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SOLVABILITY OF AN INVERSE COEFFICIENT PROBLEM FOR A

TIME-FRACTIONAL DIFFUSION EQUATION WITH PERIODIC

BOUNDARY AND INTEGRAL OVERDETERMINATION CONDITIONS

J. J. JUMAEV1∗, D. K. DURDIEV2, Z. R. BOZOROV3, §

Abstract. This article studies the inverse problem for time-fractional diffusion equa-
tions with periodic boundary and integral overdetermination conditions on the rectan-
gular domain. First, we introduce a definition of a classical solution, and then the direct
problem is reduced to an equivalent integral equation by the Fourier method. Existence
and uniqueness of the solution of the equivalent problem is proved using estimates of
the Mittag-Leffer function and generalized singular Gronwall inequalities. In the second
part, the inverse problem is considered. This problem reduces to the equivalent integral
equation. For solving this equation the contracted mapping principle is applied. The
local existence and uniqueness results are proven.

Keywords: time-fractional diffusion equation, periodic boundary conditions, inverse prob-
lem, integral equation.
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1. Introduction

Periodic boundary conditions (PBCs) are a set of boundary conditions which are often
chosen for approximating a large (infinite) system by using a small part called a unit cell.
PBCs are often used in computer simulations and mathematical models. The topology of
two-dimensional PBC is equal to that of a world map of some video games; the geometry
of the unit cell satisfies perfect two-dimensional tiling, and when an object passes through
one side of the unit cell, it re-appears on the opposite side with the same velocity (see
[1, 16, 36]).

The PBCs arise from many important applications in heat transfer, life sciences [2, 4, 20,
26, 27]. In these papers, it was proven the existence, the uniqueness and the continuous
dependence on the data of the solution and we will develop the numerical solution of
diffusion problem with periodic boundary conditions.
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Various statements of inverse problems on determination of thermal coefficient in one-
dimensional heat equation were studied in [20, 21, 39, 40, 24, 33, 35]. It is important to
note that in the papers [20, 21] the time-dependent thermal coefficient is determined from
nonlocal overdetermination condition data. Besides, in [5, 17, 18] the coefficients of the
heat equations are determined in the case of nonlocal boundary conditions

The papers [7, 11, 19, 37, 38] investigated the inverse problem of finding diffusion
coefficients in one and multi-dimensional time-fractional equation. Under some assumption
on the data, the existence, uniqueness, and continuous dependence on the data of the
solution were shown.

The problem of determining the kernel k(t) of the integral term in an integro-differential
heat equation were studied in many publications [6, 8, 9, 12, 13, 14, 15, 25, 34], in which
both one- and multidimensional inverse problems with classical initial, initial-boundary
conditions were investigated. The existence and uniqueness theorems of inverse problem
solutions were proved.

In the present work, time-fractional diffusion equation is used with initial, periodic
boundary conditions for the determination of coefficients. The existence and uniqueness
of the classical solution of the problem (1)-(4) is reduced to fixed point principles by
applying the Fourier method.

2. Formulation of problem

We consider the initial-periodic boundary problem for the fractional diffusion equation

∂αt u− uxx + a(t)u = f(x, t)g(t), (x, t) ∈ DT , (1)

u(x, 0) = φ(x), x ∈ [0, 1], (2)

u(0, t) = u(1, t), ux(0, t) = ux(1, t), φ(0) = φ(1), φ′(0) = φ′(1), t ∈ [0, T ], (3)

where ∂αt is the Caputo fractional derivative of order 0 < α ≤ 1 in the time vari-
able (see Theorem 3.1), a(t), g(t), t > 0 are the source control terms, f(x, t) is known
source term, φ(x) is the initial temperature, T is arbitrary positive number and DT :=
{(x, t) : 0 < x < 1, 0 < t ≤ T}).

The problem of determining a function u(x, t), (x, t) ∈ DT , that satisfies (1)-(3) with
known functions a(t), g(t), f(x, t) and φ(x) will be called the direct problem.

In the inverse problem, it is required to determine the coefficients a(t), g(t), t > 0, in
(1) using overdetermination conditions about the solution of the direct problem (1)-(3):∫ 1

0
ωi(x)u(x, t)dx = hi(t), i = 1, 2, x ∈ [0, 1], (4)

where ωi(x), hi(t), i = 1, 2 are given functions.
In heat propagation in a thin rod in which the law of variation hi(t) of the total quantity

of heat in the rod is given in [19]. This integral condition in parabolic problems is also
called heat moments which are analyzed in [21].

Let C2,α(DT ) be the class of functions that are 2− times continuously differentiable
with respect to x in DT for which a continuous derivative ∂αt exists.

