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NUMERICAL SOLUTION OF THE TIME-VARIABLE FRACTIONAL

ORDER MOBILE-IMMOBILE ADVECTION-DISPERSION MODEL

USING A HYBRID METHOD

S. FOADIAN1∗, R. POURGHOLI1, §

Abstract. This paper introduces a hybrid numerical method combining the cubic
B-spline collocation method with the implicit Euler approximation to solve the time-
variable fractional order mobile-immobile advection-dispersion model (MIM-ADM). The
model includes the Coimbra variable-order (VO) time fractional derivative, which is well-
suited for dynamic system modeling. Cubic B-spline functions are employed for spatial
discretization, offering both flexibility and efficiency in approximating solutions. The
implicit Euler method accurately approximates the Coimbra VO time fractional deriv-
ative. Moreover, we establish that the proposed method achieves a convergence order

of O(h
2−λ(x,t)
t + h4

x). Numerical simulations confirm the accuracy of the method by
comparing its results with analytical solutions. Evaluation metrics such as L2 and L∞
error norms demonstrate the method’s efficacy in solving the MIM-ADM. This study
highlights the effectiveness of the proposed approach in modeling and solving complex
transport phenomena with high accuracy.

Keywords: Mobile-immobile advection-dispersion model, Cubic B-spline collocation method,
Implicit Euler approximation, Numerical solution..

AMS Subject Classification: 65Nxx, 74G15.

1. Introduction

Fractional-order calculus has gained widespread attention in engineering and physical
sciences over the past few decades for modeling diverse phenomena in robotic technology,
bio-engineering, control theory, viscoelasticity, diffusion models, relaxation processes, and
signal processing [2, 14]. This approach is particularly notable for its capability to describe
complex systems, including anomalous diffusion and transport dynamics, which traditional
integer-order models fail to capture accurately. Fractional-order derivatives, especially
when variable in time or space, offer a comprehensive framework for these phenomena
[6, 7, 13, 16, 18]. Recent advances in high-order numerical methods have significantly

1 School of Mathematics and Computer Science, Damghan University, Damghan, Iran.
e-mail: s.foadian@std.du.ac.ir; https://orcid.org/0000-0001-7091-1254.
e-mail: pourgholi@du.ac.ir; https://orcid.org/0000-0003-4111-5130.

∗ Corresponding author.
§ Manuscript received: June 20, 2024; accepted: May 22, 2025.
TWMS Journal of Applied and Engineering Mathematics, Vol.15, No.7; © Işık University, Depart-
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improved the accuracy of fractional partial differential equation solvers. For instance, a
sixth-order spatial scheme was introduced for time-fractional diffusion equations, achieving
high precision and computational efficiency [22]. The Coimbra variable-order fractional
derivative has been recognized as a powerful tool in this context [3], as it allows the
fractional order to vary dynamically, offering a more flexible modeling approach.

The MIM-ADM plays a crucial role in understanding transport processes in porous
media, where substances transition between mobile and immobile phases. Traditional
models often fail to accurately capture these processes, particularly when the fractional
order varies over time. This limitation necessitates the development of advanced numerical
methods. [10, 5]. Solving the time-variable fractional order MIM-ADM is essential for ac-
curately modeling the complex behavior of solute transport in heterogeneous media, a key
aspect of many scientific and engineering applications. In many natural and industrial pro-
cesses, such as groundwater contamination, oil recovery, and pollutant transport in rivers,
particle movement is not purely diffusive or advective but rather a combination of both,
with intermittent periods of immobilization. Traditional advection-dispersion equations,
which assume constant or integer-order derivatives, often fail to capture the heterogeneity
and memory effects inherent in such systems. Fractional derivatives, particularly those of
variable order, offer a more effective framework for describing these processes by account-
ing for both the memory effects and variability of transport dynamics. Furthermore, for
variable-order fractional diffusion problems, optimal order finite difference and local dis-
continuous Galerkin methods have been proposed, providing robust and accurate solutions
even when the fractional order varies in space and time [20].

