = (u, v) be an edge in a graph G and let H be a subgraph in G, if
e ∈ H, then H is called an open subgraph of e and H is called a closed subgraph of e if
e /∈ H.

Example 3.1. (1) Consider the graphs G1, G
c
1, Gk1 and five selected subgraphs from

G1 are shown in Figure 1 and Figure 2, respectively.
The family of minimal subgraphs of Hi for i = 1, 2, 3, 4, 5 are obtained by using

Definitions 3.1 and 3.2 as follows:
(a) Minimal subgraphs containing H1 = {e1, e3, v1, v2, v3, v4} are: S1 = {e1, e2, e3},

S2 = {e1, e3, e4} and S3 = {e1, e2, e3, e4}.
Their complements are: (S1)

c = {e4, e5, e6, e7, e8, e9, e10},
(S2)

c = {e2, e5, e6, e7, e8, e9, e10} and (S3)
c = {e5, e6, e7, e8, e9, e10}. Then, we

have
cH1 = {e5, e6, e7, e8, e9, e10}, iH1 = {e2, e4, e5, e6, e7, e8, e9, e10} and bH1 =
{e2, e4}.

(b) Minimal subgraph containing H2 = {e1, e5, v1, v3, v4, v5} is: S1 = {e1, e4, e5}.
And their complement is:
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Figure 1. Graphs G1, G
c
1 and Gk1 .
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Figure 2. Five selected subgraphs from G1 in Figure 1.

(S1)
c = {e2, e3, e6, e7, e8, e9, e10}.

Then, we have cH2 = iH2 = {e2, e3, e6, e7, e8, e9, e10} and bH2 = ϕ.
(c) Minimal subgraph containing H3 = {e1, v1, v3, v4} is: S1 = {e1, e4}. And their

complement is:
(S1)

c = {e2, e3, e5, e6, e7, e8, e9, e10}. Then, we have
cH3 = iH3 = {e2, e3, e5, e6, e7, e8, e9, e10} and bH3 = ϕ.

(d) Minimal subgraphs containing H4 = {e1, e4, e5, v1, v2, v3, v4, v5} are: S1 =
{e1, e3, e4, e5}, S2 = {e1, e2, e4, e5} and S3 = {e1, e2, e3, e4, e5}. And their
complements are:
(S1)

c = {e2, e6, e7, e8, e9, e10}, (S2)
c = {e3, e6, e7, e8, e9, e10} and (S3)

c =
{e6, e7, e8, e9, e10}. Then, we have
cH4 = {e6, e7, e8, e9, e10}, iH4 = {e2, e3, e6, e7, e8, e9, e10} and bH4 = {e2, e3}.

(e) It is easy to get cH5, iH5 and bH5 of H5 in Figure 2 are given as cH5 = ϕ and
iH5 = bH5 = Gk1.

(2) Consider the graphs G2, Gc
2, Gk2 and selected subgraph H from a graph G2 are

shown in Figure 3.
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Figure 3. Graphs G2, G
c
2, Gk2 and selected subgraph H from G2.

Minimal subgraphs containing H = {e1, e4, e5, v1, v2, v3, v4} in Figure 3 are: S1 =
{e1, e2, e4, e5}, S2 = {e1, e3, e4, e5} and S3 = {e1, e2, e3, e4, e5}. And their comple-
ments are: (S1)

c = {e3, e6}, (S2)
c = {e2, e6} and (S3)

c = {e6}. Then, we have
cH = {e6}, iH = {e2, e3, e6} and bH = {e2, e3}.

(3) Consider the graphs G3, Gc
3, Gk3 and selected subgraph H from a graph G3 are

shown in Figure 4.
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Figure 4. Graphs G3, G
c
3, Gk3 and selected subgraph H from G3.

Minimal subgraphs containing H = {v2, v3, v5} in Figure 4 are: S1 = {e3},
S2 = {e4} and S3 = {e3, e4}. And their complements are:
(S1)

c = {e1, e2, e4, e5, e6, e7, e8, e9, e10}, (S2)
c = {e1, e2, e3, e5, e6, e7, e8, e9, e10} and

(S3)
c = {e1, e2, e5, e6, e7, e8, e9, e10}. Then, we have

cH = {e1, e2, e5, e6, e7, e8, e9, e10},
iH = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10} and bH = {e3, e4}.

The proof of the following relations among the above graphs, subgraphs and their
complements is straightforward.



N. IBRAHIM, A. KHALAF: NANO TOPOLOGY INDUCED BY GRAPHS 1525

Remark 3.2. If H is a subgraph in G and it has minimal subgraph in G, then

(1) H ∪Gc = Gk −Hc.
(2) Hc ∪Gc = Gk −H.
(3) (Gk − (H ∪Hc)) = (Gk −H) ∩ (Gk −Hc).
(4) cH ∪Gc = cH .
(5) iH ∪Gc = iH .
(6) cH ∩Gc = Gc.
(7) iH ∩Gc = Gc.

Proposition 3.1. If H is any subgraph in G, then

(1) cH ⊆ iH .
(2) bH ⊆ iH .
(3) cH ∩ iH = cH .
(4) cH ∪ iH = cH ∪ bH = iH ∪ bH = iH .
(5) cH ∩ bH = ϕ.
(6) iH ∩ bH = bH .