Definition 2.1. The triple of functions {u(x, t), a(t), g(t)} from the class C2,α(DT ) ∩
C1,0(DT ) × C[0, T ] × C[0, T ] is said to be a classical solution of problem (1)-(4), if the
functions u(x, t), a(t) and g(t) satisfy the following conditions:

(1) the function u(x, t) and its derivatives ∂αt u(x, t), uxx(x, t) are continuous in the
domain DT ;

(2) the functions a(t), g(t) are continuous on the interval [0, T ];
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(3) equation (1) and conditions (2)-(4) are satisfied in the classical sense.

Throughout this article the functions φ, f, ωi and hi (i := 1, 2) are assumed to satisfy
the following conditions:

(A1) φ(x) ∈ C2(0, 1); φ(3)(x) ∈ L2(0, 1); φ(0) = φ(1); φ′(0) = φ′(1); φ′′(0) = φ′′(1);

φ(3)(0) = φ(3)(1);

(A2) f(x, t) ∈ C(DT ) ∩ C2,1(DT ); f
(3)
xxx(x, t) ∈ L2(0, 1); f(0, t) = f(1, t); f ′x(0, t) =

f ′x(1, t); f ′′xx(0, t) = f ′′xx(1, t);

(A3) hi(t) ∈ C1[0, T ]; ωi(x) ∈ C2[0, 1]; ω
(3)
i (x, t) ∈ L2(0, 1);

∫ 1
0 ωi(x)φ(x)dx =

hi(0); ωi(0) = ωi(1); ω′
i(0) = ω′

i(1); ω′′
i (0) = ω′′

i (1), i = 1, 2.
In the next section, we recall basic definitions and notations from fractional calculus,

which will be used in the future.

3. Preliminaries

Theorem 3.1. [30, pp. 93-94]. Let 0 < α < 1. Also let u(x, t) ∈ C0,1
x,t (DT ). Then the

Caputo fractional derivatives ∂α0+,tu(x, t) is continuous on [0, T ] : ∂α0+,tu(x, t) ∈ C(DT ). It
has, the form

∂α0+,tu(x, t) =
1

Γ(1− α)

∫ t

0
(t− τ)−α∂u(x, τ)

∂τ
dτ, ∂10+,tu(x, t) = ut(x, t).

Moreover,
∂α0+,tu(x, 0) = ∂α0+,tu(x, T ) = 0, for α /∈ {0, 1},

where Γ(·) is the Euler’s Gamma function.

Two parameter Mittag-Leffler function. [30, pp. 40-42] The two parameter
Mittag-Leffler function Eα,β(z) is defined by the following series:

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
,

where α, β, z ∈ C with R(α) > 0, R(α) denotes the real part of the complex number α .

Proposition 3.1. [30, pp. 40-45]. Let 0 < α < 2 and β ∈ R be arbitrary. We suppose that
κ is such that πα/2 < κ < min{π, πα}. Then, there exists a constant C = C(α, β, κ) > 0
such that

|Eα,β(z)| ≤
C

1 + |z|
, κ ≤ |arg(z)| ≤ π.

Proposition 3.2. [30, pp. 40-45] For 0 < α < 1, t > 0, we have 0 < Eα,1(−t) < 1.
Moreover, Eα,1(−t) is completely monotonic, that is

(−1)n
dn

dtn
Eα,1(−t) ≥ 0, ∀n ∈ N.

Proposition 3.3. [30, pp. 40-45] For 0 < α < 1, η > 0, we have 0 ≤ Eα,α(−η) ≤ 1
Γ(α) .

Moreover, Eα,α(−η) is a monotonic decreasing function with η > 0.

Lemma 3.1. (Gronwall inequality.) [28],[32, pp. 188-210]. Let m(t) ∈ C[t0, T ](t0 ∈
R+ = [0,∞), T ≤ +∞) and suppose that

m(t) ≤ m0 +
L

Γ(γ)

∫ t

t0

(t− s)γ−1m(s)ds, t ∈ [t0, T ].

Then we have
m(t) ≤ m0Eγ,1(L(t− t0)

γ), t ∈ [t0, T ],
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where m0 and L are nonnegative constants, γ ∈ (0, 1).

Theorem 3.2. [30, pp. 135-144]. The solution T (t) ∈ AC[0, T ] of the linear nonhomo-
geneous fractional problem

∂α0+,tT (t) + λT (t) = f(t), t ∈ (0, T ], λ > 0,

T (0) = c,

where f ∈ L1[0, T ], is given by the integral expression

T (t) = cEα,1 (−λtα) +
∫ t

0
(t− τ)α−1Eα,α(−λ(t− τ)α)f(τ)dτ.

We will use these facts everywhere in this article.

4. Direct problem

The use of the Fourier method for solving problem (1)-(3) leads to the spectral problem
for the operator given by the differential expression and boundary conditions

X ′′
n(x) + λ2Xn(x) = 0, x ∈ (0, 1), Xn(0) = Xn(1), X ′

n(0) = X ′
n(1), n = 0, 1, 2, .... (5)

In [3], it is known that the system of eigenfunctions

1, cosλ1x, sinλ1x, cosλ2x, sinλ2x, ..., cosλnx, sinλnx, ... (6)

where λn = 2πn (n = 0, 1, ...), is a basis for L2(0, 1). That system is eigenfunctions of
spectral problem (5).