In this paper, we study the time-variable fractional order MIM-ADM in the following
form [21]:

α1
∂φ(x, t)

∂t
+ α2D

λ(x,t)
t φ(x, t) = −θ1

∂φ(x, t)

∂x
+ θ2

∂2φ(x, t)

∂x2
+ G(x, t), (1)

for a < x < b and 0 < t < tfinal; with the initial and Dirichlet boundary conditions:

φ(x, 0) = r1(x), a ≤ x ≤ b, (2)

φ(a, t) = r2(t), φ(b, t) = r3(t), 0 ≤ t ≤ tfinal, (3)

where α1, α2 ≥ 0, θ1, θ2 > 0, G(x, t) represents the source term, and r1(x), r2(t), and

r3(t) are known analytical functions. Also, D
λ(x,t)
t is the Coimbra VO derivative operator,

defined as follows [3]:

D
λ(x,t)
t φ(x, t) =

1

Γ(1− λ(x, t))

∫ t

0

∂φ(x, τ)

∂τ
(t− τ)−λ(x,t) dτ,

where 0 < λ(x, t) < 1 is a continuous function of two variables and Γ(·) is the Gamma
function.

The main aim of this paper is to propose a hybrid numerical method based on the cubic
B-spline collocation method and the implicit Euler approximation to obtain approximate
solutions of (1)–(3). The theory of B-spline functions has attracted attention in the
literature for the numerical solution of boundary value problems in science and engineering.
The numerical solution of certain partial differential equations can be obtained using
cubic B-spline functions. As examples, a cubic B-spline function was used to solve the
generalized Burgers-Fisher and generalized Burgers-Huxley equations [12]. In [4], the
cubic B-spline is used to solve the inverse parabolic system. The extended cubic B-spline
functions was applied for the solution of the time-fractional Klein-Gordon equation [1].
A cubic B-spline basis functions was developed in [17] for the solution of time fractional
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Burgers’ equation involving Atangana-Baleanu derivative. The cubic B-Spline collocation
method was used to solve the second order of the linear hyperbolic equation in [11].
In this work, a collocation method with cubic B-spline is used to discretize the time-
variable fractional order MIM-ADM in the spatial direction, and the time fractional term
is simulated by applying the implicit Euler approximation. The advantages of this method
include:

(1) High spatial accuracy due to the flexibility of cubic B-splines in handling complex
geometries and gradients,

(2) The implicit Euler method provides stability in time discretization, making the ap-
proach well-suited for solving complex time-dependent fractional differential equations.

(3) This hybrid method is particularly effective in modeling the complex transport dy-
namics in porous media with variable-order fractional derivatives, which traditional
integer-order or constant-order models fail to capture accurately.

However, the disadvantages of the method include: High computational complexity, es-
pecially when dealing with large-scale problems, which may lead to longer computation
times and dependence on precise initial conditions and model parameters, which may pose
challenges in practical applications where such data is difficult to obtain.

The remainder of this paper is organized as follows: Section 2 details the cubic B-spline
collocation method used for the numerical solution. Section 3 presents the description
of the proposed method based on the cubic B-spline method and implicit Euler approxi-
mation. Numerical computations are discussed in Section 5, and concluding remarks are
provided in Section 6.

2. Cubic B-spline functions

In this section, we describe the uniform cubic B-spline over the finite interval [a, b]. For
this purpose, we divide the interval [a, b] into M -subintervals by the set of M + 1 nodal
points xi, 0 ≤ i ≤ M . This gives a partition π : a = x0 < x1 < · · · < xM−1 < xM = b of
[a, b], where ∆xi = xi − xi−1, ∀ 1 ≤ i ≤ M . The cubic B-splines are constructed for the
partition

Π : x−2 < x−1 < x0 = a < x1 < · · · < xM = b < xM+1 < xM+2,

by using four fictitious nodes x−2, x−1, xM+1, xM+2.
If we assume that ∆xi = hx, ∀ − 1 ≤ i ≤ M + 2, then the uniform cubic B-splines are
defined by, [4],

Bi(x) =
∆4Fx(xi−2)

h3x
,

where

Fx(xi) = (xi − x)3+ =

{
(xi − x)3, x < xi,

0, x ≥ xi,

and ∆4Fx(xi) is the fourth forward difference with equally spaced nodes of third degree
polynomial Fx(xi). After some simplification, we get

