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NUMERICAL SOLUTION OF FRACTIONAL

INTEGRO-DIFFERENTIAL EQUATION BY COLLOCATION

PELL-LUCAS POLYNOMIAL METHOD

S. MEHRANPOUR1, J. DAMIRCHI1∗, §

Abstract. The objective of this work is to solve the fractional integro-differential equa-
tion using the Pell-Lucas collocation method. In this approach, the fractional derivative
is considered in the Caputo sense. The proposed approach for dealing with the problem
is the collocation method based on the Pell-Lucas polynomials to obtain an approxi-
mation of the solution. The operational matrix of the Caputo derivative, based on the
Pell-Lucas polynomials, is derived and utilized in the solution process. By discretizing
the Fredholm integral term and the corresponding conditions in terms of the Pell-Lucas
polynomials, the original problem is transformed into a system of algebraic equations,
which can be solved numerically. The error analysis has been investigated and error
estimation of the Pell-Lucas collocation method is studied for the considered problem.
Some illustrative examples are investigated to show the accuracy and applicability of the
proposed method.

Keywords: Pell-Lucas polynomials, Caputo derivative, Fractional integro-differential
eqaution, Operational matrix, Collocation method.
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1. Introduction

The history of fractional calculus, in which derivatives and integrals of fractional order
are defined and investigated, is as old as the classical calculus (see [9,11]). In the past
decades, there has been a growing prevalence of using fractional order differential and in-
tegral operators in mathematical models [12,13]. Fractional operators are a generalization
of classical calculus concerned with operations of integration and differentiation of non-
integer orders [11]. The mathematical representation of numerous natural and engineering
processes depends extensively on fractional calculus [14]. In [16], some of the applications
of fundamental issues in statistical and continuum mechanics are investigated. The use
of fractional calculus in the modeling of engineering and physical phenomena to solve
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ment of Mathematics, 2025; all rights reserved.

1646



S. MEHRANPOUR, J. DAMIRCHI: FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION . . . 1647

real-world problems can be found in [17,18,39]. In [18], the Hilfer and Caputo fractional
derivatives are explained physically in terms of the random motion of a particle traveling
on the real line at Poisson paced times with finite velocity. A number of researchers have
investigated differential equations with fractional operators in their research, particularly
in [19,26].

The theory of integro-differential equations (IDEs) is a significant area of study within
the theory of differential and integral equations. The study of IDEs is mostly driven
by practical applications. Some scientific and engineering phenomena, like the theory
of dynamical systems with automatic control [20], the kinetic theories of rarefied gases,
plasma, radiation transfer, coagulation, the study of stochastic processes with jumps, and
more specifically of Levy processes, which are expressed by IDEs [23], are modeled in a
significant manner by the inclusion of integral terms in differential equations.

Additional comprehensive details and a literature pertaining to the theory of fractional
integro-differential equations (FIDEs), including the Hilfer and Caputo fractional deriva-
tives, can be found in [24]. In conventional models, several kinds of fractional integro-
differential equations have been developed, and there has been considerable interest in
creating numerical approaches for their solutions [25,26]. Numerous processes in the ap-
plied sciences, including physics, chemistry, economics, control theory, mechanics, biology,
and engineering, are modeled by fractional integro-differential equations [27,33]. The
study of FIDEs has attracted attention in recent years. In [30], several significant findings
about the corresponding inequalities of fractional integro-differential equations have been
shown. Fractional integro-differential equations are solved numerically using a variety
of techniques, such as the collocation method [31], the Adomian decomposition method
[32], the variational iteration method and homotopy perturbation method [29,34], wavelets
[35,36], operational Tau method [37] and others.