Proof. Follows from Definition 3.2. □

Proposition 3.2. (1) If H does not contain a minimal subgraph in G, then cH , iH
and bH does not exist.

(2) If H contains only one minimal subgraph in G, then cH = Gk − Hk = iH and
bH = ϕ.

Proof. (1) Follows from Definitions 3.1 and 3.2.
(2) If H contains only one minimal subgraph SH in G, that is SH = H ∪ Hc = Hk

and H contains only one complement minimal subgraph (SH)c in Gk, so we have
∩{(SH)c} = ∪{(SH)c} = (SH)c = Gk − SH = Gk − Hk, then by Definition 3.2,
cH = Gk −Hk = iH and bH = ϕ.

□

Proposition 3.3. If H contains more than one minimal subgraph in G, then cH = Gk −
Hk, iH = Gk −H and bH = (Gk −H)− (Hk)

c.

Proof. Let {S1, S2, ..., Sm} be the minimal subgraphs containing H and their complements
is the set {(S1)

c, (S2)
c, ..., (Sm)c}. Then by Definition 3.2 (1), we have Sm = H∪Hc = Hk is

one of the minimal subgraph containing H in G. Therefore, (Sm)c = Gk −Sm = Gk −Hk,
so (Sm)c is a subgraph of all other complements of minimal subgraphs in G, then by
Definition 3.2 (1), we have cH = (S1)

c ∩ (S2)
c ∩ (S3)

c ∩ ... ∩ (Sm)c = (Sm)c = Gk − Hk.
If e is an edge in H, then e is also an edge in all minimal subgraphs containing H in
G, but e is not an edge in complements of all minimal subgraphs containing H, so by
Definition 3.2 (2), we have iH = Gk −H. By Definitions 3.2 (3) and 3.3, we have bH =
(Gk −H)− (Gk −Hk) = (Gk −H)− (Hk)

c □

Proposition 3.4. If H is a subgraph in G, then iH = cH ∪Hc.

Proof. From Proposition 3.3, we have cH∪Hc = (Gk−Hk)∪Hc = (Gk−(H∪Hc))∪Hc =
(Gk −H) ∩ (Gk −Hc) ∪Hc = [(Hc ∪ Gc) ∩ (H ∪ Gc)] ∪Hc = [(Hc ∩ (H ∪ Gc)) ∪ (Gc ∩
(H ∪Gc)] ∪Hc == Hc ∪Gc = Gk −H = iH . By Proposition 3.3, the result is hold. □

Proposition 3.5. Let G, Gc and ϕ be subgraphs in Gk. Then the following statements
are true:

(1) cϕ = ϕ and iϕ = bϕ = Gk.
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(2) cG = ϕ and iG = bG = Gc.
(3) cGc = ϕ and iGc = bGc = G.

Proof. Follows from Proposition 3.3. □

Proposition 3.6. (1) H is an exact subgraph in G if and only if H contains only one
minimal subgraph.

(2) H is a rough subgraph in G if and only if H has more than one minimal subgraph
in G.

Proof. (1) Follows from Proposition 3.3 and Definition 3.2.
(2) Follows from Proposition 3.3 and Definition 3.2.

□

Proposition 3.7. Let Gk be a graph and H be a subgraph in G, then the following state-
ments are true:

(1) ccH = ciH = cbH = ϕ.
(2) icH = (cH)c.
(3) bcH = (cH)c.
(4) iiH = (iH)c.
(5) biH = (iH)c.
(6) ibH = (bH)c.
(7) bbH = (bH)c.

Proof. (1) Let Sj be the family of minimal subgraphs of cH , iH and bH , so one of
minimal subgraphs containing all other minimal subgraphs in SG isGk and (Gk)

c =
ϕ, then by Definition 3.2 (1, 2, 3), we get the result.

(2) By Proposition 3.3, we have icH = Gk − cH and by Definition 3.3(1), we get
icH = Gk − cH = (cH)c.

(3) By subtracting (1) from (2), we get the result.
(4) By Proposition 3.3, we have iiH = Gk − iH and by Definition 3.3(2), we get

iiH = Gk − iH = (iH)c.
(5) By subtracting (1) from (4), we get the result.
(6) By Proposition 3.3, we have ibH = Gk − bH and by Definition 3.3(3), we get

ibH = Gk − bH = (bH)c.
(7) By subtracting (1) from (6), we get the result.

□

Proposition 3.8. Let Gk be a graph and H1, H2 be two non-null subgraphs in G, if
H1 ⊆ H2, then

(1) cH2 ⊆ cH1.
(2) iH2 ⊆ iH1.
(3) bH1 ⊆ bH2.

Proof. (1) Let e ∈ cH2 , then e ∈ ∩{Sc
H2

} and e /∈ H2 since H1 ⊆ H2 this implies that
e /∈ H1 but e ∈ ∩{Sc

H1
}, thus e ∈ cH1 .

