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SOLVING A FRACTIONAL NONLINEAR SCHRÖDINGER EQUATION

WITH SINGULAR CONDITIONS

A. BENMERROUS1∗, M. ELOMARI1, §

Abstract. In this paper the time-fractional Schrödinger equations with singular poten-
tials are studied. Dirac function or even higher-order singularities are allowed. Using the
Gronwall lemma and Laplace transforms, we give and prove the existence and uniqueness
of the integral solution of the problem in Colombeau’s algebra.
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1. Introduction

Fractional Schrödinger equations represent a captivating extension of the classical Schrödinger
equation from quantummechanics by incorporating fractional derivatives. These equations
have gained significant attention due to their ability to describe various physical phenom-
ena exhibiting anomalous diffusion, non-local interactions, and long-range memory effects.
In many physical systems, particle movement deviates from the normal Brownian motion,
exhibiting anomalous diffusion. This type of diffusion, characterized by non-Gaussian dis-
tributions and long-range temporal or spatial correlations, can be effectively modeled using
fractional calculus. Fractional Schrödinger equations are particularly useful in describing
such systems, where the standard Schrödinger equation falls short.
In contrast to the integer-order derivatives in the classical Schrödinger equation, frac-
tional derivatives capture memory effects and non-local interactions, making fractional
Schrödinger equations suitable for modeling systems with complex dynamics and anoma-
lous diffusion. The fractional order in these equations can range between zero and one,
capturing a broad spectrum of behaviors, from subdiffusion to superdiffusion.

In many physical systems, singular potentials provide a more accurate and realistic
description of interactions. For instance, the Coulomb potential, which describes the
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electrostatic interaction between charged particles, has a singularity at the origin. In-
corporating such potentials into quantum models allows for a precise representation of
physical phenomena, especially at short distances or in high-energy scenarios.

In the first time A. Benmerrous and al[3] were able to prove the existence and uniqueness
of the generalized solution under initial data are singular, and from this they open a great
way to study the Schrödinger equations of the integer order, in their paper they deal with
the following problem, taking the initial values as generalized functions.{

1
i ∂sψ(s, y)−∆ψ(s, y) + v(y)ψ(s, y) = 0
v(y) = δ(y), ψ(0, y) = δ(y).

Our objective is to enlarge this last work in the situation of the Caputo’s time-fractional
derivative with the exponent between 0 and 1. But before that, we will enter the fractional
derivative into Colombeau algebra and after that we will discussing the notion of general-
ized semigroup through which we will give and demonstrate the existence and uniqueness
of the solution of the following Cauchy problem{

Dα
s ψ(s, y)−Aψ(s, y) = f (s, ψ(s, y)) , s ∈ [0, T ]

ψ(0, y) = ψ0
,

where Dα
s is Caputo derivative of order α, 0 < α ≤ 1, and A is the infinitesemal genrator of

semigroup (T (s))s≥0. If A = ∆ we note that the latter is a generalization of our objective.

The paper is organized as follows: Section 2 introduces several concepts from Colombeau’s
algebra. Section 3, we will give and demonstrate the existence of Caputo derivative in
Colombeau algebra. Section 4, introduce the concept of generalized fractional semigroup,
in section 5 we gave and demonstrate the integral solution of a Cauchy problem and we
will apply this in the section 6 (Schrödinger equation).

2. Preliminaries

We present below some symbols and definitions for future reference. [5, 3].

Consider D(Rn) as the collection of all test functions ϕ : Rn → C having compact sup-
port.

Let q ∈ N, we define

Aq(Rn) =

{
ϕ ∈ D (Rn) /

∫
ϕ(y)dy = 1 and

∫
yβϕ(y)dy = 0 with 1 ≤ β ≤ q

}
.

The members of the collection Aq are referred to as test functions.

It is evident that A1 contains A2 and so forth. Colombeau has demonstrated in his
literature that the sets Ak are populated for every k ∈ N [3].

For any ϕ ∈ Aq, ϵ > 0 we denote ϕϵ(y) =
1
ϵϕ

(y
ϵ

)
with ϕ ∈ D (Rn), and ϕ̌(y) = ϕ(−y).

We use the notation

E (Rn) = {φ : A1 × Rn → C/φ(ϕ, y) is C∞ to y} ,
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φ (ϕϵ, y) = uϵ(x) ∀ϕ ∈ A1,

EM (Rn) =
{
(φϵ)ϵ>0 ⊂ E (Rn) /∀K ⊂ Rn,∀a ∈ N, ∃N ∈ N such that

sup
y∈K

∥Dαφϵ(y)∥ = O
(
ϵ−N

)
as ϵ→ 0} ,

N (Rn) =
{
(φϵ)ϵ>0 ∈ E (Rn) /∀K ⊂ Rn,∀α ∈ N,∀p ∈ N such that

sup
x∈K

∥Dαφϵ(y)∥ = O (ϵp) as ϵ→ 0} .