We will approximate the solution of time fractional integro-differential equation in this
paper using the Pell-Lucas polynomials as the basis in conjunction with collocation ap-
proach to solve numerically the proposed problem. To the best of our knowledge, there are
still a few works to be done with Pell-Lucas polynomials for FIDEs. A family of polyno-
mials known as Pell-Lucas polynomials is connected to both Lucas and Pell numbers [38].
Numerous authors have explored the properties and uses of these polynomials, developing
strategies for solving differential equations (see, for instance, [28,38]) and the references
therein. In this study, we use generalized Lucas polynomials to solve the fractional integro-
differential equation with appropriate conditions. As utilizing the use of operational ma-
trices is an effective strategy for handling various differential equations, we derive the
operational matrices for fractional derivatives and integral terms using Pell-Lucas polyno-
mials. Because of the significance of the spectral approach, we use the collocation spectral
method in our research in order to evaluate numerical solutions. The major contribution
of this study is to develop a numerical method for solving the fractional integro-differential
equation (FIDE) problem. In order to obtain the desired results, the Pell-Lucas opera-
tional matrices of derivatives in integer and fractional orders are introduced and employed
together with collocation method. By implementing Pell-Lucas polynomials approxima-
tions and the operational matrices of fractional derivative and integral term the original
problem has been reduced to a set of algebraic equations. The numerical solution of FIDE
can be obtained by solving this system of algebraic equations at collocation points.

In this study, we consider the numerical solution of the following linear fractional
integro-differential equation:

CDα
xu(x) = g(x) +

∫ 1

0
K(x, t)u(t)dt, 0 ≤ x ≤ 1, (1)
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with the following supplementary conditions:

u(i)(0) = δi, n− 1 < α ≤ n, i = 0, 1, . . . , n− 1, n ∈ N. (2)

where CDα
xu(x) indicates the fractional derivative of order α of u(x) in Caputo sense which

is defined in the next section. The functions g(x) and K(x, t) are known given functions
and u(x) is the unknown function to be determined.

This paper is organized as follows. In Section 2, some definitions of fractional and
integral operators are given. Some significant points about the Pell-Lucas polynomials are
mentioned in Section 3. Operational matrices of derivatives for Pell-Lucas polynomials
has been provided in Section 4. In Section 5, the resultant linear system by method of the
solution has been introduced. Additionally, the error analysis of the proposed technique
has been studied in Section 6. In Section 7, some numerical examples are discussed to
show that the efficiency of the proposed method. Conclusions are drawn in Section 8.

2. Fractional and integral operators

In this section some basic definitions to fractional calculus that will be required in
subsequence sections are introduced.

Definition 2.1. ([21]) A real function u(x), x > 0, is said to be in the space Cµ, µ ∈ R,
if there exists a real number p > µ such that u(x) = xpu1(x), where u1(x) ∈ C[0, 1).

Definition 2.2. ([21]) A function u(x), x > 0, is said to be in the space Cm
µ , m ∈ N∪{0},

if u(m) ∈ Cµ.

Definition 2.3. The left sided Riemann-Liouville fractional integral operator of order
α ≥ 0 of a function u ∈ Cµ, µ ≥ −1, is defined as [9]:

Iαu(x) =

{
1

Γ(α)

∫ x
0 (x− τ)α−1u(τ)dτ, α > 0, x > 0,

u(x), α = 0.
(3)

Definition 2.4. Let u ∈ Cm
−1,m ∈ N ∪ {0}, then the Caputo fractional derivative of u(x)

is defined as [3,4]:

CDα
xu(x) =

{
Im−αu(m)(x), m− 1 < α ≤ m, m ∈ N,
dαu(x)
dxα , α = m.

(4)

Hence, we have the following propertie:

CDα
xx

γ =

{
0, γ ∈ N0, γ < ⌈α⌉,
Γ(γ+1)

Γ(γ−α+1)x
γ−α, γ ∈ N0, γ ≥ ⌈α⌉,

where ⌈α⌉ denoted the smallest integer greater than or equal to α and N0 = N ∪ {0}.

3. The Pell-Lucas polynomials

Polynomials play a key role as an important tools in numerical methods for solving
practical problems. Due to the characteristics of the Pell-Lucas polynomials, these poly-
nomials are of interest for finding approximate solutions to problems of fractional and
integer order differential equations [5]. Some interesting properties and results for Pell-
Lucas polynomials are presented in [1,2].