(2) Let e ∈ iH2 , then e ∈ ∪{Sc
H2

} and e /∈ H2 since H1 ⊆ H2 this implies that e /∈ H1

but e ∈ ∪{Sc
H1

}, thus e ∈ iH1 .
(3) Since H1 ⊆ H2, then iH1 − cH1 ⊆ iH2 − cH2 , so by Definition 3.1(3) implies that

bH1 ⊆ bH2 .
□

Proposition 3.9. If H is any non-empty subgraph in G, then |bH | ≤ |cH | ≤ |iH | and
|cH | = |iH | if H contains only one minimal subgraph in G.
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Proof. Follows from Propositions 3.1 and 3.2. □

Proposition 3.10. If H1 and H2 are subgraphs in G and |E(H1)| ≤ |E(H2)|, then |cH2 | ≤
|cH1 |, |iH2 | ≤ |iH1 | and |bH1 | ≤ |bH2 |, equality holds if H1 and H2 are isomorphic subgraphs.

Proof. Follows from Proposition 3.8. □

Proposition 3.11. Let Gk be a graph and H1, H2 be two subgraphs in G, then the
following are true:

(1) cH1∩H2 = cH1 ∩ cH2.
(2) cH1∪H2 ⊆ cH1 ∪ cH2.
(3) iH1∪H2 = iH1 ∪ iH2.
(4) iH1 ∩ iH2 ⊆ iH1∩H2.

Proof. (1) Since H1 ∩ H2 ⊆ H1 and H1 ∩ H2 ⊆ H2, by Proposition 3.8(1), we have
cH1 ⊆ cH1∩H2 and cH2 ⊆ cH1∩H2 . Then cH1 ∩ cH2 ⊆ cH1∩H2 ... (i)
Let e ∈ cH1∩H2 implies e ∈ ∩{(SH1∩H2)

c} implies e /∈ H1 ∩H2 implies e /∈ H1 and
e /∈ H2 implies e ∈ ∩SHc

1
and e ∈ ∩SHc

2
, by Definition 3.2 (1), e ∈ cH1∩H2 ... (ii)

From (i) and (ii), we get cH1∩H2 = cH1 ∩ cH2 .
(2) Let e ∈ cH1∪cH2 implies e ∈ cH1 or e ∈ cH2 implies e ∈ ∩{(SH1)

c} or e ∈ ∩{(SH2)
c}

implies e /∈ H1 or e /∈ H2 implies e /∈ H1 ∪ H2 by Definition 3.2(1), we have
e ∈ cH1∪H2 .

(3) Let e ∈ iH1∪H2 if and only if e /∈ H1 ∪ H2 if and only if e /∈ H1 or e /∈ H2, by
Definition 3.2 (2), we have e ∪ {(SH1)

c} or e ∈ ∪{(SH2)
c} if and only if e ∈ iH1 or

e ∈ iH2 if and only if e ∈ iH1 ∪ iH2 .
(4) Since H1 ∩ H2 ⊆ H1 and H1 ∩ H2 ⊆ H2, then by Proposition 3.8(2), we have

iH1 ⊆ iH1∩H2 and iH2 ⊆ iH1∩H2 , hence iH1 ∩ iH2 ⊆ iH1∩H2 .
□

Remark 3.3. The equality and the converse of case (2) in Proposition 3.11 is not true
in general. From Example 3.1(1), let H1 and H2 be two subgraphs in a graph G1, we have
H1 = {e1, e3, v1, v2, v3, v4}, H2 = {e1, e5, v1, v3, v4, v5}, H1∪H2 = {e1, e3, e5, v1, v2, v3, v4, v5},
cH1 = {e5, e6, e7, e8, e9, e10}, cH2 = {e2, e3, e6, e7, e8, e9, e10} and cH1∪cH2 = {e2, e3, e5, e6, e7,
e8, e9, e10}, then the minimal subgraphs of H1 ∪ H2 are: S1 = {e1, e2, e3, e5}, S2 =
{e1, e3, e4, e5} and S3 = {e1, e2, e3, e4, e5}, so their complements are:
(S1)

c = {e4, e6, e7, e8, e9, e10}, (S2)
c = {e2, e6, e7, e8, e9, e10} and (S3)

c = {e6, e7, e8, e9, e10},
then cH1∪H2 = {e6, e7, e8, e9, e10}.

Therefore, cH1 ∪ cH2 ⊆ cH1∪H2, but cH1∪H2 ⊊ cH1 ∪ cH2.
Also, the equality and the converse of case (4) in Proposition 3.11 is not true in general.
From Example 3.1(1), let H1 = {e1, e3, v1, v2, v3, v4}, H2 = {e1, e5, v1, v3, v4, v5}, iH1 =
{e2, e4, e5, e6, e7, e8, e9, e10},
iH2 = {e2, e3, e6, e7, e8, e9, e10}, H1∩H2 = {e1, v1, v3, v4}, iH1∩iH2 = {e2, e6, e7, e8, e9, e10}
and iH1∩H2 = {e2, e3, e4, e5, e6, e7, e8, e9, e10} then iH1 ∩ iH2 ⊆ iH1∩H2 but iH1∩H2 ⊊ iH1 ∩
iH2.

Proposition 3.12. Let Gk be a graph and H be a subgraph in G, then the following are
true:

(1) iHc = (cH)c and cHc = (iH)c.
(2) (cH)c ∪ (iH)c = (cH ∩ iH)c = (cH)c.
(3) (cH)c ∪ (bH)c = (cH ∩ bH)c = Gk.
(4) (iH)c ∪ (bH)c = (iH ∩ bH)c = (bH)c.
(5) (cH)c ∪ (iH)c ∪ (bH)c = Gk.
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(6) (cH)c ∩ (iH)c = (cH ∪ iH)c = (iH)c.
(7) (cH)c ∩ (bH)c = (cH ∪ bH)c.
(8) (iH)c ∩ (bH)c = (iH ∪ bH)c = (iH)c.
(9) (cH)c ∩ (iH)c ∩ (bH1)

c = (iH)c.