Since the system (6) form a basis in L2(0, 1), we shall seek the u(x, t) of classical solution
of the problem (1)-(3) in the form

u(x, t) =
∞∑
n=0

u1n(t) cosλnx+
∞∑
n=1

u2n(t) sinλnx, λn = 2πn, (7)

f(x, t) =

∞∑
n=0

f1n(t) cosλnx+

∞∑
n=1

f2n(t) sinλnx,

where

u10(t) =

∫ 1

0
u(x, t)dx, u1n(t) = 2

∫ 1

0
u(x, t) cosλnxdx, u2n(t) = 2

∫ 1

0
u(x, t) sinλnxdx.

f10(t) =

∫ 1

0
f(x, t)dx, f1n(t) = 2

∫ 1

0
f(x, t) cosλnxdx, f2n(t) = 2

∫ 1

0
f(x, t) sinλnxdx.

Then, applying the formal scheme of the Fourier method for determining of unknown
coefficients u10(t) and uin(t) (i := 1, 2;n = 1, 2, ...) of function u(x, t) from (1) and (2),
we have

∂αu10(t) = −a(t)u10(t) + g(t)f10(t), (8)

u10(t)|t=0 = φ10, (9)

∂αuin(t) + λ2nuin(t) = −a(t)uin(t) + g(t)fin(t), (10)

uin(t)|t=0 = φin, i = 1, 2, n = 1, 2, ..., (11)
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where

φ10 =

∫ 1

0
φ(x)dx, φ1n = 2

∫ 1

0
φ(x) cosλnxdx, φ2n = 2

∫ 1

0
φ(x) sinλnxdx.

According to Theorem 3.2, the solutions of problems (8),(9) and (10),(11) satisfy the
following integral equations

u10(t) = φ10 +
1

Γ(α)

∫ t

0
(t− τ)α−1(f10(τ)g(τ)− a(τ)u10(τ))dτ, (12)

and

uin(t) = φinEα(−λ2tα)+
∫ t

0
(t−τ)α−1Eα,α(−λ2(t−τ)α)(g(τ)fin(τ)−a(τ)uin(τ))dτ. (13)

Estimating the functions u10(t), uin(t), we obtain the integral inequalities:

|u10(t)| ≤ |φ10|+
tα

Γ(α+ 1)
∥g∥∥f10∥+

∥a∥
Γ(α)

∫ t

0
(t− τ)α−1|u10(τ)|dτ,

|uin(t)| ≤ |φin|+
tα

Γ(α+ 1)
∥g∥∥fin∥+

+
∥a∥
Γ(α)

∫ t

0
(t− τ)α−1|uin(τ)|dτ, (i = 1, 2, n = 1, 2, ...)

where ∥g∥ = maxt∈[0,T ] |g(t)|, ∥a∥ = maxt∈[0,T ] |a(t)|. Applying Gronwall’s Lemma 3.1.,
from last inequalities we obtain the following estimate

|u10(t)| ≤ (|φ10|+
tα

Γ(α+ 1)
∥g∥∥f10∥)Eα(∥a∥tα), (14)

|uin(t)| ≤
(
|φin|+

tα

Γ(α+ 1)
∥g∥∥fin∥

)
Eα(∥a∥tα). (15)

Using equalities (8), (10) and (14), (15) we obtain estimates for ∂αu10(t), ∂
αuin(t) :

|∂αu10(t)| ≤ ∥a∥(|φ10|+
tα

Γ(α+ 1)
∥g∥∥f10∥)Eα(∥a∥tα) + ∥g∥∥f10∥,

|∂αuin(t)| ≤ (λ2 + ∥a∥)
(
|φin|+

tα

Γ(α+ 1)
∥g∥∥fin∥

)
Eα(∥a∥tα) + ∥g∥∥fin∥.

Thus we have proved the following lemma:

Lemma 4.1. For any t ∈ [0;T ] the following estimates are valid:

|u10(t)| ≤ (|φ10|+
Tα

Γ(α+ 1)
∥g∥∥f10∥)Eα(∥a∥Tα),

|uin(t)| ≤
(
|φin|+

Tα

Γ(α+ 1)
∥g∥∥fin∥

)
Eα(∥a∥Tα),

|∂αu10(t)| ≤ ∥a∥(|φ10|+
Tα

Γ(α+ 1)
∥g∥∥f10∥)Eα(∥a∥Tα) + ∥g∥∥f10∥,

|∂αuin(t)| ≤ (λ2 + ∥a∥)
(
|φin|+

Tα

Γ(α+ 1)
∥g∥∥fin∥

)
Eα(∥a∥Tα) + ∥g∥∥fin∥.
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Formally, from (7) by term-by-term differentiation we compose the series