The Pell-Lucas polynomials ϕm(x) are defined by

ϕm(x) =

⌊m
2
⌋∑

k=0

mΓ(m− k)

Γ(k + 1)Γ(m− 2k + 1)
(2x)m−2k, (5)
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where ⌊m2 ⌋ denotes greatest integer less that or equal to
m
2 . Also, Pell-Lucas polynomials,

ϕm(x), can be produced by adopting the subsequent recurrence relation

ϕm+1(x) = 2xϕm(x) + ϕm−1(x), m ≥ 2, x ∈ R,
with the first two known Pell-Lucas polynomials ϕ0(x) = 2 , ϕ1(x) = 2x [10,15].
The derivative of the Pell-Lucas polynomials ϕm(x), which is very important for this study,
is defined recursively by:

ϕ′
m(x) = 2xϕ′

m−1(x) + ϕ′
m−2(x) + 2ϕm−1(x), m ≥ 2, (6)

where ϕ′
0(x) = 0 and ϕ′

1(x) = 2.
For more important features to the Pell-Lucas polynomials, Horadam and mahon Bro,

Horadam et al [1,2], can be examined.

Theorem 3.1. The power function xk can be expressed in terms of the Pell-Lucas poly-
nomials according to the following:

xk =
1

2k

⌊ k
2
⌋∑

i=0

(−1)iΓ(k + 1)ξk−2i

Γ(i+ 1)Γ(k − i+ 1)
ϕk−2i(x), (7)

where

ξk−2i =

{
1
2 , i = k

2 ,

1, i < k
2 .

(8)

Proof. Equation (7) can be easily proved with the aid of [6]. □

Theorem 3.2. The first derivative of ϕm(x) in terms of Pell-Lucas polynomials can be
represented as follows:

d

dt
ϕm(t) = 2m

⌊m−1
2

⌋∑
i=0

(−1)iξm−2i−1ϕm−2i−1(t), m > 2. (9)

Proof. With the help of [6], equation (9) can be obtained. □

The representation of Pell-Lucas polynomial in equation (5) in terms of power functions
xi can be rewritten as follows:

ϕm(x) = m
m∑
i=0

2i+1Γ(m+i+2
2 )δm+i

(m+ i)Γ(i+ 1)Γ
(
m−i+2

2

)xi, m ≥ 1, (10)

where

δz =

{
1, z even,

0, z odd.
(11)

The equivalent representation of equation (7) in terms of Pell-Lucas polynomials is by:

xm =
Γ(m+ 1)

2m

m∑
i=0, (i+m) even

(−1)
m−i
2 ξi

Γ
(
m+i+2

2

)
Γ
(
m−i+2

2

)ϕi(x), m ≥ 1. (12)

For more details about Pell-Lucas polynomials, one can see [1,7,8].

4. Operational matrices of derivatives for Pell-Lucas polynomials

In this section, we look into the operational matrices of Pell-Lucas polynomials for both
the integer and fractional orders of derivatives.
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4.1. Operational matrices of derivatives of integer order. A function u(x) ∈ L2(0, 1),
in terms of Pell-Lucas polynomials can be approximated as follows:

u(x) =

∞∑
i=0

aiϕi(x), (13)

where ai, i = 0, 1, 2, . . . are the series unknown coefficients. The truncated series up to the
first N-terms, equation (13) can be rewritten as follows:

u(x) ≃ uN (x) =
N∑
i=0

aiϕi(x) = AT
NΦN (x), (14)

where the unknown coefficients vector AT
N and vector of Pell-Lucas polynomials ΦN (x)

are defined by:
AT

N =
[
a0 a1 · · · aN

]
, (15)

and
ΦN (x) =

[
ϕ0(x) ϕ1(x) · · · ϕN (x)

]T
. (16)

Theorem 4.1. The operational matrix of first order of the vector ΦN (x) can be defined
as follows:

d

dx
ΦN (x) = W (1)ΦN (x), (17)

where W (1) = (w
(1)
l,m) is the (N +1)× (N +1) operational matrix of first order derivative.

The elements of operational matrix W (1) can be represented explicitly by

w
(1)
0≤l,m≤N =

{
2l(−1)

l−m+1
2 ξm, l > m, (l +m) odd,

0, l ≤ m, (l +m) even.
(18)

The operational matrix of the mth order derivative of vector ΦN (x) can be expressed as:

dm

dxm
ΦN (x) = W (m)ΦN (x) = (W (1))mΦN (x), (19)

where n ∈ Z+. To get more details, please see [2].