Proof. (1) Let e ∈ iHc , then e /∈ Hc so e ∈ H, therefore e /∈ ∩{(SH)c}, then e ∈
(∩Sc

H)c, hence e ∈ (cH)c.
(2) Let e ∈ (cH)c ∪ (iH)c implies that e ∈ (cH)c ∪ e ∈ (iH)c, by Definition 3.3, we

have e ∈ (Gk − cH) ∪ e ∈ (Gk − iH) implies e ∈ (Gk − cH) ∪ (Gk − iH) implies
e ∈ (Gk − (cH ∩ iH)) implies e ∈ (cH ∩ iH)c and cH ∩ iH = cH . Then, e ∈ (cH)c.

(3) Let e ∈ (cH)c ∪ (bH)c implies that e ∈ (cH)c ∪ e ∈ (bH)c, by Definition 3.3, we
have e ∈ (Gk − cH) ∪ e ∈ (Gk − bH) implies e ∈ Gk − cH) ∪ (Gk − bH) implies
e ∈ (Gk − (cH ∩ bH)) implies e ∈ (cH ∩ bH)c and cH ∩ bH = ϕH . Then, e ∈ Gk.

(4) Let e ∈ (iH)c ∪ (bH)c implies that e ∈ (iH)c ∪ e ∈ (bH)c, by Definition 3.3, we have
e ∈ (Gk − iH) ∪ e ∈ (Gk − bH)
imlpies e ∈ (Gk − iH) ∪ (Gk − bH)
implies e ∈ (Gk − (iH ∩ bH))
implies e ∈ (iH ∩ bH)c.
And iH ∩ bH = bH . Then, e ∈ (bH)c.

(5) Let e ∈ (cH)c ∪ (iH)c ∪ (bH)c implies that e ∈ (cH)c ∪ e ∈ (iH)c ∪ e ∈ (bH)c, by
Definition 3.3, we have e ∈ (Gk − cH) ∪ e ∈ (Gk − iH) ∪ e ∈ (Gk − bH)
implies e ∈ (Gk − cH) ∪ (Gk − iH) ∪ e ∈ (Gk − bH)
implies e ∈ (Gk − (cH ∩ iH)) ∪ e ∈ (Gk − bH)
implies e ∈ (Gk − (cH ∩ iH)) ∪ (Gk − bH)
implies e ∈ (Gk − (cH ∩ iH ∩ bH))
implies e ∈ (cH ∩ iH ∩ bH)c.
And cH ∩ iH ∩ bH = ϕH . Then, e ∈ Gk.

The proofs of cases (6, 7, 8, 9) are the complement of the proofs of cases (2, 3, 4, 5),
respectively. □

Proposition 3.13. Let Gk be a graph and H1, H2 be two subgraphs in G, then the
following are true:

(1) (cH1 ∪ cH2)
c = (cH1)

c ∩ (cH2)
c.

(2) (cH1 ∩ cH2)
c = (cH1)

c ∪ (cH2)
c.

(3) (iH1 ∪ iH2)
c = (iH1)

c ∩ (iH2)
c.

(4) (iH1 ∩ i)c = (iH1))
c ∪ (iH2)

c.
(5) (bH1 ∪ bH2)

c = (bH1)
c ∩ (bH2)

c.
(6) (bH1 ∩ bH2)

c = (bH1)
c ∪ (bH2)

c.

Proof. (1) Let e ∈ (cH1 ∪ cH2)
c, by Definition 3.3, we have

if and only if e ∈ (Gk − (cH1 ∪ cH2))
if and only if e ∈ (Gk − cH1) ∩ (Gk − cH2)
if and only if e ∈ (Gk − cH1) and e ∈ (Gk − cH1), by Definition 3.3, we have
if and only if e ∈ (cH1)

c and e ∈ (cH2)
c

if and only if e ∈ (cH1)
c ∩ (cH2)

c.
(2) Let e ∈ (cH1 ∩ cH2)

c, by Definition 3.3, we have
if and only if e ∈ Gk − (cH1 ∩ cH2)
if and only if e ∈ (Gk − cH1) ∪ (Gk − cH2)
if and only if e ∈ (Gk − cH1) or e ∈ (Gk − cH1), by Definition 3.3, we have
if and only if e ∈ (cH1)

c or e ∈ (cH1)
c

if and only if e ∈ (cH1)
c ∪ (cH2)

c.
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The proofs of cases (3) and (5) are similar to the proof of case (1) and proofs of cases
(4) and (6) are similar to the proof of case (2). □

4. Nano Graph Topological Space

In this section, we introduce a new type of nano topological space called nano graph
topological space in terms of new types of subgraphs indicated in Definition 3.2. The nano
closure and nano interior subgraphs and their characterizations are investigate.

Definition 4.1. Let G = (V (G), E(G)) be a finite non-empty graph and H = (V (H), E(H))
be a subgraph from G. Let τGk

(H) = {ϕ,Gk, cH , iH , bH} is a topology on Gk called nano
graph topology with respect to H, if satisfies the following axioms:

(1) Gk, ϕ ∈ τGk
(H).