Bi(x) =
1

h3x



(x− xi−2)
3, xi−2 ≤ x < xi−1,

h3x + 3h2x(x− xi−1) + 3hx(x− xi−1)
2 − 3(x− xi−1)

3, xi−1 ≤ x < xi,

h3x + 3h2x(xi+1 − x) + 3hx(xi+1 − x)2 − 3(xi+1 − x)3, xi ≤ x < xi+1,

(xi+2 − x)3, xi+1 ≤ x ≤ xi+2,

0, otherwise.

(4)
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It can be easily see that the functions in {B−1, B0, . . . , BM , BM+1} are linearly independent
on [a, b], ([15]). By using splines defined in (4), the values of Bi(x) and its derivatives at
the nodes xi’s are given in Table 1.

Table 1. The values of Bi(x) and its derivatives at the nodal points.

Bi(x) B′
i(x) B′′

i (x)

xi−2 0 0 0

xi−1 1 3/hx 6/h2x

xi 4 0 −12/h2x

xi+1 1 −3/hx 6/h2x

xi+2 0 0 0

3. Description of the proposed method

In this section, we present the application of the cubic B-spline method and the implicit
Euler approximation to obtain numerical solutions for the problem defined by equations
(1)–(3).

3.1. Space discretization by the cubic B-spline. In this subsection, we introduce our
method based on cubic B-spline functions for the discretization of spatial derivatives that
appear in the MIM-ADM (1).
To apply the proposed method, we express φ(x, t) using cubic B-spline functions. Let

φ∗(x, tk) ∼=
M+1∑
i=−1

σk
i Bi(x), (5)

be the approximate solution of the problem (1) at the k-th time level, where σk
i is unknown

time-dependent quantities to be determined.
Using approximate solution (5) and cubic B-spline (4), the approximate values at the

knots of φ∗(xi, tk) and its derivatives up to second order are determined in terms of the
time parameters σk

i as

φ∗(xi, tk) = σk
i−1 + 4σk

i + σk
i+1, (6)

φ∗′(xi, tk) =
( 3

hx

)(
σk
i+1 − σk

i−1

)
, (7)

φ∗′′(xi, tk) =
( 6

h2x

)(
σk
i−1 − 2σk

i + σk
i+1

)
. (8)

3.2. Time discretization of the time fractional derivative. In this subsection, our
aim is to discretize the time-variable fractional order derivative. The VO derivative op-
erator in equation (1) is discretized using the implicit Euler approximation as follows
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[21]:

D
λk+1
i

t φk+1
i =γ∗

[
φ(xi, tk+1)− φ(xi, tk)

]
+ γ∗

k∑
j=1

ωk+1
j,i

[
φ(xi, tk−j+1)− φ(xi, tk−j)

]
+O(h

2−λk+1
i

t ),

(9)

where λk
i = λ(xi, tk), and

γ∗ =
h
−λk+1

i
t

Γ(2− λk+1
i )

, ωk+1
j,i = (j + 1)1−λk+1

i − j1−λk+1
i ,

where ht is the time step. By omitting the small term O(h
2−λk+1

i
t ) in equation (9) and

denoting φ∗ as the approximation of φ, we obtain

D
λk+1
i

t (φ∗)k+1
i = γ∗

[
φ∗(xi, tk+1)− φ∗(xi, tk)

]
+ γ∗

k∑
j=1

ωk+1
j,i

[
φ∗(xi, tk−j+1)− φ∗(xi, tk−j)

]
.