4.2. The Operational matrix of derivative of fractional order.

Theorem 4.2. The Caputo fractional derivative of order α of ΦN (x) can be represented
as follows

CDα
xΦN (x) = x−αH(α)ΦN (x), (20)

where H(α) = (hαr,s) is a square matrix of (N+1)×(N+1) dimensional that represents the
Pell-Lucas polynomials operational matrix of derivative in the Caputo sense of fractional
order α and can be expressed as follows

H(α) =



0 0 0 · · · 0
...

...
...

...
ζα(⌈α⌉, 0) ζα(⌈α⌉, 1) 0 · · · 0

...
...

...
...

ζα(r, 0) · · · ζα(r, r) · · · 0
...

...
...

...
ζα(N, 0) ζα(N, 1) ζα(N, r) · · · ζα(N,N)


(N+1)×(N+1)

, (21)
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where the elements of H(α) are given by

hαr,s =

{
ζα(r, s), r ≥ s, r ≥ ⌈α⌉, s = 0, 1, . . . , r,

0, r < s, r < ⌈α⌉,
(22)

where

ζα(r, s) = r

r∑
k=⌈α⌉,k−s+2>0

(−1)
k−s
2 δr+kδs+kξsΓ(k + 1)Γ

(
r+k
2

)
Γ
(
r−k+2

2

)
Γ
(
k−s+2

2

)
Γ
(
k+s+2

2

)
Γ(k − α+ 1)

, (23)

Proof. Using Pell-Lucas polynomial definition in equation (10) and definition δz in equa-
tion (11), the power function xm can be written as follows:

xm =
Γ(m+ 1)

2m

m∑
i=0

(−1)
m−i
2 ξiδi+m

Γ
(
m+i+2

2

)
Γ
(
m−i+2

2

)ϕi(x), m ≥ 1, (24)

The fractional derivative of ϕr(x) in the Caputo sense of fractional order α in equation
(10) is defined as follows:

CDα
xϕr(x) = r

r∑
i=0

2i+1Γ( r+i+2
2 )δr+i

(i+ r)Γ(i+ 1)Γ( r−i+1
2 )

CDα
xx

i, (25)

Now, by using equation (4), we write equation (25) for values greater than ⌈α⌉ as follows

CDα
xϕr(x) = rx−α

r∑
i=⌈α⌉

2i+1Γ( r+i+2
2 )δr+i

(i+ r)Γ( r−i+1
2 )Γ(i− α+ 1)

xi, (26)

By changing the index from i to k, we have

CDα
xϕr(x) = rx−α

r∑
k=⌈α⌉

2k+1Γ
(
r+k+2

2

)
δr+k

(r + k)Γ
(
r−k+2

2

)
Γ(k − α+ 1)

xk, (27)

By replacing xk of equation (24) in equation (27) and using the properties of the Gamma
function, we will have

CDα
xϕr(x) = x−α

r∑
s=0

r
r∑

k=⌈α⌉

(−1)
k−s
2 δr+kδs+kξsΓ(k + 1)Γ( r+k

2 )

Γ( r−k+2
2 )Γ(k+s+2

2 )Γ(k−s+2
2 )Γ(k − α+ 1)

ϕs(x), (28)

for k − s+ 2 > 0. Then equation (28) can be rewritten as

CDα
xϕr(x) = x−α

r∑
s=0

ζα(r, s)ϕs(x), (29)

where ζα(r, s) is given in (23). Equation (29) can also be represented as the vector form

CDα
xϕr(x) = x−α[ζα(r, 0), ζα(r, 1), . . . , ζα(r, r), 0, 0, . . . , 0]Φ(x), ⌈α⌉ ≤ r ≤ N, (30)

Moreover, we can write

CDα
xϕr(x) = x−α[0, 0, . . . , 0], 0 ≤ r ≤ ⌈α⌉ − 1. (31)

Combining equations (30) and (31), the desired result is obtained. □
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Theorem 4.3. The matrix representation of fractional derivative of order α of approxi-
mate solution in equation (14) in Caputo sense has the following matrix structure:

CDα
xuN (x) = x−αΦN (x)

(
H(α)

)T
AN , (32)

where, ΦN (x) and AN (x) are as in equations (15)-(16) and H(α) in equation (21).