(2) The union of subgraphs of any subcollection in τGk
(H) is in τGk

(H).
(3) The intersection of subgraphs of any finite subcollection in τGk

(H) is in τGk
(H).

That is, (Gk, τGk
(H)) is called nano graph topological space and ϕ is represented the

null graph of Gk. The subgraphs of the nano graph topology τGk
(H) are called nano−open

subgraphs in τGk
(H) and the complement of each nano-open subgraph in τGk

(H) is called
nano−closed subgraph in τGk

(H).

Example 4.1. Consider the graph and subgraphs in Example 3.1(1), then the nano graph
topologies with respect to the subgraph Hi for i = 1, 2, 3, 4 are given as

(1) τGk
(H1) = {ϕ,Gk, cH1 , iH1 , bH1}.

(2) τGk
(H2) = {ϕ,Gk, cH2}.

(3) τGk
(H3) = {ϕ,Gk, cH3}.

(4) τGk
(H4) = {ϕ,Gk, cH4 , iH4 , bH4}.

Theorem 4.1. If τGk
(H) is a nano graph topology with respect to a subgraph H from

G, then the collection βGk
(H) = {Gk, cH , bH} form a nano graph basis for τGk

(H) with
respect to H.

Proof. (1) Let U be a family of subgraphs in βGk
(H), then ∪U = Gk.

(2) (a) For Gk and cH , let W = cH , since Gk ∩ cH = cH , then W ⊂ Gk ∩ cH and
every vertices with incident edges in Gk ∩ cH belongs to W .

(b) For Gk and bH , let W = bH , since W ⊂ Gk ∩ bH and every vertices with
incident edges in Gk ∩ bH belongs to W , so Gk ∩ bH = bH .

(c) For cH and bH , we have cH ∩ bH = ϕ.
Hence, βGk

(H) form a base for τGk
(H). □

Remark 4.1. Let τGk
(H) be a nano graph topology with respect to a subgraph H from G,

then (τGk
(H))c is a topology on Gk and is called the dual nano graph topology of τGk

(H),
members of (τGk

(H))c are called nano closed subgraphs. Let K be subgraph in Gk is a nano
closed subgraph in τGk

(H) if and only if Gk −K is nano open subgraph in τGk
(H).

Example 4.2. The dual nano graph topologies of nano graph topologies in Example 4.1
are given as

(1) (τGk
(H1))

c = {ϕ,Gk, {e1, e2, e3, e4}, {e1, e3}, {e1, e3, e5, e6, e7, e8, e9, e10}}.
(2) (τGk

(H2))
c = {ϕ,Gk, {e1, e4, e5}}.

(3) (τGk
(H3))

c = {ϕ,Gk, {e1, e4}}.
(4) (τGk

(H4))
c = {ϕ,Gk, {e1, e2, e3, e4, e5}, {e1, e4, e5},

{e1, e4, e5, e6, e7, e8, e9, e10}}.

In the following proposition, we introduce the types of nano graph topological space.
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Proposition 4.1. Let G be a finite non-empty graph and H be a subgraph from G, then

(1) If cH = iH ̸= Gk ̸= ϕ, that is, H has exactly one minimal subgraph, then τGk
(H) =

{ϕ,Gk, cH} and (τGk
(H))c = {ϕ,Gk, S1}, where S1 is the only minimal subgraph

containing H.
(2) If cH = ϕ and iH = Gk, then τGk

(H) = {ϕ,Gk} is the indiscrete nano graph
topology with respect to H and (τGk

(H))c = {ϕ,Gk}.
(3) If cH = ϕ and iH ̸= Gk, in this case we have if H = G, then τGk

(H) = {ϕ,Gk, iH}
and (τGk

(H))c = {ϕ,Gk, (iH)c = G}, if H = Gc, then τGk
(H) = {ϕ,Gk, iH = G}

and (τGk
(H))c = {ϕ,Gk, (iH)c = Gc}.

(4) If cH ̸= ϕ and iH = Gk, then τGk
(H) = {ϕ,Gk, cH , bH} and (τGk

(H))c = {ϕ,Gk,
(cH)c = bH , (bH)c = cH} = {ϕ,Gk, cH , bH}.

(5) If cH ̸= iH , cH ̸= ϕ and iH ̸= Gk, then τGk
(H) = {ϕ,Gk, cH , iH , bH} and

(τGk
(H))c = {ϕ,Gk, (cH)c = H ∪ bH , (iH)c = H, (bH)c = H ∪ cH}.

In the following example, we illustrate the types of nano graph topological space indi-
cated in the above proposition.

Example 4.3. Let G be a non-empty finite graph with H and G, Gc are subgraph in G
and Gk, respectively.

(1) For type (1), see Example 3.1(2).
(2) For type (2), see Example 3.1(1)(e).
(3) For type (3), if H = G or H = Gc having more than one minimal subgraph in Gk.
(4) For type (4), see Example 3.1(3).
(5) For type (5), see Example 3.1(1), if H = H1 or H = H4.

Remark 4.2. A nano-open subgraph in (Gk, τGk
(H)) is said to be nano-clopen subgraph

if it is both nano-open and nano-closed subgraph in (Gk, τGk
(H)). In Proposition 4.1, we

have only two types of nano graph topological space each nano-open subgraph is nano-clopen
subgraph, first type, if cH = ϕ and iH = Gk and second type, if cH ̸= ϕ and iH = Gk.