(10)

3.3. Description of the numerical technique. In equation (1), if we set the approxi-
mation (10) in this equation, we obtain

α1
∂φ∗(xi, tk+1)

∂t
+ α2γ

∗φ∗(xi, tk+1)− α2γ
∗φ∗(xi, tk)

+ α2γ
∗

k∑
j=1

ωk+1
j,i

[
φ∗(xi, tk−j+1)− φ∗(xi, tk−j)

]
= −θ1

∂φ∗(xi, tk+1)

∂x
+ θ2

∂2φ∗(xi, tk+1)

∂x2

+ G(xi, tk+1). (11)

With using the time derivatives is discretized in a forward finite difference fashion in
equation (11), we have

δφ∗(xi, tk+1) + θ1
∂φ∗(xi, tk+1)

∂x
− θ2

∂2φ∗(xi, tk+1)

∂x2
= G(xi, tk+1) + δφ∗(xi, tk)

− α2γ
∗

k∑
j=1

ωk+1
j,i

[
φ∗(xi, tk−j+1)− φ∗(xi, tk−j)

]
, (12)

where δ = α1
ht

+ α2γ
∗.

Now, substituting the approximate values (6)–(8) in equation (12) yield the following
equation with the variable σ

µ1σ
k+1
i−1 + µ2σ

k+1
i + µ3σ

k+1
i+1 = A(xi, tk+1), (13)

where i = 0, 1, . . . ,M , k = 0, 1, . . . , and

µ1 = δ − 3θ1
hx

− 6θ2
h2x

, µ2 = 4δ +
12θ2
h2x

, µ3 = δ +
3θ1
hx

− 6θ2
h2x

,

also,

A(xi, tk+1) =G(xi, tk+1) + δ
[
σk
i−1 + 4σk

i + σk
i+1

]
− α2γ

∗
k∑

j=1

ωk+1
j,i

[
(σk−j+1

i−1 + 4σk−j+1
i + σk−j+1

i+1 )− (σk−j
i−1 + 4σk−j

i + σk−j
i+1 )

]
.



S. FOADIAN, R. POURGHOLI: NUMERICAL SOLUTION... 1703

System (13) consists of (M + 1) linear equations in (M + 3) unknowns

(σk+1
−1 , σk+1

0 , σk+1
1 , . . . , σk+1

M , σk+1
M+1).

To obtain a unique solution to the resulting system two additional constraints are required.
These are obtained by imposing boundary conditions (3). Eliminating σ−1, and σM+1 the
system gets reduced to a matrix system of dimension (M + 1)× (M + 1) as follows

ΓX = Υ, (14)

where

Γ=



µ2 − 4µ1 µ3 − µ1 0 . . . . . . 0 0 0

µ1 µ2 µ3 . . . . . . 0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 . . . . . . µ1 µ2 µ3

0 0 0 . . . . . . 0 µ1 − µ3 µ2 − 4µ3



,

X=



σk+1
0

σk+1
1

...

...

σk+1
M−1

σk+1
M



, Υ=



A(x0, tk+1)− µ1r2(tk+1)

A(x1, tk+1)

...

...

A(xM−1, tk+1)

A(xM , tk+1)− µ3r3(tk+1)



.

System (14) is a tridiagonal system that can be solved by Thomas algorithm [19]. Finally,
we can obtain

φ∗(xi, tk) = σk
i−1 + 4σk

i + σk
i+1, i = 0, 1, . . . ,M, k = 1, 2, . . .

3.4. The initial vector. At each time step, the approximate solution φ(x, t) is obtained
iteratively, provided that the initial conditions are well-defined.
From the initial condition

φ∗(xi, 0) = r1(xi), i = 0, 1, . . . ,M,

we get (M + 1) equations in (M + 3) unknowns (σ0
−1, σ

0
0, σ

0
1, . . . , σ

0
M , σ0

M+1). The two

unknowns σ0
−1 and σ0

M+1 can be obtained from the relation φ∗
x(x0, 0) = r′1(x0) and

φ∗
x(xM , 0) = r′1(xM ) at the knots. It leads to a system of (M + 1) equations in (M + 1)
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unknowns as follows

4 2 0 0 . . . . . . 0 0 0 0

1 4 1 0 . . . . . . 0 0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 . . . . . . 0 1 4 1

0 0 0 0 . . . . . . 0 0 2 4





σ0
0

σ0
1

...

...

σ0
M−1

σ0
M



=



r1(x0) +
hx
3 r′1(x0)

r1(x1)

...

...

r1(xM−1)

r1(xM )− hx
3 r′1(xM )



,

which can be solved by Thomas algorithm.