Proof. By taking the Caputo fractional derivative of order α of approximate solution (15)
and by equation (21) the desired result is obtained. □

Theorem 4.4. The matrix representation of the expression K(x, t) in equation (1) is
given by

[K(x, t)] = XT
N (x)KXN (t), K = [kTp1,p2 ], p1, p2 = 0, 1, . . . , N, (33)

where

kTp1,p2 =
1

p1!p2!

∂p1+p2K(0, 0)

∂xp1∂tp2
; p1, p2 = 0, 1, . . . , N, (34)

XT
N (x) =

[
1 x x2 · · · xN

]
, XN (t) =

[
1 t t2 · · · tN

]T
,

and the dimension of XT
N (x) is 1× (N + 1).

Proof. The truncated Maclaurin series of the kernel function K(x, t) can be represented
as

K(x, t) =

N∑
p1=0

N∑
p2=0

kTp1p2x
p1tp2 , (35)

subsequently, the vector XT
N (x) is multiplied by the matrix K from the right by using (34).

Finally, by multiplying this expression by the vector XN (t) from the right, the relation
(33) is obtained. □

Theorem 4.5. The matrix representation for Fredholm integral equation in equation (1)
is expressed as follows: ∫ 1

0
K(x, t)u(t)dt = XT

N (x)KNAN , (36)

where

N =

∫ 1

0
XN (t)ΦN (t)dt.

Here, XT
N (x), K, and XN (t) are as in Theorem 4.4 and ΦN (t) is as in (16).

Proof. By utilizing the (33) and with and replacement of u(t) ∼= uN (t) = ΦT
N (t)AN in

equatoin (36), the matrix representation of
∫ 1
0 K(x, t)u(t)dt is defined as:∫ 1

0
XT

N (x)KXN (t)ΦN (t)ANdt = XT
N (x)K

{∫ 1

0
XN (t)ΦN (t)dt

}
AN ,

So, by definition of term N, we obtain the desired result. □

Theorem 4.6. We assume that the approximate solution of the problem (1) and (2) is
sought in the form (15). Then, the following matrix representation is obtained.

{x−αΦN (x)(H(α))T −XT
N (x)KN}AN = G(x), (37)

where Z = x−αΦN (x)(H(α))T −XT
N (x)KN.
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Proof. By substituting the matrix representations (32) and (36) in (1), the desired result
is obtained. □

Theorem 4.7. The matrix form of the conditions (2) is given by

ΦT
N (0)(W (i))TAN = δi, i = 0, 1, . . . , n− 1, n ∈ N. (38)

Here, AN and ΦN (x) are in equations (15) and (16).

Proof. By inserting x = 0 in equations (19) and (14), the desired result is easily obtained.
□

5. Method of the Solution

The purpose of this section is to introducing Pell-Lucas collocation technique in uniform
collocation points in order to find an approximate solution to the problem (1)-(2). The
matrix structures constructed for the fractional derivative and integral part are used to
create a system of linear algebraic equations.

We define the uniformly distributed collocation points as

xi = a+
b− a

N
i, i = 0, 1, . . . , N. (39)

We assume that the matrix representation for the approximate solution of the problem
(1) and (2) is as follows:

ZAN = G, (40)

Substituting the collocation points (39) into the expression (40) yields the following set of
algebraic equations.

Z(xi)AN = [g(xi)], (41)

Where K is defiend in equation (33), and

G = [g(x0), g(x1), · · · , g(xN )]T , (42)

N =


∫ 1
0 X0(t)Φ0(t)dt

∫ 1
0 X0(t)Φ1(t)dt · · ·

∫ 1
0 X0(t)ΦN (t)dt∫ 1

0 X1(t)Φ0(t)dt
∫ 1
0 X1(t)Φ1(t)dt · · ·

∫ 1
0 X1(t)ΦN (t)dt

...
... · · ·

...∫ 1
0 XN (t)Φ0(t)dt

∫ 1
0 XN (t)Φ1(t)dt · · ·

∫ 1
0 XN (t)ΦN (t)dt

 . (43)

Theorem 5.1. The conditions (2) is matrix structure can be represented as follows:

UAN = ∆, (44)

where U is a matrix of n× (N + 1) dimensional which is defined by

U =


U0

U1
...