Then the Colombeau algebra is define by G = EM/N , where the elements of EM exhibit
moderation, while those of N are considered negligible.
The components of Colombeau algebras G consist of evenness classes stemming from reg-
ularizations. These regularizations manifest as sequences of smooth functions that satisfy
specific asymptotic conditions concerning the regularization parameter ϵ. Hence, for any
given set X, we denote the ensemble of sequences (uϵ)ϵ∈[0;1] belonging to X as X [0;1]. Such
sequences are also termed as nets and are succinctly denoted as uϵ.

Definition 1.

A function f ∈ G(R) is considered to have an ’associated distribution’, denoted as f ≈ u,
if for every representative f(φϵ, y) of f and ψ(y) ∈ D(R), there exists a natural number q
such that for any φ(y) ∈ Aq(R), we have:

lim
ϵ→0+

∫
R
f(φϵ, y)ψ(y)dy = ⟨u, ψ⟩.

3. Caputo derivative in Colombeau algebra

A fractional integral in Caputo sense is defined by: [15]

Iαf(r) =
1

Γ(α)

∫ r

0
(r − s)α−1f(s)ds α ∈ R+.

In the Caputo meaning, the fractional derivative of order α > 0 is defined as: [15]

Dαf(r) =
1

Γ(m− α)

∫ r

0

f (m)(s)ds

(r − s)α+1−m
, m− 1 < α < m.

Let (fε) be a representative of f in G([0,+∞[), then:

Dαfϵ(r) =
1

Γ(1− α)

∫ r

0

f ′(s)

(r − s)α
ds 0 < α < 1

sup
t∈[0,T ]

∥Dαfε(r)∥ ≤ 1

Γ(1− α)
sup

r∈[0,T ]
∥
∫ r

0

f ′(s)ds

(r − s)α
∥

≤ 1

Γ(1− α)

∥∥f ′∥∥
L∞([0,T ])

sup
t∈[0,T ]

∫ r

0

ds

(r − s)α
ds

≤ 1

Γ(1− α)
ϵ−N T

1−α

1− α
≤ Cα,T ϵ

−N .

Generally, for α ∈ (m− 1,m).
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sup
r∈[0,T ]

∥Dαfϵ(r)∥ ≤ 1

Γ(m− α)
sup

r∈[0,T ]

∫ r

0

∥f (m)(s)∥
(r − s)α+1−m

ds

≤ 1

Γ(m− α)

∥∥∥f (m)
∥∥∥
L∞([0,T ])

sup
r∈[0,T ]

∫ r

0

1

(r − s)α+1−m
ds

≤ 1

Γ(m− α)
ϵ−N Tm−α

m− α
≤ Cα,T ϵ

−N .

The constant Cα,T depends on two factors α and T .

Proposition 1.

Let (ωϵ(t))ϵ be a representative of ω(t) ∈ G([0,+∞)). The regularized Caputo αth frac-
tional derivative of (ωϵ(t))ϵ, α > 0, is defined by

ifrac :

{
G ([0,+∞)) → G ([0,+∞))

ω →
(
D̃αωϵ

)
ϵ>0

:= (Dαω ∗ φϵ)ϵ>0 .

Proposition 2. Let ϵ > 0 ( (
D̃αωϵ

) )
≈

(
(Dαωϵ)

)
.

Proof. Let: uε ∈ G ([0,+∞)).

We have,

∥D̃αuε(t)∥ = ∥Dαuε ∗ φε(t)∥

= ∥ 1

Γ(2− α)

∫ t

0

u
(2)
ϵ (s)ds

(t− s)α−1
∗ φϵ(t)∥

⩽ ∥ 1

Γ(2− α)

∫ t

0

u
(2)
ϵ (s)

(t− s)α − 1
ds∥ × ∥φε∥L∞(Rn)

⩽ ∥DαUε(t)∥ × ∥φε∥L∞ (Rn) .

Then:

∥D̃αuε(t)−Dαuε(t)∥ ⩽∥Dαuε(t)∥
(
∥φε∥L∞(Rn) − 1

)
⩽

1

Γ(2− α)
sup

t∈[0,T ]
∥
∫ t

0

u
(2)
ε (τ)

(t− τ)α−1
dτ∥ ×

(
∥φε∥L∞(Rn) − 1

)
⩽ 1

Γ(2−α) supt∈[0,T ] ∥u
(2)
ε (t)∥ × T 2−α

2−α ×
(
∥φε∥L∞(Rn) − 1

)
⩽ CT,αε

2−α ε−→0−→ 0.
We utilize the regularization for α ∈ (0, 1)

D̃αuϵ(y) = Dαuϵ ∗ ϕϵ(y).
The form of convolution is provided by :

D̃αuϵ(y) =

∫
R
Dαuϵ(s)ϕϵ(y − τ)dτ.