4. Convergence analysis

Theorem 4.1. The collocation approximation φ∗
k(x) for the solution φk(x) of the problem

(1)–(3) satisfy the following error estimate∥∥∥φk − φ∗
k

∥∥∥
∞

≤ ζh4x,

for sufficiently small hx (i.e. for sufficiently large M) where ζ is a positive constant.

Proof. Let φk(x) is the exact solution of the problem (1)–(3). Also, we set

φ∗
k(x) =

M+1∑
i=−1

σk
i Bi(x),

to be B-spline collocation approximation to φk(x). Due to round off errors in computa-

tions, we assume that φ̃∗
k(x) is the computed spline for φ∗

k(x) so that

φ̃∗
k(x) =

M+1∑
i=−1

σ̃n
i Bi(x).

To estimate the error ||φk(x)− φ∗
k(x)||∞, it is needed to estimate the errors

||φk(x)− φ̃∗
k(x)||∞ and ||φ̃∗

k(x)− φ∗
k(x)||∞,

separately. Following (14) for φ̃∗
k we have

ΓX̃ = Υ̃, (15)

where

X̃ =
[
σ̃k+1
0 , σ̃k+1

1 , . . . , σ̃k+1
M−1 σ̃k+1

M

]T
,

Υ̃ =
[
Ã(x0, tk+1)− µ1r2(tk+1), Ã(x1, tk+1), . . . , Ã(xM−1, tk+1), Ã(xM , tk+1)− µ3r3(tk+1)

]T
.

By subtracting (14) and (15) we have

Γ
(
X − X̃

)
=

(
Υ− Υ̃

)
. (16)
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On the other hand

Υ− Υ̃ =



A(x0, tk+1)− Ã(x0, tk+1)

A(x1, tk+1)− Ã(x1, tk+1)

...

A(xM−1, tk+1)− Ã(xM−1, tk+1)

A(xM , tk+1)− Ã(xM , tk+1)


(17)

such that for every 0 ≤ i ≤ M ,

A(xi, tk+1) = G(xi, tk+1) + δφ∗(xi, tk)− α2γ
∗

k∑
j=1

ωk+1
j,i

[
φ∗(xi, tk−j+1)− φ∗(xi, tk−j)

]
,

Ã(xi, tk+1) = G(xi, tk+1) + δφ̃∗(xi, tk)− α2γ
∗

k∑
j=1

ωk+1
j,i

[
φ̃∗(xi, tk−j+1)− φ̃∗(xi, tk−j)

]
.

So, ∣∣∣A(xi, tk+1)− Ã(xi, tk+1)
∣∣∣ ≤ δ

∣∣∣φ∗(xi, tk)− φ̃∗(xi, tk)
∣∣∣

+ α2γ
∗

k∑
j=1

ωk+1
j,i

[∣∣∣φ∗(xi, tk−j+1)− φ̃∗(xi, tk−j+1)
∣∣∣+ ∣∣∣φ∗(xi, tk−j)− φ̃∗(xi, tk−j)

∣∣∣].
From Hall and Meyer error estimate ([8]), we get∥∥∥Dr(φ∗(x, tk)− φ̃∗(x, tk))

∥∥∥
∞

≤ εr

∥∥∥d4φ∗(x, tk)

dx4

∥∥∥
∞
h4−r
x , r = 0, 1, 2, 3. (18)

Therefore,∣∣∣A(xi, tk+1)− Ã(xi, tk+1)
∣∣∣ ≤ δε0

∥∥∥d4φ∗(x, tk)

dx4

∥∥∥
∞
h4x

+ α2γ
∗

k∑
j=1

ωk+1
j,i

[
ε0

∥∥∥d4φ∗(x, tk−j+1)

dx4

∥∥∥
∞
h4x + ε0

∥∥∥d4φ∗(x, tk−j)

dx4

∥∥∥
∞
h4x

]
,

(19)

and hence,∣∣∣A(xi, tk+1)− Ã(xi, tk+1)
∣∣∣ ≤ h4x

(
δε0L+ 2α2γ

∗ε0L((k + 1)1−λk+1
i − 1)

)
. (20)

From (20), is deduced that

||Υ− Υ̃||∞ ≤ ςh4x, (21)

where

ς = δε0L+ 2α2γ
∗ε0L((k + 1)1−λk+1

i − 1).