Let (Gk, τGk
(H)) be a nano graph topological space with respect to a subgraph H in G

and W is a subgraph in Gk. We define the following:

Definition 4.2. The nano interior subgraph of W is defined as the union of all nano-open
subgraphs contained in W and it is denoted by NintGk

(W ). That is, NintGk
(W ) is the

maximal nano-open subgraph of W .

Definition 4.3. The nano closure subgraph of W is defined as the intersection of all
nano-closed subgraphs containing W and it is denoted by NclGk

(W ). That is, NclGk
(W )

is the minimal nano-closed subgraph containing W .

Theorem 4.2. Let (Gk, τGk
(H)) be a nano graph topological space with respect to a sub-

graph H in G. Let W be a subgraph in Gk. Then

(1) Gk −NintGk
(W ) = NclGk

(Gk −W ).
(2) Gk −NclGk

(W ) = NintGk
(Gk −W ).

Proof. (1) Let e ∈ Gk − NintGk
(W ), then e /∈ NintGk

(W ), then any nano open
subgraph in τGk

(H), say C containing e is not a subgraph in W , that is C ∩
(Gk − W ) ̸= ϕ, for every nano subgraph C in τGk

(H) containing e, therefore
e ∈ NclGk

(Gk −W ), then Gk − NintGk
(W ) ⊆ NclGk

(Gk −W ). Conversely, Let
e ∈ NclGk

(Gk−W ), then C∩(Gk−W ) ̸= ϕ, for every nano subgraph C in τGk
(H)

containing e, that is C ⊈W , then e /∈ NintGk
(W ), therefore e ∈ Gk−NintGk

(W ),
thus, NclGk

(Gk−W ) ⊆ Gk−NintGk
(W ). Hence Gk−NintGk

(W ) = NclGk
(Gk−

W ).
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(2) Proof is similar to (1).
□

Remark 4.3. It is easy to calculate the nano interior subgraph of subgraphs cH , iH and
bH and their complements in a graph Gk in the five types of nano graph topology, while
the nano closure subgraph of our subgraphs in each type of nano graph topology is present
in the following corollary.

Corollary 4.1. Let (Gk, τGk
(H)) be a nano graph topological space with respect to a

subgraph H from G. Then the following statements are true:

(1) If H has only one minimal subgraph in G (cH = iH ̸= Gk ̸= ϕ). Then
(a) NclGk

(cH) = Gk.
(b) NclGk

((cH)c) = (cH)c.
(2) If cH = ϕ and iH = Gk. Then

(a) NclGk
(iH) = Gk.

(b) NclGk
((iH)c) = ϕ.

(3) If cH = ϕ and iH ̸= Gk. Then
(a) NclGk

(iH) = Gk.
(b) NclGk

((iH)c) = (iH)c.
(4) If cH ̸= ϕ and iH = Gk. Then

(a) NclGk
(cH) = (bH)c.

(b) NclGk
(bH) = (cH)c.

(5) If cH ̸= iH , cH ̸= ϕ and iH ̸= Gk. Then
(a) NclGk

(cH) = (bH)c.
(b) NclGk

(iH) = Gk.
(c) NclGk

(bH) = (cH)c.

Proof. Follows from Proposition 4.1 and Definitions 4.2 and 4.3. □

In the following theorems, we examine the nano interior subgraph and nano closure
subgraph of any subgraph in a graph Gk.

Theorem 4.3. Let (Gk, τGk
(H)) be a nano graph topological space with respect to a sub-

graph H from G, if H has only one minimal subgraph in G and W is a subgraph of Gk,
then

(1)

NintGk
(W ) =

{
cH , if cH ⊆ W,

ϕ, otherwise.

(2)

NclGk
(W ) =

{
(cH)c, if W ⊆ (cH)c,

Gk, otherwise.

Proof. (1) If cH ⊆ W , since τGk
(H) has only one nano open subgraph cH contained

in W , so NintGk
(W ) = cH .

If cH ⊈W , then τGk
(H) has no nano open subgraph contained inW , soNintGk

(W ) =
ϕ.

(2) If W ⊆ (cH)c, then the dual nano graph topology (τGk
(H)))c has nano closed

subgraphs (cH)c and Gk containing W , so (cH)c∩Gk = (cH)c, hence NclGk
(W ) =

(cH)c.
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If W ⊈ (cH)c, then the dual nano graph topology (τGk
(H)c has only one nano

closed subgraph Gk containing W , so NclGk
(W ) = Gk.

□

Theorem 4.4. Let (Gk, τGk
(H)) be a nano graph topological space with respect to a sub-

graph H from G, if cH = ϕ and iH = Gk and W is a subgraph of Gk, then

(1)

NintGk
(W ) =

{
Gk, if iH ⊆ W,

ϕ, otherwise.

(2) NclGk
(W ) = Gk.

Proof. (1) Since cH = ϕ and iH = Gk, then τGk
(H) = {ϕ,Gk}, then the only open

subgraph containing W is Gk, then NintGk
(W ) = Gk, otherwise NintGk

(W ) = ϕ.
(2) The dual nano graph topology (τGk

(H))c has the only nano closed subgraph Gk

containing W , hence NclGk
(W ) = Gk.