We state that | D̃αuε(y)−Dαuε(y) |≈ 0.
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| D̃αuε(y)−Dαuε(y) |=| Dαuε ∗ ϕε(y)−Dαuε(y) |

| D̃αuε(y)−Dαuε(y) |=| Dαuε ∗ ϕε(y)−Dαuε ∗ δ(y) |

| D̃αuε(y)−Dαuε(y) |=| Dαuε ∗ (ϕε(y)− δ(y)) |

| D̃αuε(y)−Dαuε(y) |=|
∫
R
Dαuϵ(y − τ) (ϕϵ(τ)− δ(s)) dτ |

| D̃αuε(y)−Dαuε(y) |=
∫
R
| Dαuε(y − τ) || ϕε(τ)− δ(τ) | dτ −→ 0.

Because of limϵ−→0 | ϕϵ(τ)− δ(τ) |= 0, consequently

D̃αuε(y) ≈ Dαuε(y)

By using assumption that ϕϵ(y) has compact support onK0, the following computations
can be made utilizing Holder inequalities:

D̃αuε(y) = Dαuϵ ∗ ϕϵ(y) =
∫
R
Dαuε(y − τ)ϕϵ(τ)dτ

| D̃αuε(y) |=|
∫
R
Dαuε(y − τ)ϕϵ(τ)dτ |=|

∫
K0

Dαuε(y − τ)ϕϵ(τ)ds |

| D̃αuε(y) |=
∫
K0

| Dαuε(y − τ) || ϕε(τ) | dτ

sup
y∈K

| D̃αuε(y) |= sup
y∈K

{∫
K0

| Dαuϵ(y − τ) || ϕϵ(τ) | dτ
}
.

So,

sup
y∈K0

| D̃αuε(y) |≤ sup
y∈K0

| Dαuε(y) |
∫
K0

| ϕε(τ) | dτ

sup
y∈K

| D̃αuε(y) |≤ C1ε
p.

And
d

dy

(
D̃αuε(y)

)
=

d

dy
(Dαuε) ∗ ϕε(y) = Dαuε ∗

d

dy
(ϕε(y)) .

Then,

sup
y∈K

| d
dy

(
D̃αuε(y)

)
|≤ sup

y∈K0

| Dαuε(y) |
∫
K0

| d
dy

(ϕε(τ)) | dτ ≤ C2ε
p.

A similar approach is used to demonstrate moderateness for higher derivatives.

sup
y∈K

| ∂nD̃αuε(y) |≤ Cϵε
p

□

By the same principle we define ”Generalized caputo semigroup”.

4. Generalized Caputo semigroup

Let’s denote a Banach space as (E, ∥.∥), where E is the space and ∥.∥ is the norm. L(E)
denotes the set of linear continuous mappings from X to E.
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Definition 2.

We establish ES
M (R+,L(E)) as the set of mappings (Sϵ)ϵ from R+ to L(E), where

0 < ϵ < 1, satisfying Sϵ(0) = I for all, for all T > 0, there exists n ∈ N such that:

sup
0<s<T

∥Sϵ(s)∥ = O (ϵn) as ϵ −→ 0. (1)

Definition 3.

Define NS ([0,+∞),L(E)) as the set of mappings (Nϵ)ϵ from R+ to L(E), where 0 <
ϵ < 1. For any C > 0, q ∈ N the following characteristics hold:

sup
s∈[0,C]

∥Nϵ(s)∥ = O (ϵq) as ϵ −→ 0. (2)

There exist r > 0 and b ∈ R such that:

sup
s<r

∥∥∥∥Nϵ(s)

s

∥∥∥∥ = O
(
ϵb
)
. (3)

Moreover, there exists (Hϵ)ϵ include in L(E) and 0 < r < 1 such that:

lim
s→0

Nϵ(s)

s
y = Hϵy, y ∈ E, ϵ < r. (4)

For any r > 0,

∥Hϵ∥ = O (ϵr) as ϵ −→ 0. (5)

Proposition 3.

1) ES
M ([0,+∞), L(E)) is an algebra.

2) NS([0,+∞), L(E)) is an ideal of ES
M ([0,+∞),L(E)).

Proof. Let (Lϵ(s))ϵ ⊂ ES
M (R+,L(E)) and (Mϵ(s))ϵ ⊂ NS(R+,L(E)).

We will focus solely on proving the second statement:

(Lϵ(s)Mϵ(s))ϵ), (Mϵ(s)ϵLϵ(s)) ∈ NS([0,+∞),L(E)).