Un−1

 , Ui = (υi,0 υi,1 · · · υi,N ) , i = 0, 1, . . . , n− 1, (45)

and

∆ = (δ0 δ1 . . . δn−1)
T . (46)
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Proof. By employing initial conditions (2), and uN (x) = ΦT
N (x)AN we get

ΦT
N (0)AN = δ0 ⇒ (υ0,0 υ0,1 · · · υ0,N )AN = δ0,

ΦT
N (0)(W (1))TAN = δ1 ⇒ (υ1,0 υ1,1 · · · υ1,N )AN = δ1,

...

ΦT
N (0)(W (n−1))TAN = δn−1 ⇒ (υ0,0 υ0,1 · · · υ0,N )AN = δn−1,

or

UiAN = δi, (47)

where

Ui = (υi,0 υi,1 . . . υi,N ) , i = 0, 1, . . . , n− 1. (48)

The matrix structure for the equation (2) can be represented as follows

UAN = ∆, (49)

The desired result is obtained. □

The conditional number can be calculated for the system of equation (41). Adding
equation (47) to system (41) yields the generalized matrix system shown below.

[Z̃; G̃]. (50)

Solving the system (50) yields the Pell-Lucas coefficient vector AN . Hence, the Pell-Lucas
solution is obtained by substituting these coefficients in equation (13).

6. Error analysis

In this section, the error analysis of the Pell-Lucas collocation method is investigated.
For the problems that do not have an analytical solution, the approach for estimating the
problem’s error is introduced.

Theorem 6.1. (Upper Bound of Errors). Let u(x) and uN (x) are the exact and the
Pell–Lucas approximate solutions with Nth degree of the equation (1) in domain [0, l],respectively.
Let uMac

N (x) be the truncated Maclaurin series of exact solution u(x) in domain [0, l]. The
upper bound of absolute error of the proposed method is defined as follows:

∥u(x)− uN (x)∥∞ ≤ kN∥AN∥∞ + qN∥AN∥∞ +
1

(N + 1)!
∥
(
x
∂

∂x

)N+1

u(cx)∥∞, (51)

where AN shows the coefficient matrix of uMac
N (x), kN = ∥XT

N (x)∥∞, qN = ∥ΦT
N (x)∥∞

and 0 ≤ cx ≤ l.

Proof. By assuming the approximate solution in the form uN (x) = ΦT
N (x)AN . The

Maclaurin expansion with Nth degree of the exact solution is denoted by uMac
N (x) and

is represented as following

uMac
N (x) =

N∑
i=0

1

i!

di

dxi
u(x)|x=0x

i.

uMac
N (x) can be expressed by

uMac
N (x) = XT

N (x)AN , (52)

Here, XT
N (x) is a vector as follows:

XT
N (x) =

[
1 x x2 . . . xN

]
(53)
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Also, here AN the vector of MacLauren expansion coefficients. Now, by utilizing the
triangle inequality and the Maclaurin expansion uMac

N (x), we have

∥u(x)− uN (x)∥∞ = ∥u(x)− uMac
N (x) + uMac

N (x)− uN (x)∥∞
≤ ∥u(x)− uMac

N (x)∥∞ + ∥uMac
N (x)− uN (x)∥∞. (54)

We can write

∥uMac
N (x)− uN (x)∥∞ = ∥XT

N (x)AN − ΦT
N (x)AN∥∞

≤ ∥XT
N (x)∥∞∥AN∥∞ + ∥ΦT

N (x)∥∞∥AN∥∞, (55)

where

∥XT
N (x)∥∞ = kN :=

{
1, if l ≤ 1,

lN , if l > 1,
(56)

qN showes the values of ∥ΦT
N (x)∥∞ in [0, l]. So, equation (55) can be rewritten as follows

∥uMac
N (x)− uN (x)∥∞ ≤ kN∥AN∥∞ + qN∥AN∥∞. (57)

In the following, the MacLaurin expansion of the exact solution with Nth degree is ex-
pressed as

u(x) = u(0) + xu′(0) +
1

2!

(
x
d

dx

)2

u(0) + · · ·+ 1

N !

(
x
d

dx

)N

u(0), (58)

and its remainder term is

1

(N + 1)!