Also, from (16), we have

X − X̃ = Γ−1(Υ− Υ̃).

Taking the infinity norm, then using (21), one can deduce that∥∥∥X − X̃
∥∥∥
∞

=
∥∥∥Γ−1

∥∥∥
∞

∥∥∥Υ− Υ̃
∥∥∥
∞

≤ ςh4x

∥∥∥Γ−1
∥∥∥
∞

= ς̃h4x,
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where ς̃ = ς
∥∥∥Γ−1

∥∥∥
∞
. Now, we compute

∥∥∥φk − φ∗
k

∥∥∥
∞

as the following∥∥∥φk − φ∗
k

∥∥∥
∞

=
∥∥∥φk − φ̃∗

k

∥∥∥
∞

+
∥∥∥φ̃∗

k − φ∗
k

∥∥∥
∞
,

such that

φ∗
k(x)− φ̃∗

k(x) =

M+1∑
i=−1

(σk
i − σ̃k

i )Bi(x).

So, ∣∣∣φ∗
k(xm)− φ̃∗

k(xm)
∣∣∣ ≤ max

−1≤i≤M+1

{
|σk

i − σ̃k
i |
}M+1∑

i=−1

|Bi(xm)|, 0 ≤ m ≤ M.

By using the values of Bi(xm)’s given in Section 2, we have

M+1∑
i=−1

|Bi(xm)| ≤ 10, 0 ≤ m ≤ N

(see, [9]); Therefore, ∥∥∥φ∗
k − φ̃∗

k

∥∥∥
∞

≤ 10ς̃h4x. (22)

So, according to equations (18) and (22), we obtain∥∥∥φk − φ∗
k

∥∥∥
∞

≤ ε0Lh
4
x + 10ς̃h4x

= h4x

(
ε0L+ 10ς̃

)
.

Setting ζ = ε0L+ 10ς̃, we have ∥∥∥φk − φ∗
k

∥∥∥
∞

≤ ζh4x.

□

As a result of Theorem 4.1 we have the following theorem.

Theorem 4.2. Suppose that φ∗(x, tk) be the collocation approximation of the exact solu-
tion φ(x, tk). Then the error estimate of the totally discrete scheme is calculated as:∥∥∥φk − φ∗

k

∥∥∥
∞

≤ κ(h
2−λ(x,tk+1)
t + h4x),

where κ is some finite constant.

Remark 4.1. According to Theorem 4.2, the order of convergence of our method is the-

oretically O(h
2−λ(x,t)
t + h4x), where λ(x, t) is the variable fractional order. However, in

practical computations and in line with common practice, we report the dominant error
order of the time discretization scheme. For variable-order problems, this is typically O(h2t )
when λ(x, t) remains sufficiently small or smooth over the domain.

5. Numerical Computations and Results

This section presents the numerical computations of the time-variable fractional order
MIM-ADM (1) under the initial and boundary conditions (2) and (3). To evaluate the



S. FOADIAN, R. POURGHOLI: NUMERICAL SOLUTION... 1707

performance of the proposed method, two numerical examples are provided with error
norms L2 and L∞ for x ∈ [0, 1] and t ∈ [0, tfinal], defined as follows:

L2 =

√√√√hx

M∑
i=1

(φexact(xi, t)− φapprox(xi, t))
2, where hx =

1

M
,

L∞ = ∥φexact(x, t)− φapprox(x, t)∥∞ = max |φexact(x, t)− φapprox(x, t)| ,

In the following numerical examples, we take α1 = α2 = θ1 = θ2 = 1. Therefore, we have:

∂φ(x, t)

∂t
+D

λ(x,t)
t φ(x, t) = −∂φ(x, t)

∂x
+

∂2φ(x, t)

∂x2
+ G(x, t), (x, t) ∈ [0, 1]× [0, 1]. (23)

These examples were solved by Zhang et al. using the implicit Euler approximation [21].
MATLAB (R2015b) was used for the graphical analysis and numerical computations in
this paper.