The composition is denoted by L(s)M(s).
Let 0 < ϵ < 1. Using (2) and (4), for y ∈ R and ∀z ∈ R,

∥Lϵ(s)Mϵ(s)∥ ≤ ∥Lϵ(s)∥.∥Mϵ(s)∥ = O(ϵy+z)

when ϵ −→ 0.
The same holds for ∥Mϵ(s)Lϵ(s)∥.
Additionally, by (2) and (4):

sup
s<t0

∥Lϵ(s)Mϵ(s)

s
∥ ≤ sup

s<t0
∥Lϵ(s)∥ sup

s<t0
∥Mϵ(s)

s
∥ = O(ϵa) , as ϵ −→0, for t0 > 0, a ∈ R.

Also,

sup
s<t0

∥Lϵ(s)Mϵ(s)

s
∥ = O(ϵa) , as ϵ→0.
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For t0 > 0, a ∈ R.
Let ϵ ∈ (0, 1). ∥∥∥∥Lε(s)Mε(s)

s
y − Lε(0)Hεy

∥∥∥∥ =

∥∥∥∥Lε(s)
Mε(s)

s
y − Lε(s)Hεy

+ Lε(s)Hεy − Lε(0)Hεy∥

≤ ∥Lε(s)∥
∥∥∥∥Mε(s)

s
y −Hεy

∥∥∥∥
+ ∥Lε(s)Hεy − Lε(0)Hεy∥ .

Using (2) and (4) and the continuity of L(s)(Hy) at 0, the final expression approaches
zero as s −→ 0.
Therefore,

∥Mϵ(s)Lϵ(s)

s
y −HϵLϵ(0)y∥ =

∥Mϵ(s)

s
Lϵ(s)y −

Mϵ(s)

s
Lϵ(0)y

+
Mϵ(s)

s
Lϵ(0)y −HϵLϵ(0)y∥.

≤
∥∥∥∥Mϵ(s)

s

∥∥∥∥ ∥Lϵ(s)y −Hϵ(s)Lϵ(0)y∥

+

∥∥∥∥Mϵ(s)

s
(Lϵ(0)y)−Hϵ (Lϵ(0)y)

∥∥∥∥ .
Assertions (2), (3), and (4) denote that the last equation approaches 0 as t −→ 0. Conse-
quently, (5) holds true in both cases.

□

Definition 4.
The generalized semigroups are defined as:
GS([0,+∞),L(E)) = ES

M ([0,+∞),L(E))/NS([0,+∞),L(E)).

Definition 5.
A component L in GS([0,+∞),L(E)) is termed a generalized C0-semigroup if there exists
an indicative sequence (Lϵ)ϵ of L, such that for the same ϵ0, Lϵ forms a C0-semigroup for
all ϵ < ϵ0.

For sufficiently small ϵ, we will only consider representatives (Lϵ)ϵ of a Colombeau
C0-semigroup L that are themselves C0-semigroups.

Proposition 4.

Let (Lϵ)ϵ and (L̃ϵ)ϵ represent a Colombeau C0-semigroup L, utilizing infinite generators
Gϵ, ϵ < ϵ0 respectively, where ϵ0 and ϵ̃0 are related according to definition (5) to (Lϵ)ϵ and(
L̃ϵ

)
ϵ
, respectively.

Then, D (Gϵ) = D
(
G̃ϵ

)
, ∀ϵ < ϵ̃0 = min {ϵ0, ϵ̃0} and Gϵ − G̃ϵ could be expanded to such a

component of L(E) indicated by Gϵ − G̃ϵ.

In a similar manner, ∀a ∈ R,∥∥∥Gϵ − G̃ϵ

∥∥∥ = O (ϵa) , as ϵ→ 0.
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Proof.

Denote (Mϵ)ϵ =
(
Lϵ − L̃ϵ

)
ϵ
∈ NS ([0,+∞),L(E)).

If ϵ < ϵ̄0 and y ∈ E, we have :

Lϵ(s)y − y

s
− L̃ϵ(s)y − y

s
=
Mϵ(s)

s
y

When s −→ 0, we have D (Gϵ) = D
(
G̃ϵ

)
.

Then (
Gϵ − G̃ϵ

)
y = lim

s→0

Lϵ(s)y − y

s
− lim

s→0

L̃ϵ(s)y − y

s

= lim
s→0

Mϵ(s)

s
y = Hϵy, y ∈ D (Gϵ) (6)

Since D(G) = E, and the properties (3),(4),(5) show that ∀r ∈ R.∥∥∥Gϵ − G̃ϵ

∥∥∥ = O (ϵr) as ϵ→ 0.

□

5. Generalized solutions

We consider the following Cauchy problem{
Dα

s ψ(s, y)−Aψ(s, y) = F (t, ψ(s, y)),
ψ(0, y) = ψ0 ∈ D′.

(7)

Were A represents an infinitesimal generator of a generalized Colombeau semigroup de-

noted as (T (s))s≥0 =
[(

(Tϵ(s))s≥0

)
ϵ

]
, where ψ belongs to (G(R))n and F belongs to

(G(R))n.