(
x
d

dx

)N+1

u(cx), 0 ≤ cx ≤ l. (59)

Hence, we can write

∥u(x)− uMac
N (x)∥∞ =

1

(N + 1)!
∥
(
x
d

dx

)N+1

u(cx)∥∞, 0 ≤ x ≤ l. (60)

Finally, equation (54) is rewritten as follows

∥u(x)− uN (x)∥∞ ≤ kN∥AN∥∞ + qN∥AN∥∞ +
1

(N + 1)!
∥
(
x
d

dx

)N+1

u(cx)∥∞,

where 0 ≤ x ≤ l. Thus, the proof is completed. □

Theorem 6.2. Suppose u(x) and uN (x) are the exact and approximate solution of problem
(1)-(2), respectively. For the approximate solution uN (x), the residual function RN (x) is
defined as follows

RN (x) = L[uN (x)]− g(x). (61)

In this case, the following problem is satisfied by the error function eN (x) = u(x)− uN (x){
CDα

x (eN )(x)−
∫ 1
0 K(x, t)eN (t)dt = −RN (x),

(eN )(i)(0) = 0, i = 0, 1, . . . , n− 1.
(62)

Proof. Based on the definition of u(x) and uN (x), equation (1) can be represented in
operator form as follows:

L[u(x)] = g(x), L[u(x)] = CDα
xu(x)−

∫ 1

0
K(x, t)u(t)dt. (63)
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The approximate solution uN (x), satisfies the equations (1)-(2), so we have

L[uN (x)] = CDα
xuN (x)−

∫ 1

0
K(x, t)uN (t)dt, (64)

and
u
(i)
N (0) = δi(x), x ∈ [0, l]. (65)

Subtracting equations (64)-(65) from equations (1)-(2), the desired problem is obtained as{
CDα

x (eN )(x)−
∫ 1
0 K(x, t)eN (t)dt = −RN (x),

e
(i)
N (0) = 0, i = 0, 1, . . . , n− 1.

(66)

and the proof is completed. □

7. Numerical Resutls

In this section some numerical examples have been investigated to study the efficiency
of the proposed method to solve fractional integro-differential equation. The MATLAB
codes for the suggested approach in previous sections are written in MATLAB (R2016A),
and all codes are executed on a personal computer.

The exact and approximate solution of the proposed method are denoted by u(x) and
uN (x), respectively. Furthermore, the actual error and the estimated error function of the
problem are represented by ∥u(x)− uN (x)∥ and eN (x). The L2 and L∞ error norms are
two measure criteria to compare the exact and approximate solution which are defined by

L2 = ∥u(x)− uN (x)∥2 =
(∫ b

a
(u(x)− uN (x))2dx

) 1
2

,

and
L∞ = ∥u(x)− uN (x)∥∞ = max{|u(x)− uN (x)|}, 0 ≤ x ≤ 1.

Example 7.1. In this example, we consider the following fractional integro-differential
equation

CD
5
3
x u(x)−

∫ 1

0
(xt+ x2t2)u(t)dt =

3
√
3Γ(23)x

1
3

π
− x2

5
− x

4
, 0 ≤ x ≤ 1. (67)

subject to u(0) = 0, u′(0) = 0 with the exact solution u(x) = x2 [21].
The numerical results for exact solution u(x) and approximate solution uN (x) are dis-

played in the Table 1. These values are obtained for values N = 4 and α = 5
3 . Good results

have been obtained for value N = 4. The values of L2 and L∞ have been reported in 1.
Figure 1 displays the exact and approximate solutions for Example 7.1.

Example 7.2. Consider the following fractional integro-differential equation

CD
1
2
x u(x)−

∫ 1

0
xtu(t)dt =

8
3x

3
2 − 2x

1
2

√
π

+
x

12
, 0 ≤ x ≤ 1. (68)

with the analytical solution u(x) = x2 − x. The initial condition u(0) = 0 can be extracted
from the exact solution.