□

Theorem 4.5. Let (Gk, τGk
(H)) be a nano graph topological space with respect to a sub-

graph H from G, if cH = ϕ and iH ̸= Gk and W is a subgraph of Gk with more than one
edge, then

(1)

NintGk
(W ) =

{
iH , if iH ⊆ W,

ϕ, otherwise.

(2) If H = G, then

NclGk
(W ) =

{
G, if W ⊆ G,

Gk, otherwise.

(3) If H = Gc, then

NclGk
(W ) =

{
Gc, if W ⊆ Gc,

Gk, otherwise.

Proof. In case cH = ϕ and iH ̸= Gk, we have H = G or H = Gc and τGk
(H) = {ϕ,Gk, iH}

and iH = bH .

(1) Similar to the proof of Theorem 4.4(1).
(2) In case cH = ϕ and iH ̸= Gk, we have H = G or H = Gc. if H = G, then

τGk
(H) = {ϕ,Gk, iH} = {ϕ,Gk, G

c} and the dual nano graph topology is of the
form (τGk

(H))c = {Gk, ϕ,G}.
(3) If H = Gc, then τGk

(H) = {ϕ,Gk, iH} = {ϕ,Gk, G} and the dual nano graph
topology is of the form (τGk

(H))c = {ϕ,Gk, G
c}. Hence the proof is complete.

□

Theorem 4.6. Let (Gk, τGk
(H)) be a nano graph topological space with respect a subgraph

H from G, if cH ̸= ϕ and iH = Gk and W is a subgraph of Gk with more than one edge,
then
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(1)

NintGk
(W ) =


cH , if cH ⊆ W,

bH , if bH ⊆ W,

Gk, if W = Gk.

(2)

NclGk
(W ) =


(bH)c, if W ⊆ cH ,

(cH)c, if W ⊆ bH ,

Gk, otherwise.

Proof. Since cH ̸= ϕ and iH = Gk, then τGk
(H) = {ϕ,Gk, cH , bH} and the dual nano

graph topology is of the form (τGk
(H))c = {ϕ,Gk, (bH)c, (cH)c}. Then by Definitions 4.2

and 4.3, the proof of (1) and (2) it is obvious. □

Theorem 4.7. Let (Gk, τGk
(H)) be a nano graph topological space with respect to a sub-

graph H from G, if cH ̸= iH ̸= Gk ̸= ϕ and W is a subgraph of Gk, then

(1)

NintGk
(W ) =


cH , if cH ⊆ W,

bH , if bH ⊆ W,

iH , if iH ⊆ W,

ϕ, otherwise.

(2) If W is the set of the edges not in cH , iH and bH , then
(a) NclGk

(W ∪ cH) = (bH)c.
(b) NclGk

(W ∪ iH) = Gk.
(c) NclGk

(W ∪ bH) = (cH)c.
(3)

NclGk
(W ) =



(bH)c, if W ⊆ cH ,

Gk, if W ⊆ iH ,

(cH)c, if W ⊆ bH ,

(cH)c, if W = (cH)c,

(iH)c, if W = (iH)c,

(bH)c, if W = (bH)c,

(cH)c, if ∃ e ∈ W, e ∈ bH & e /∈ cH ,

(iH)c, otherwise.

Proof. Proof of (1) follows from Definition 4.2.
Proof of (2), if W is the set of edges not in cH , iH and bH , then we have the following
cases:

(1) W ∪ cH = (bH)c, then NclGk
(W ∪ cH) = (bH)c.

(2) W ∪ iH = Gk, then NclGk
(W ∪ iH) = Gk.

(3) W ∪ bH = (cH)c, then NclGk
(W ∪ bH) = (cH)c.

Proof of (3), we have the following cases:

(1) If W ⊆ cH and W , cH are subgraphs in Gk then Gk−W ⊆ Gk−cH , take the nano
interior subgraph of both sides we have NintGk

(Gk −W ) ⊆ NintGk
(Gk − cH), by

Theorem 4.2 this implies that Gk − NclGk
(W ) = Gk − NclGk

(cH), by Corollary
4.1, we have Gk −NclGk

(W ) = Gk − (bH)c, then NclGk
(W ) = (bH)c.
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(2) If W ⊆ iH , then Gk −W ⊆ Gk − iH , take the nano interior subgraph of both sides
we have NintGk

(Gk −W ) ⊆ NintGk
(Gk − iH) by Theorem 4.2 this implies that

Gk −NclGk
(W ) = Gk −NclGk

(iH), by Corollary 4.1, we have Gk −NclGk
(W ) =

Gk −Gk, then NclGk
(W ) = Gk.

(3) If W ⊆ bH , then Gk−W ⊆ Gk− bH , take the nano interior subgraph of both sides
we have NintGk

(Gk −W ) ⊆ NintGk
(Gk − bH) by Theorem 4.2 this implies that

Gk −NclGk
(W ) = Gk −NclGk

(bH), by Corollary 4.1, we have Gk −NclGk
(W ) =

Gk − (cH)c, then NclGk
(W ) = (cH)c.

(4) For W = (cH)c, W = (iH)c and W = (bH)c, the proof it is obvious.
(5) If at least one of the edges in W is in bH but not in cH , directly from case 2(c),

we get the result.
(6) If W is not in the above cases, it is clear NclGk

(W ) = (iH)c.

□

In the following example, the cases in Theorem 4.7 are illustrated.