∂αt,0+u(x, t) =

∞∑
n=0

∂α0+u1n(t) cosλnx+
∞∑
n=1

∂α0+u2n(t) sinλnx, (16)

uxx(x, t) = −
∞∑
n=0

λ2nu1n(t) cosλnx−
∞∑
n=1

λ2nu2n(t) sinλnx. (17)

In view of Lemma 4.1, if following series converge then the series (7), (16), and (17) to be
converge for any (x, t) ∈ DT

C4

∞∑
n=1

(λ2n|φin|+ λ2n∥fin∥),

where the constant C4 depends only on T, α, ∥a∥, ∥g∥.
We hold the following auxiliary lemma:

Lemma 4.2. If the conditions (A1)(A2) are valid then, there are equalities

φin =
1

λ3n
φ
(3)
in , fin(t) =

1

λ3n
f
(3)
in , (i = 1, 2) (18)

where

φ
(3)
1n = 2

∫ 1

0
φ(3)(x) sinλnxdx, φ

(3)
2n = 2

∫ 1

0
φ(3)(x) cosλnxdx,

f
(3)
1n (t) = 2

∫ 1

0
f (3)xxx(x, t) sinλnxdx, f

(3)
2n (t) = 2

∫ 1

0
f (3)xxx(x, t) cosλnxdx

with the following estimate:

∞∑
n=1

|φ(3)
in |2 ≤ ∥φ(3)∥L2[0,1],

∞∑
n=1

|f (3)in (t)|2 ≤ ∥f (3)∥L2[0,l]×C[0,T ], (i = 1, 2). (19)

If the functions φ(x), f(x, t) satisfy the conditions of Lemma 4.2, then due to represen-
tations (18) and (19) series (7), (16) and (17) converge uniformly in the rectangle DT ,
therefore, function u(x, t) satisfies relations (1)-(3).

Using the above results, we obtain the following assertion.

Lemma 4.3. Let {g(t), a(t)} ∈ C[0, T ], (A1), (A2) are satisfied, then there exists a unique
solution of the direct problem (1)-(3) u(x, t) ∈ C2,α(DT ) ∩ C1,0(DT ).

Let us derive an estimate for the norm of the difference between the solution of the
original integral equations (12), (13) and the solution of this equation with perturbed

functions ã, g̃, φ̃in, f̃in. Let ũin(t), (i := 0, 1, 2) be solutions of the integral equation (12),

(13) corresponding to the functions ã, g̃, φ̃in, f̃in; i.e.,

ũ10(t) = φ̃10 +
1

Γ(α)

∫ t

0
(t− τ)α−1(f̃10(τ)g̃(τ)− ã(τ)ũ10(τ))dτ, (20)

ũin(t) = φ̃inEα(−λ2tα)+
∫ t

0
(t−τ)α−1Eα,α(−λ2(t−τ)α)(ã(τ)ũin(τ)+ g̃(τ)f̃in(τ))dτ. (21)
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Composing the difference uin − ũin with the help of the equations (12), (20), (13) (21)

and introducing the notations uin − ũin = uin, a − ã = a, g − g̃ = g, fin − f̃in = f in, we
obtain the integral equation

u10(t) = φ10 +
1

Γ(α)

∫ t

0
(t− τ)α−1(f10(τ)g(τ) + g̃(τ)f10(τ))dτ−

− 1

Γ(α)

∫ t

0
(t− τ)α−1(a(τ)u10(τ) + ã(τ)u10(τ))dτ,

uin(t) = φnEα,1(−λ2ntα) +
∫ t

0
(t− τ)α−1Eα,α

(
−λ2n(t− τ)α

)
g(τ)fin(τ)dτ+

+

∫ t

0
(t− τ)α−1Eα,α

(
−λ2n(t− τ)α

)
g̃(τ)f in(τ)dτ−

−
∫ t

0
(t− τ)α−1Eα,α

(
−λ2n(t− τ)α

)
a(τ)uin(τ)dτ−

−
∫ t

0
(t− τ)α−1Eα,α

(
−λ2n(t− τ)α

)
ã(τ)uin(τ)dτ (22)

from which, are derived the following linear integral inequalities for |u10(t)|, |uin(t)| :

|u10(t)| ≤ |φ10|+
tα∥f10∥∥g̃∥
Γ(α+ 1)

+
tα∥f10∥∥g∥
Γ(α+ 1)

+

+
∥a∥tα

Γ(α+ 1)

(
|φ10|+

tα

Γ(α+ 1)
∥g∥∥f10∥

)
Eα(∥a∥tα) +

∥ã∥
Γ(α)

∫ t

0
(t− τ)α−1|u10(τ)|dτ.

|uin(t)| ≤ |φin|+
tα∥f in∥∥g̃∥
Γ(α+ 1)

+
tα∥fin∥∥g∥
Γ(α+ 1)

+

+
∥a∥tα

Γ(α+ 1)

(
|φin|+

tα

Γ(α+ 1)
∥g∥∥fin∥

)
Eα(∥a∥tα) +

∥ã∥
Γ(α)

∫ t

0
(t− τ)α−1|uin(τ)|dτ.