Similarly as in example 7.1, the numerical results for the exact solution u(x) and ap-
proximate solution uN (x) are calculated and reported in Table 2. The actual error and
estimated error for different values of N are listed in Table 2. The values of L2 and L∞
error norms for different values of N = 4 and N = 7 have been reported in Table 2. Figure
2 displays the exact and approximate solutions for Example 7.2.
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Table 1. Numerical results of the Example 7.1. for N = 4 and α = 5/3

x Exact Solution Approximate Solution Actual Error Estimated Error

0.00 00.0000e+ 000 −63.5605e− 024 63.5605e− 024 0.0000e+ 000
0.10 10.0000e− 003 10.0000e− 003 2.0240e− 018 −5.7726e− 018
0.20 40.0000e− 003 40.0000e− 003 8.1576e− 018 −12.3398e− 018
0.30 90.0000e− 003 90.0000e− 003 18.4961e− 018 −19.5749e− 018
0.40 160.0000e− 003 160.0000e− 003 33.1394e− 018 −27.2958e− 018
0.50 250.0000e− 003 250.0000e− 003 52.1918e− 018 −35.2708e− 018
0.60 360.0000e− 003 360.0000e− 003 75.7620e− 018 −43.2220e− 018
0.70 490.0000e− 003 490.0000e− 003 103.9631e− 018 −50.8266e− 018
0.80 640.0000e− 003 640.0000e− 003 136.9128e− 018 −57.7184e− 018
0.90 810.0000e− 003 810.0000e− 003 174.7329e− 018 −63.4883e− 018
1.00 1.0000e+ 000 1.0000e+ 000 217.5500e− 018 −67.6850e− 018

L2 342.6191e− 018

L∞ 217.5500e− 018

Table 2. Numerical results of the Example 7.2. for N = 4, N = 7 and α = 0.5.

x Exact Solution Approximate Solution Actual Error Estimated Error Estimated Error
N = 4 N = 7

0.00 00.000e+ 000 −352.6483e− 039 352.6483e− 039 0.0000e+ 000 0.0000e+ 000
0.10 −90.000e− 003 −90.0000e− 003 9.8147e− 018 236.4940e− 021 257.7399e− 021
0.20 −160.000e− 003 −160.0000e− 003 19.0828e− 018 −1.3265e− 018 −1.2951e− 018
0.30 −210.000e− 003 −210.0000e− 003 27.7504e− 018 −3.8972e− 018 −3.8664e− 018
0.40 −240.000e− 003 −240.0000e− 003 35.7711e− 018 −7.1432e− 018 −7.1157e− 018
0.50 −250.000e− 003 −250.0000e− 003 43.1059e− 018 −10.8435e− 018 −10.8178e− 018
0.60 −240.000e− 003 −240.0000e− 003 49.7234e− 018 −14.8284e− 018 −14.8029e− 018
0.70 −210.000e− 003 −210.0000e− 003 55.5994e− 018 −18.9588e− 018 −18.9328e− 018
0.80 −160.000e− 003 −160.0000e− 003 60.7174e− 018 −23.1161e− 018 −23.0905e− 018
0.90 −90.000e− 003 −90.0000e− 003 65.0682e− 018 −27.1973e− 018 −27.1734e− 018
1.00 000.000e+ 000 −68.6502e− 018 68.6502e− 018 −31.1126e− 018 −31.0903e− 018

L2 150.2175e− 018 150.1211e− 018

L∞ 68.6502e− 018 68.6240e− 018

Figure 1. The graghs of the exact and approximate solutions in case of
N = 4, α = 5

3 , corresponded to Example 7.1.

8. Conclusions

In this study, a collocation method based on Pell-Lucas polynomials has been introduced
for solving the fractional linear Fredholm integro-differential equation problem. The Pell-
Lucas collocation method approximates the solution of the FIDE problem with suggested
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Figure 2. The graghs of the exact and approximate solutions in case of
N = 4, α = 0.5, corresponded to Example 7.2.

basis functions. The matrix representation of the Caputo fractional derivative, the ma-
trix structure of Fredholm integral term based on the Pell-Lucas polynomials have been
derived. The proposed approach transforms the original problem into a matrix structure
by using matrix represention of the fractional derivative and Fredholm integral term with
Pell-Lucas polynomial basis functions. In order to demonstrate the proposed method’s
efficiency and applicability, it was applied and studied on some numerical examples with
various values of fractional orders and sample points. The agreement between numerical
and exact solution is supported by numerical obtained results, which demonstrate the va-
lidity and accuracy of the method. Our research encourages the use of this method in the
investigation of the existence problems and the stability of the solution for some problems.
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