Example 4.4. Consider the graph in Example 3.1 (2), we have cH = {e6}, iH =
{e2, e3, e6} and bH = {e2, e3}, then the nano graph topology is given by
τGk

(H) = {ϕ,Gk, {e6}, {e2, e3, e6}, {e2, e3}} and the dual nano graph topology is given by
(τGk

(H))c = {ϕ,Gk, {e1, e2, e3, e4, e5}, {e1, e4, e5},
{e1, e4, e5, e6}}.
To illustrate cases in (2), let W = {e1, e4}, then NclGk

(W ∪ cH) = NclGk
({e1, e4, e6}) =

{e1, e4, e5, e6} = (bH)c,
NclGk

(W ∪ iH) = NclGk
({e1, e2, e3, e4, e6}) = {e1, e2, e3, e4, e5, e6} = Gk and NclGk

(W ∪
bH) = NclGk

({e1, e2, e3, e4}) = {e1, e2, e3, e4, e5} = (cH)c.
To illustrate cases in (3), the first six cases are obvious, for other cases let W = {e1, e3},
then NclGk

(W ) = NclGk
({e1, e3}) = {e1, e2, e3, e4, e5} = (cH)c, let W = {e1, e5}, then

NclGk
(W ) = NclGk

({e1, e5}) = {e1, e4, e5} = (iH)c and let W = {e4, e5}, then NclGk
(W ) =

NclGk
({e4, e5}) = {e1, e4, e5} = (iH)c.

5. Conclusions

In this paper, we have introduced new types of subgraphs of a subgraph H from a
graph G. We have also studied various topological properties and results related to these
newly defined subgraphs. Furthermore, we have presented a new type of nano topology
generated by these subgraphs and explored results related to nano closure and nano interior
subgraphs. Additionally, this study demonstrates the usefulness of investigating subgraphs
for creating various types of topological structures.

References

[1] Azzam, A. A., (2017), Grill Nano topological spaces with grill Nano generalized closed sets, Journal of
the Egyptian Mathematical Society, 25, pp. 164–166.

[2] Chartrand, G., Lesniak, L., Zhang, P., (2016), Textbooks in Mathematics ’Graphs and Digraphs’,
Taylor and Francis Group, LLC.

[3] El Atik, A. A., Hassan, Z. H., (2020), Some nano topological structures via ideals and graphs, Journal
of the Egyptian Mathematical Society, 28(41).

[4] El-Kholy, E. M., Lashin, E. S. R., Daoud, S. N., (2012), New operations on graphs and graph foldings.
International Mathematical Forum, 7(46), pp. 2253–2268.

[5] Hammack, R. H., Imrich, W., Klavzar, S., (2011), Handbook of product graphs, Boca Raton CRC
press, 2.

[6] Harary, F., (1969), Graph Theory, Addison-Wesley, Reading, MA.



N. IBRAHIM, A. KHALAF: NANO TOPOLOGY INDUCED BY GRAPHS 1535

[7] Ibrahim, N. B., Khalaf, A. B., (2023), New Products on Undirected Graphs, New Trends in Mathe-
matical Sciences, 11(2), pp. 1-14.

[8] Muhammad Saeed, A. H., Yaseen, R. B., (2024), Nano hα-open set in Nano Topological Spaces, Journal
for Research in Applied Sciences and Biotechnology, 3(1), pp. 109-113.

[9] Nasef, A., El Atik, A. A., (2017), Some Properties on Nano Topology Induced by Graphs, AASCIT
Journal of Nano science, 3(4), pp. 19-23.

[10] Nawar, A. S., El Atik, A. A., (2019), A model of a human heart via graph Nano topological spaces,
International Journal of Biomathematics, 12(1), 18 pages.

[11] Parimala, M., Arivuoli, D., Udhayakumar, R., (2021), Identifying Structural Isomorphism Between
Two Kinematic Chains Via Nano Topology, TWMS J. App. and Eng. Math., 11(2), pp. 561-569.

[12] Pawlak, Z., Rough sets, (1982), Int. J. Inf. Comput. Sci. II, pp. 341-356.
[13] Shibata, Y., Kikuchi, Y., (2000), Graph products based on the distance in graphs, IEICE TRANS-

ACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, 83, pp. 459-464.
[14] Thivagar, L. M., Richard, C., (2013), On nano continuity. Mathematical theory and modeling, 3(7),

pp. 32–37.
[15] Thivagar, L. M., Manuel, P., Sutha Devi, V., (2016), A detection for patent infringement suit via

nano topology induced by graph. Cogent mathematics, 3(1), pp. 1-10.
[16] Talali Ali Al-Hawary, Sumaya H. Al-Shalaldeh and Muhammad Akram, (2023), Certain Matrices and

Energiesof Fuzzy Graphs, TWMS JPAM 14, No.1, pp.50-68.

Dr. Alias B. Khalaf is working as a professor in the Department of Mathematics,
College of Science, University of Duhok, Kurdistan Region, Iraq and his research
interest is General Topology. He has published more than 115 research papers in
various peer reviewed international journals.

Nechirvan B. Ibrahim is working as a lecturer in the Department of Mathemat-
ics, College of Science, University of Duhok, Kurdistan Region, Iraq and his research
interests are Graph Theory and Topology. He has published more than 15 research
papers in various peer reviewed international journals.