The expression presented in (7) in its representative format as indicated by{
Dα

s ψϵ(s, y)−Aϵψϵ(s, y) = Fϵ (s, ψϵ(s, y)) ,
ψϵ(0, y) = ψ0ϵ.

We express the Cauchy problem within the framework of an integral equation{
ψϵ(s) = ψ0ϵ +

1
Γ(α)

∫ t
0 (s− z)α−1 [Aϵψϵ(z) + Fϵ (z, ψϵ(z))] dz,

ψϵ(0) = ψ0ϵ.
(8)

The demonstration of the theorem necessitates the utilization of the two lemmas pro-
vided.

Lemma 1. If the problem (8) is satisfied, it implies the existence of a probability density
function Bα defined over the interval (0,+∞) such that ψϵ(s) =

∫∞
0 BαTϵ (s

αy)ψ0ϵdy
+α

∫ s
0

∫∞
0 y(s− z)α−1Bα(y)Tϵ ((s− z)αy)Fϵ (z, ψϵ(z)) dydz,

ψϵ(0) = ψ0ϵ.

Proof. By subjecting the initial equation in (8) to the Laplace transform, we have

Lψϵ(β) =
1

β
ψ0ϵ +

1

βα
AϵL (ψϵ) (β) +

1

βα
L (Fϵ (., ψϵ(.)) (β),
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then

ψϵ(β) = βα−1
(
βα−1I +Aϵ

)−1
ψ0ϵ +

(
βα−1I +Aϵ

)−1

= βα−1 (βαI +Aϵ)
−1 ψ0ϵ + (βαI +Aϵ)

−1 L
(
e−βsFϵ (s, ψϵ(s))

)
(β)

= βα−1

∫ ∞

0
e−βαsTϵ(s)ψ0ϵds+

∫ ∞

0
e−βαsTϵ(s)ω(β)ds,

Here, I represents the operator of identity , ω(β) denotes the Laplace transform of
Fϵ (s, ψϵ(s)). Let’s examine the probability density function provided in [10], which is
defined as

Bα(y) =
1

π

∑
(−1)n−1y−αn−1 Γ

Γ(n+ 1)
sin(nπα), y ∈ (0,∞),

The Laplace transform of which is expressed as
∫
e−βyB(y)dy = e−βα

, where α belongs to
the interval (0,1).
Then

ψ0ϵ = βα−1

∫ ∞

0
e−βαsTϵ(s)ψ0ϵds

=

∫ ∞

0
α(βt)α−1e−(βt)αTϵ (t

α)ψ0ϵds

=

∫ ∞

0

−1

β

d

dt

[
e−(βt)α

]
Tϵ (t

α)ψ0ϵds

=

∫ ∞

0

[∫ ∞

0
yα(y)e

−(βty)Tϵ (t
α)ψ0ϵdy

]
dt

=

∫ ∞

0
e−βt

[∫ ∞

0
Bα(y)Tϵ

(
tα

yα

)
ψ0ϵdy

]
dt.

Regarding the subsequent expression,∫ ∞

0
e−βα

Tϵ(s)ω(β)ds =

∫ ∞

0

[∫ ∞

0
αtα−1e−(βt)αTϵ (t

α) e−βsFϵ (s, ψϵ(s)) ds

]
dt

=

∫ ∞

0

∫ ∞

0

∫ ∞

0
αBα(y)e

−βtyTϵ (t
α) e−βst−α−1Fϵ (s, ψϵ(s)) dydsdt

=

∫ ∞

0
e−βt

[
α

∫ t

0

∫ ∞

0
Bα(y)Tϵ

(
(t− s)α

yα

)
× Fϵ (s, ψϵ(s))

(t− s)α

yα
dyds

]
dt.

Based on the final equalities, we have

Lψϵ(β) =

∫ ∞

0
e−βt

∫ ∞

0
Bα(y)Tϵ (t

αy)ψϵ(t)dtdy

+ α

∫ t

0

∫ ∞

0
y(t− s)α−1Bα(y)Tϵ ((t− s)αy)Fϵ (s, ψϵ(s)) dydsdt.

Then

ψϵ(t) =

∫ ∞

0
Bα(y)Tϵ (t

αy)ψ0εdy

+α

∫ t

0

∫ ∞

0
y(t− s)α−1Bα(y)Tϵ ((t− s)αy)Fϵ (s, ψϵ(s)) dyds.
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Next, we establish a representative(Sα
ϵ )t∈R+

by

Sα
ϵ (t)ψϵ = α

∫ ∞

0
yBα(y)Tϵ (t

αy)ψϵdy ∈ ES
M .

□

Ultimately, the integral solution to the Cauchy problem (7) is represented as

ψϵ(s) = Sα
ϵ (s)ψ0ϵ +

∫ s

0
(s− z)α−1Tα

ϵ (s− z)Fϵ (z, ψϵ(z)) dz.