Using the Lemma 3.1 from last inequality, we arrive at the estimate:

|u10(t)| ≤
{
φ10|+

tα∥f10∥∥g̃∥
Γ(α+ 1)

+
tα∥f10∥∥g∥
Γ(α+ 1)

+

+
∥a∥tα

Γ(α+ 1)

(
|φ10|+

tα

Γ(α+ 1)
∥g∥∥f10∥

)
Eα(∥a∥tα)

}
Eα(∥ã∥tα). (23)

|uin(t)| ≤
{
φin|+

tα∥f in∥∥g̃∥
Γ(α+ 1)

+
tα∥fin∥∥g∥
Γ(α+ 1)

+

+
∥a∥tα

Γ(α+ 1)

(
|φin|+

tα

Γ(α+ 1)
∥g∥∥fin∥

)
Eα(∥a∥tα)

}
Eα(∥ã∥tα). (24)

In next section it is studied the inverse problem as the problem of determining of
functions a(t), g(t) from relations (1)-(4), using the contraction mapping principle.
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5. Solvability of inverse problem

Let us multiply (1) by ωi(x), (i = 1, 2) and integrate over x from 0 to l:∫ l

0
ωi(x)∂

α
t u(x, t)dx−

∫ l

0
ωi(x)uxxdx+ a(t)

∫ l

0
ωi(x)u(x, t)dx =

= g(t)

∫ l

0
ωi(x)f(x, t)dx, i = 1, 2, (x, t) ∈ DT .

After integrating by parts, in view of conditions (2)-(4) and (A4), we obtain the equality

∂α0+,thi(t)−
∫ l

0
ω′′
i (x)u(x, t)dx+ a(t)hi(t) = g(t)

∫ l

0
ωi(x)f(x, t)dx, i = 1, 2. (25)

Solving the system (25) with respect to the unknown functions a(t) and g(t), we obtain
the following integral equations with respect to the unknowns:

g(t) =
1

∆(t)

2∑
k,j=1
k ̸=j

(−1)jhj(t)
[
∂α0+,thk(t)−

∞∑
n=0

u1n(t; a; g)λ
2
nω

(2)
k1n −

∞∑
n=1

u2n(t; a; g)λ
2
nω

(2)
k2n

]
,

(26)

a(t) =
1

∆(t)

2∑
k,j=1
k ̸=j

(−1)jFj(t)
[
∂α0+,thk(t)−

∞∑
n=0

u1n(t; a; g)λ
2
nω

(2)
k1n −

∞∑
n=1

u2n(t; a; g)λ
2
nω

(2)
k2n

]
,

(27)
where

∆(t) = h1(t)F2(t)− h2(t)F1(t); Fk(t) =
∞∑
n=0

f1n(t)ωk1n +
∞∑
n=1

f2n(t)ωk2n; k = 1, 2;

ωk1n = 2

∫ 1

0
ωk(x) cos(λnx)dx; ω

(2)
k1n = 2

∫ 1

0
ω′′
k(x) cos(λnx)dx.

ωk2n = 2

∫ 1

0
ωk(x) sin(λnx)dx; ω

(2)
k2n = 2

∫ 1

0
ω′′
k(x) sin(λnx)dx.

The main result of this work is presented as follows:

Theorem 5.1. Let (A1)-(A3) are satisfied. Then there exists a number T ∗ ∈ (0, T ), such
that there exists a unique solution a(t), g(t) ∈ C[0, T ∗] of the inverse problem (1)-(4).

Proof. We consider the operator equation

ψ = Λ[ψ]. (28)

where ψ = (ψ1, ψ2) := (a(t); g(t)) is unknown vector function. The components (Λ1,Λ2)
of Λ are defined by the right hand sides of equations (26), (27):

Λ1[ψ](t) = ψ01(t)+
1

∆(t)

2∑
k,j=1
k ̸=j

(−1)jFj(t)
[ ∞∑
n=0

u1n(t; a; g)ω
(2)
k1n+

∞∑
n=1

u2n(t; a; g)ω
(2)
k2n

]
, (29)

Λ2[ψ](t) = ψ02(t)+
1

∆(t)

2∑
k,j=1
k ̸=j

(−1)jhj(t)
[ ∞∑
n=0

u1n(t; a; g)ω
(2)
k1n+

∞∑
n=1

u2n(t; a; g)ω
(2)
k2n

]
. (30)
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Let ψ0 := (ψ01, g02), where

ψ01(t) =
1

∆(t)

2∑
k,j=1
k ̸=j

(−1)jFj(t)∂
α
0+,thk(t),

ψ02(t) =
1

∆(t)

2∑
k,j=1
k ̸=j

(−1)jhj(t)∂
α
0+,thk(t).