Remark 1.
For any given s within the interval [0, T] where T is greater than 0, the families of operators
(Sα

ϵ (s)) s ≥ 0 and (Tα
ϵ (s))s≥0, indexed by the variable s, are both linear and bounded for

each ϵ ∈ (0, 1).

Theorem 1.
Suppose F ∈ (G(R))n, ∥∇F∥ ≤ C∥ ln(ϵ)∥ and 0 < ϵ < 1.
Then the problem (7) possesses one solution in Colombeau algebra (G(R))n.

Proof.
Existence

We need to demonstrate that the integral solution (ψϵ), provided in Lemma 1, belongs
to EM (R) for any ϵ ∈ (0, 1) and α ∈ (0, 1).

Initially, we obtain the estimation

∥ψϵ(s)∥ = ∥Sα
ϵ (s)ψ0ϵ +

∫ s

0
(s− z)α−1Tα

ϵ (s− z)Fϵ (z, ψϵ(z)) dz∥,

≤ ∥Sα
ϵ (s)ψ0ϵ∥+

∫ s

0
∥(s− z)α−1Tα

ϵ (s− z)Fϵ (z, ψϵ(z)) ∥dz,

≤ ∥Sα
ϵ (s)ψ0ϵ∥+

∫ s

0
(s− z)α−1∥Tα

ϵ (s− z)Fϵ (z, ψϵ(z)) ∥dz.

The first-order approximation of Fϵ results in

Fϵ(s, ψ(s)) = Fϵ(s, 0) + ∥∇ϵFϵ∥ψϵ(s) +Nϵ(s),

Here, Nϵ(s) represents the zero component.

According to Lemma 1 and the condition (ψϵ) ∈ EM (R), there exist positive constants
a1, a2, b1, and b2, such that

∥ψϵ(s)∥ ≤ a2ϵ
−b2 +

∫ s

0
(s− z)α−1 αa1ϵ

−b1

Γ(1 + α)
∥Fϵ (z, ψϵ(z)) ∥dz

≤ a2ϵ
−b2 +

∫ s

0
(s− z)α−1 αa1ϵ

−b1

Γ(1 + α)
∥Fϵ(z, 0) + ∥∇ϵFϵ∥ψϵ(z) +Nϵ(z)∥dz.

Applying Gronwall’s lemma leads to

∥ψϵ(s)∥ ≤
(
a2ϵ

−b2 + a1ϵ
−b1

)
exp(−ϵ ln ϵ).

Therefore, there exist c̄ and N̄ in R+ / ∥ψϵ(s)∥ ≤ c̄ϵ−N̄ .
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Then

ψϵ(s) ∈ EM .
To derive approximations for higher-order derivatives, simply differentiate the integral

solution and employ similar inductive reasoning, presuming that the lower-order terms are
recognized as manageable from earlier steps.

Uniqueness

Assuming the existence of two solutions ψ1,ϵ and ψ2,ϵ to the regularization of problem
7, let eϵ denote their difference. We then have:

eϵ(s) =

∫ s

0
(s− z)α−1Tα

ϵ (s− z) [Fϵ (z, ψ1,ϵ)− Fϵ (z, ψ2,ϵ)] dz.

Now, employing the approximation of Fϵ, we have:

∥eϵ(s)∥ ≤
∫ s

0

ϵα

α
∥Tα

ϵ (s− z) [∥∇Fϵ∥ (ψ1,ϵ(z)− ψ2,ϵ(z)) +Nϵ(z)] ∥dz,

By leveraging the bounded nature of the linear operator Tα
ϵ (s) for s ≥ 0, Gronwall’s

lemma, and the understanding that ψ1,ϵ(z)−ψ2,ϵ(z), as well as the negligible part Nϵ, are
both of the order O

(
ϵN

)
, it follows that for any N ≥ 0, ∥eϵ(s)∥ = O

(
ϵN

)
as ϵ→ 0. This

assertion substantiates the uniqueness of the solution in (G(R))n. □

6. Application to Schrödinger equation

Let consider the next fractional nonlinear Schrödinger equation.{
1
i ∂

α
s ψ(s, y)−∆ψ(s, y) + v(y)ψ(s, y) = 0,

v(y) = δ(y), ψ(0, y) = δ(y), y ∈ Rn.
(9)

Here A = −∆ and δ is the Dirac function.

We will employ regularization for the Dirac measure

vϵ(y) = δϵ(y) = (ϕϵ(y)) = ∥ ln ϵ∥r3mϕ (y∥ ln ϵ∥r3) with r3 ∈ R+
∗ ,∫

R
ϕ = 1 with ϕ(y) ≥ 0.

For ψ0,ϵ, we have

ψ0,ϵ(y) = ∥ ln ϵ∥r1ϕ (y∥ ln ϵ∥r1) , r1 > 0.

Theorem 2. The regularized equation of (9) is given by{
1
i ∂

α
s ψϵ(s, y)−∆ψϵ(s, y) + vϵ(y)ψϵ(s, y) = 0,

vϵ(y) = δϵ(y), ψ0,ϵ(y) = δϵ(y).
(10)

Consequently, the problem (10) have one solution in G (R+ × Rn).

Proof.
Existence
In the following we will denote ∥.∥L∞(Rn) = ∥.∥∞ and ∥.∥L1(Rn) = ∥.∥1.

By section 5 the integral solution of the equation (10) is

ψϵ(s, y) =

∫
Rn

Sα
ϵ (s, y − e)ψ0,ϵ(e)de+

∫ s

0

∫
Rn

Sα
ϵ (s− τ, y − e)vϵ(y)ψϵ(τ, e)dedτ,
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where Sα
ϵ (s, y)ψϵ =

∫∞
0 Bϵ(ξ)Sn (s

αξ)ψϵdξ and the heat kernel is Sn(t, y).

So
∥ψϵ(s, .)∥∞ ≤ ∥Sα

ϵ (s, y − .)∥1 ∥ψ0,ϵ∥∞

+

∫ s

0
∥Sα

ϵ (s− τ, y − .)∥1 ∥vϵ(.)∥∞ ∥ψϵ(τ, .)∥∞ dτ.

Using Remark 1, there is R such that ∥Sα
ϵ ∥ ≤ R, we get

∥ψϵ(s, .)∥∞ ≤ R ∥ψ0,ϵ∥∞

+R ∥vϵ(.)∥∞
∫ t

0
∥ψϵ(τ, .)∥∞ dτ.

From Gronwall inequality, it follows

∥ψϵ(s, .)∥∞ ≤ R∥ ln ϵ∥r1 exp (RT∥ ln ϵ∥r1) .

Then ∃N > 0, in a manner that

∥ψϵ(s, .)∥∞ ≤ Rϵ−N .

When we compute the first derivative with respect to yj , where j is within the range of 1
to n, we arrive at:

∂yjψϵ(s, y) =

∫
Rn

Sα
ϵ (s, y − e)∂ejψ0,ϵ(e)de

+

∫ t

0

∫
Rn

Sα
ϵ (s− τ, y − e)

(
∂ejvϵ(e)ψϵ(τ, e) + vϵ(e)∂ejψϵ(τ, e)

)
dedτ,

so,

∥∂yψϵ(s, .)∥∞ ≤ ∥Sα
ϵ (s, y−)) ∥1∥ ∂ejψ0,ϵ∥∞

+

∫ t

0
∥Sα

ϵ (s− τ, y − .)∥1 (∥∂e1vϵ∥∞ ∥ψϵ∥∞

+ ∥vϵ∥∞ ∥∂eiψϵ(τ, .)∥∞
)
dτ,

which implies ∥∥∂yjψϵ(s, .)
∥∥
∞ ≤ R∥ ln ϵ∥r1(m+1) +R

∫ s

0
∥ ln ϵ∥r2(m+1) ∥ψϵ∥∞

+ ∥ ln ϵ∥r2m
∥∥∂ejψϵ(τ, .)

∥∥
∞ dτ

≤ R
(
∥ ln ϵ∥r1(m+1) + T∥ ln ϵ∥r2(m+1) ∥ψϵ∥∞

)
+R∥ ln ϵ∥r2m

∫ t

0
∥∂eiψϵ(τ, .)∥∞ dτ.

Using Gronwall inequality, we have

∥∂yψϵ(s, .)∥∞ ≤ R
(
∥ ln ϵ∥r1(m+1) + T∥ ln ϵ∥r2(m+1) ∥ψϵ∥∞

)
exp (RT∥ ln ϵ∥r2m) ,

The preceding action guarantees the existence of a positive number N such that∥∥∂yjψϵ(s, .)
∥∥
∞ ≤ Rϵ−N .
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When considering the second derivative for ei, 1 < i < n, we have

∂ei∂yψε(s, y) =

∫
Rn

Sα
ε (t, y − e)

(
∂ei∂ejψ0,ϵ(e)de

+

∫ s

0

∫
Rn

Sα
ε (s− τ, y − e)

(
∂ei∂ejvε(e)ψϵ(τ, e)

+ ∂ejvϵ(e)∂etψϵ(τ, e)

+ ∂etvϵ(e)∂ejψϵ(τ, e)

+vϵ(e)∂ei∂e,ψϵ(τ, e)) dedτ,

thus, ∥∥∂yi∂yjψε(s, .)
∥∥
∞ ≤ ∥Sα

ϵ (s, y − .)∥1
∥∥∂ei∂ejψ0,ϵ(.)