Consider the functional space of vector functions ψ ∈ C(DT ) with the norm given by
the relation

∥ψ∥ = max{ max
t∈[0,T ]

|ψ1(t)|, max
t∈[0,T ]

|ψ2(t)|}.

Fix a number ρ > 0 and consider the ball

ΦT (g0, ρ) := {ψ : ∥ψ − ψ0∥C[0,T ] ≤ ρ}.

Let us prove for an enough small T > 0 the operator Λ maps the ball ΦT (ψ0, ρ) into
itself. For this purpose, using the estimates (14),(15) for u1n, u2n respectively, we find
following estimates

∥Λ1[ψ](t)− ψ01(t)∥

≤ 2F0ω0

δ

∣∣∣∣ ∞∑
n=0

u1n(T ;ψ1;ψ2) +
∞∑
n=1

u2n(T ;ψ1;ψ2)

∣∣∣∣
≤ 2ω0F0

δ

[
(|φ10|+

Tα

Γ(α+ 1)
∥ψ1∥∥f10∥) +

2∑
i=1

(
|φin|+

Tα

Γ(α+ 1)
∥ψ1∥∥fin∥

)]
Eα(∥ψ2∥Tα),

∥Λ2[ψ](t)− ψ02(t)∥

≤ 2ω0h0
δ

∣∣∣∣ ∞∑
n=0

u1n(T ;ψ1;ψ2) +

∞∑
n=1

u2n(T ;ψ1;ψ2)

∣∣∣∣
≤ 2ω0h0

δ

[
(|φ10|+

Tα

Γ(α+ 1)
∥ψ1∥∥f10∥)+

2∑
i=1

∞∑
n=1

(
|φin|+

Tα

Γ(α+ 1)
∥ψ1∥∥fin∥

)]
Eα(∥ψ2∥Tα),

where δ = min{|∆|} > 0, δ = const., F0 = ∥Fk(t)∥C[0,T ], h0 = max{∥hi∥C1[0,l]}, i =
1, 2, f0 = ∥fin∥C(DT ), ω0 = ∥ωi∥C2[0,1].

According to Lemmas 4.1 and 4.2, the above series is a convergent series. Note that the
functions occurring on the right-hand side in these inequalities are monotone increasing
with T , and the fact that the function ψ(t) belongs to the ball ΦT (ψ0, ρ) implies the
inequality

∥ψ∥ ≤ ρ+ ∥ψ0∥. (31)

Therefore, we only strengthen the inequality if we replace ∥ψ∥ in these inequalities with
the relation ρ+ ∥ψ0∥. Performing these replacements, we obtain the estimate

∥Λ1[ψ](t)− ψ01(t)∥ ≤ 2F0ω0

δ

[
(|φ10|+

Tα

Γ(α+ 1)
(ρ+ ∥ψ0∥)∥f10∥)+

+

2∑
i=1

∞∑
n=1

(
|φin|+

Tα

Γ(α+ 1)
(ρ+ ∥ψ0∥)∥fin∥

)]
Eα((ρ+ ∥ψ0∥)Tα),

∥Λ2[ψ](t)− ψ02(t)∥ ≤ 2ω0h0
δ

[
(|φ10|+

Tα

Γ(α+ 1)
(ρ+ ∥ψ0∥)∥f10∥)+
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+
2∑

i=1

∞∑
n=1

(
|φin|+

Tα

Γ(α+ 1)
(ρ+ ∥ψ0∥)∥fin∥

)]
Eα((ρ+ ∥ψ0∥)Tα).

These relations together with (23) and (24), (25) imply the estimates

∥Λ[ψ](t)− ψ0(t)∥ = max{∥Λ1[ψ](t)− ψ01(t)∥, ∥Λ2[ψ](t)− ψ02(t)∥} ≤

≤ max

{
2F0ω0

δ
,
2ω0h0
δ

}[
(|φ10|+

Tα

Γ(α+ 1)
(ρ+ ∥ψ0∥)∥f10∥)+

+
2∑

i=1

∞∑
n=1

(
|φin|+

Tα

Γ(α+ 1)
(ρ+ ∥ψ0∥)∥fin∥

)]
Eα((ρ+ ∥ψ0∥)Tα).

Let T1 be a positive root of the equation

max

{
2F0ω0

δ
,
2ω0h0
δ

}[
(|φ10|+

Tα

Γ(α+ 1)
(ρ+ ∥ψ0∥)∥f10∥)+

+
2∑

i=1

∞∑
n=1

(
|φin|+

Tα

Γ(α+ 1)
(ρ+ ∥ψ0∥)∥fin∥

)]
Eα((ρ+ ∥ψ0∥)Tα) = ρ.

Then for T ∈ [0, T1] we have Λ[ψ](t) ∈ ΦT (ψ0, ρ).

Now consider two functions ψ(t) and ψ̃(t) belonging ΦT (ψ0, ρ) and estimate the distance

between their images Λ[ψ](t) and Λ[ψ̃](t) in the space C[0, T ]. The function ũn(t) corre-

sponding to ψ̃(t) satisfies the integral equation (20),(21) with the functions φn = φ̃n and

fn = f̃n. Composing the difference Λ[ψ](t)− Λ[ψ̃](t) with the help of equations (12),(13),
(20),(21) and then estimating its norm, we get

∥Λ1[ψ](t)− Λ1[ψ̃](t)∥ ≤

≤ 2F0ω0

δ

( ∞∑
n=0

∥∥u1n(T ;ψ1;ψ2)− ũ1n(T ; ψ̃1; ψ̃2)
∥∥+ ∞∑

n=1

∥∥u2n(T ;ψ1;ψ2)− ũ2n(T ; ψ̃1; ψ̃2)
∥∥) ≤

≤ 2F0ω0

δ

{
|φ10|+

Tα∥f10∥∥ψ̃2∥
Γ(α+ 1)

+
Tα∥f10∥∥ψ2∥
Γ(α+ 1)

+

+
∥ψ2∥tα

Γ(α+ 1)

(
|φ10|+

Tα

Γ(α+ 1)
∥ψ2∥∥f10∥

)
Eα(∥ψ1∥Tα)+

+

2∑
i=1

∞∑
n=1

{
|φin|+

Tα∥f in∥∥ψ̃2∥
Γ(α+ 1)

+
Tα∥fin∥∥ψ2∥
Γ(α+ 1)

+

+
∥ψ1∥Tα

Γ(α+ 1)

(
|φin|+

Tα

Γ(α+ 1)
∥ψ2∥∥fin∥

)
Eα(∥ψ1∥Tα)

}}
Eα(∥ψ̃1∥Tα). (32)

∥Λ2[ψ](t)− Λ2[ψ̃](t)∥ ≤

≤ 2h0ω0

δ

( ∞∑
n=0

∥∥u1n(T ;ψ1;ψ2)− ũ1n(T ; ψ̃1; ψ̃2)
∥∥+ ∞∑

n=1

∥∥u2n(T ;ψ1;ψ2)− ũ2n(T ; ψ̃1; ψ̃2)
∥∥) ≤

≤ 2h0ω0

δ

{
|φ10|+

Tα∥f10∥∥ψ̃2∥
Γ(α+ 1)

+
Tα∥f10∥∥ψ2∥
Γ(α+ 1)

+

+
∥ψ2∥Tα

Γ(α+ 1)

(
|φ10|+

tα

Γ(α+ 1)
∥ψ2∥∥f10∥

)
Eα(∥ψ1∥Tα)+
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+
2∑

i=1

∞∑
n=1

{
|φin|+

Tα∥f in∥∥ψ̃2∥
Γ(α+ 1)

+
Tα∥fin∥∥ψ2∥
Γ(α+ 1)

+

+
∥ψ1∥Tα

Γ(α+ 1)

(
|φin|+

Tα

Γ(α+ 1)
∥ψ2∥∥fin∥

)
Eα(∥ψ1∥Tα)

}}
Eα(∥ψ̃1∥Tα). (33)

Using inequality (14),(15) and the estimate (23) with ∥ψ∥ = ∥ψ − ψ̃∥ = max{∥ψ1 −
ψ̃1∥, ∥ψ2 − ψ̃2∥}, φn = φ̃n and fn = f̃n, we continue the previous inequality in following
form:

∥Λ1[ψ](t)− Λ1[ψ̃](t)∥ ≤ 2F0ω0

δ

[ Tα∥f10∥
Γ(α+ 1)

+

+
Tα

Γ(α+ 1)

(
|φ10|+

Tα

Γ(α+ 1)
∥ψ2∥∥f10∥

)
Eα(∥ψ1∥Tα) +

2∑
i=1

∞∑
n=1

{ Tα∥fin∥
Γ(α+ 1)

+

+
Tα

Γ(α+ 1)

(
|φin|+

Tα

Γ(α+ 1)
∥ψ2∥∥fin∥

)
Eα(∥ψ1∥Tα)

}]
Eα(∥ψ̃1∥Tα)∥ψ − ψ̃∥. (34)

∥Λ2[ψ](t)− Λ2[ψ̃](t)∥ ≤ 2h0ω0

δ

[ Tα∥f10∥
Γ(α+ 1)

+

+
Tα

Γ(α+ 1)

(
|φ10|+

Tα

Γ(α+ 1)
∥ψ2∥∥f10∥

)
Eα(∥ψ1∥Tα) +

2∑
i=1

∞∑
n=1

{ Tα∥fin∥
Γ(α+ 1)