∥∥
∞

+

∫ s

0
∥Sα

ϵ (s− τ, y − .)∥1
(∥∥∂ej∂ejvϵ(.)∥∥∞ ∥ψϵ∥∞

+
∥∥∂ejvϵ(.)∥∥∞ ∥∥∂ejψϵ

∥∥
∞

+ ∥∂eivϵ(.)∥∞
∥∥∂ejψϵ

∥∥
∞ + ∥vϵ(.)∥∞

∥∥∂ei∂ejψϵ(τ, .)
∥∥
∞
)
dτ.

We obtain ∥∥∂ei∂yjψϵ(s, .)
∥∥
∞ ≤ R

(
∥ ln ϵ∥r1(m+2) + ∥ ln ϵ∥r2(m+1) ∥ψϵ∥∞

+ ∥ ln ϵ∥r2(m+1) ∥∂eiψϵ∥∞ +∥ ln ϵ∥r2(m+1)
∥∥∂ejψϵ

∥∥
∞

)
+R∥ ln ϵ∥r2m

∫ s

0

∥∥∂ei∂ejψϵ(τ, .)
∥∥
∞ dτ.

By Gronwall’s inequality, we have∥∥∂ej∂yjψϵ(s, .)
∥∥
∞ ≤ R

(
∥ ln ϵ∥r1(m+2) + ∥ ln ϵ∥r2(m+1) ∥ψϵ∥∞

+ ∥ ln ϵ∥r2(m+1) ∥∂eiψϵ∥∞
+∥ ln ϵ∥r2(m+1) ∥∂ejψϵ∥∞

)
exp (RT∥ ln ϵ∥r2m) .

Afterward, there is a positive number N such that∥∥∂yi∂yjψϵ(s, .)
∥∥
∞ ≤ Rϵ−N .

Uniqueness

Let’s assume there are two solutions ψ1,ϵ(s, .) and ψ2,ϵ(s, .) for problem 10. Conse-
quently, we obtain

1

i
∂αs (ψ1,ϵ(s, y)− ψ2,ϵ(s, y))−∆(ψ1,ϵ(s, y)− ψ2,ϵ(s, y))

+vϵ(y) (ψ1,ϵ(s, y)− ψ2,ϵ(s, y)) = Nϵ(s, y),

ψ1,ϵ(0, y)− ψ2,ϵ(0, y) = N0,ϵ(y),
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where Nϵ(s, y) ∈ N (R+ × Rn) , N0,ϵ(y) ∈ N (Rn).
Then

ψ1,ϵ(s, y)− ψ2,ϵ(s, y) =

∫
Rn

Sα
ϵ (s, y − e)N0,ϵ(e)de

+

∫ s

0

∫
Rn

Sα
ϵ (s− τ, y − e)vϵ(e) (ψ1,ϵ(τ, e)− ψ2,ϵ(τ, e)) dedτ

+

∫ s

0

∫
Rn

Sα
ϵ (s− τ, y − e)Nϵ(τ, e)dedτ

which leads to

∥ψ1,ϵ(s, .)− ψ2,ϵ(s, .)∥∞ ≤ ∥Sα
ϵ (s, y − .)∥1 ∥N0,ϵ(.)∥∞ + ∥Sα

ϵ (s, y − .)∥1

×
∫ s

0
∥vϵ(.)∥∞ ∥ψ1ϵ(τ, .)− ψ2ϵ(τ, .)∥∞ dτ

+ ∥Sα
ϵ (s, y − .)∥1 ∥Nϵ(τ, .)∥∞ .

Therefore,

∥ψ1,ϵ(s, .)− ψ2,ϵ(s, .)∥∞ ≤ C
(
∥N0,ϵ(.)∥∞ + ∥Nϵ(τ, .)∥∞

)
+ C ∥vϵ(.)∥∞

∫ s

0
∥ψ1,ϵ(τ, .)− ψ2,ϵ(τ, .)∥∞ dτ.

By Gronwall’s inequality, we have

∥ψ1,ϵ(s, .)− ψ2,ϵ(s, .)∥∞ ≤ C
(
∥N0,ϵ(·)∥∞ + ∥Nϵ(τ, .)∥∞

)
× exp (CT ∥vϵ(.)∥∞) .

Which prove that

∥ψs,ϵ(t, .)− ψ2,ϵ(s, .)∥∞ ≤ Cϵq, for all q in N.
Consequently, it can be concluded that problem (10) possesses one solution within the

space X. G (R+ × Rn). □

7. Conclusion

In conclusion, this paper investigates time-fractional Schrödinger equations with sin-
gular potentials, including Dirac functions and higher-order singularities. By employing
the Gronwall lemma and Laplace transforms, the existence and uniqueness of the inte-
gral solution within Colombeau’s algebra are established. Additionally, the existence of
distribution solutions for certain classes of these equations is demonstrated. We aim to
enhance the equation by integrating a numerical component, which will allow for more
precise and detailed analysis. This development will enable us to solve complex quantum
mechanical problems with greater accuracy and efficiency, paving the way for significant
advancements in our research.
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