+

+
Tα

Γ(α+ 1)

(
|φin|+

Tα

Γ(α+ 1)
∥ψ2∥∥fin∥

)
Eα(∥ψ1∥Tα)

}]
Eα(∥ψ̃1∥Tα)∥ψ − ψ̃∥. (35)

Because of ψ(t) and ψ̃(t) belong to the ball ΦT (g0, ρ), then for these functions takes
place the inequality (31). Note that the functions on the right-hand side in inequality (28)

at the factor ∥ψ∥ is monotone increasing with ∥ψ∥, ∥ψ̃∥, and T. Consequently, replacing
∥ψ∥ and ∥ψ̃∥ in inequality (28) with ρ+ ∥ψ0∥ will only strengthen the inequality. In this
way, we obtain

∥Λ1[ψ](t)− Λ1[ψ̃](t)∥ ≤ 2F0ω0

δ

[ Tα∥f10∥
Γ(α+ 1)

+

+
Tα

Γ(α+ 1)

(
|φ10|+

Tα

Γ(α+ 1)
(ρ+ ∥ψ0∥)∥f10∥

)
Eα((ρ+ ∥ψ0∥)Tα) +

2∑
i=1

∞∑
n=1

{ Tα∥fin∥
Γ(α+ 1)

+

+
Tα

Γ(α+ 1)

(
|φin|+

Tα

Γ(α+ 1)
(ρ+ ∥ψ0∥)∥fin∥

)
Eα((ρ+ ∥ψ0∥)Tα)

}]
Eα((∥ρ+ ∥ψ0∥)Tα)∥ψ∥.

∥Λ2[ψ](t)− Λ2[ψ̃](t)∥ ≤ 2h0ω0

δ

[ Tα∥f10∥
Γ(α+ 1)

+

+
Tα

Γ(α+ 1)

(
|φ10|+

Tα

Γ(α+ 1)
(ρ+ ∥ψ0∥)∥f10∥

)
Eα((ρ+ ∥ψ0∥)Tα) +

2∑
i=1

∞∑
n=1

{ Tα∥fin∥
Γ(α+ 1)

+

+
Tα

Γ(α+ 1)

(
|φin|+

Tα

Γ(α+ 1)
(ρ+ ∥ψ0∥)∥fin∥

)
Eα((ρ+ ∥ψ0∥)Tα)

}]
Eα((∥ρ+ ∥ψ0∥)Tα)∥ψ∥.

Hence,

∥Λ[ψ](t)− Λ[ψ̃](t)∥ ≤ max

{
2ω0F0

δ
,
2ω0h0
δ

}[ Tα∥f10∥
Γ(α+ 1)

+

+
Tα

Γ(α+ 1)

(
|φ10|+

Tα

Γ(α+ 1)
(ρ+ ∥ψ0∥)∥f10∥

)
Eα((ρ+ ∥ψ0∥)Tα) +

2∑
i=1

∞∑
n=1

{ Tα∥fin∥
Γ(α+ 1)

+
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+
Tα

Γ(α+ 1)

(
|φin|+

Tα

Γ(α+ 1)
(ρ+ ∥ψ0∥)∥fin∥

)
Eα((ρ+ ∥ψ0∥)Tα)

}]
Eα((∥ρ+ ∥ψ0∥)Tα)∥ψ∥.

Let T2 be a positive root of the equation

max

{
2ω0F0

δ
,
2ω0h0
δ

}[ Tα∥f10∥
Γ(α+ 1)

+

+
Tα

Γ(α+ 1)

(
|φ10|+

Tα

Γ(α+ 1)
(ρ+ ∥ψ0∥)∥f10∥

)
Eα((ρ+ ∥ψ0∥)Tα) +

2∑
i=1

∞∑
n=1

{ Tα∥fin∥
Γ(α+ 1)

+

+
Tα

Γ(α+ 1)

(
|φin|+

Tα

Γ(α+ 1)
(ρ+∥ψ0∥)∥fin∥

)
Eα((ρ+∥ψ0∥)Tα)

}]
Eα((∥ρ+∥ψ0∥)Tα) = 1.

Because, it is a transcendental equation and on the right side the function is a monotonic
increasing function, besides (0,0) point belongs to the function. So, the above equation
has positive roots.

Then for T ∈ [0, T2) the operator Λ contracts the distance between the elements

ψ(t), ψ̃(t) ∈ ΦT (ψ0, ρ). Consequently, if we choose T ∗ < min(T1, T2) then the operator Λ
is a contraction in the ball ΦT (ψ0, ρ). However, in accordance with the Banach theorem
(see [[28], pp. 87-97]), the operator Λ has unique fixed point in the ball ΦT (ψ0, ρ); i.e.,
there exists a unique solution of equation (29). □
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