Remark 5.1. The convergence rate of φ(x, t), with time step length ht of the time dis-
cretization (denoted by P1) and with space step length hx of the space discretization (de-
noted by P2) can be calculated by the following formulas;

P1 =
log10

(
(L∞)h1

t
/(L∞)h2

t

)
log10(h

1
t /h

2
t )

, P2 =
log10

(
(L∞)h1

x
/(L∞)h2

x

)
log10(h

1
x/h

2
x)

. (24)

To evaluate the convergence rate of the proposed method in the time and space directions,
we respectively consider ht = hx = 0.1, 0.05, 0.025.
In Tables 2, 3, and 5, absolute errors for different spatial points are presented to illustrate
the accuracy of the proposed method. The explicit convergence rates, computed using the
L∞ norm as described in formula (24), are summarized in Tables 6 and 7 for the corre-
sponding examples. According to Remark 4.1, the observed convergence rates in Tables 6
and 7 are in agreement with the practical order discussed therein.

5.1. Test Problems.

Example 5.1. In this example, we consider the time-variable fractional order MIM-ADM
(23), where

λ(x, t) = 1− 0.5e−xt,

G(x, t) = 10x2(1− x)2 +
10x2(1− x)2t1−λ(x,t)

Γ(2− λ(x, t))
+ 10(t+ 1)(2x− 6x2 + 4x3)

− 10(t+ 1)(2− 12x+ 12x2).

The exact solution of this example is φ(x, t) = 10(t + 1)x2(1 − x)2 and the initial and
boundary conditions are derived accordingly.
In Table 2, we compare our method with the proposed method given in [21] for the absolute
errors between exact and approximate solutions at the final time t = 1. In Figure 1, we
show the L2 and L∞ errors for φ(x, t) at different space levels. The comparison between
the exact and approximate solution φ(x, t) at different time levels are given in Figure 2.
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Table 2. The comparison among the exact and approximate solutions for
φ(x, 1) in Example 5.1.

x φexact

Method of [21] Proposed Method

φapprox |φexact − φapprox| φapprox |φexact − φapprox|

0.1 0.1620 0.1618 1.5629e− 04 0.1619 1.3895e− 04

0.2 0.5120 0.5106 1.4007e− 03 0.5117 2.5251e− 04

0.3 0.8820 0.8790 2.9752e− 03 0.8817 3.3973e− 04

0.4 1.1520 1.1477 4.2977e− 03 1.1516 3.9911e− 04

0.5 1.2500 1.2450 4.9722e− 03 1.2496 4.2858e− 04

0.6 1.1520 1.1472 4.8034e− 03 1.1516 4.2536e− 04

0.7 0.8820 0.8782 3.8153e− 03 0.8816 3.8588e− 04

0.8 0.5120 0.5097 2.2747e− 03 0.5117 3.0570e− 04

0.9 0.1620 0.1613 7.2075e− 04 0.1618 1.7930e− 04

Execution time (second) 329.831447

Figure 1. The L2 and L∞ errors of Example 5.1 at different space levels.

Example 5.2. In this example, we consider the time-variable fractional order MIM-ADM
(23), where

λ(x, t) = 0.8 + 0.005 cos(xt) sin(x),

G(x, t) = 5x(1− x) +
5x(1− x)t1−λ(x,t)

Γ(2− λ(x, t))
+ 5(t+ 1)(1− 2x) + 10(t+ 1).

The exact solution of this example is φ(x, t) = 5(t+1)x(1−x) and the initial and boundary
conditions are derived accordingly.
In Table 3, we compare the exact and approximate solutions at the final time t = 1.
In Figure 3, we show the L2 and L∞ errors for φ(x, t) at different space levels. The
comparison between the exact and approximate solution φ(x, t) at different time levels are
given in Figure 4.
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Figure 2. The comparison between the exact solution (shown by continu-
ous lines) and approximate solution (using the proposed method) of φ(x, t)
at different time levels for Example 5.1

Furthermore, the comparison L∞ error in Examples 5.1 and 5.2 for different values of hx
and ht, is provided in Table 4.

Table 3. The comparison among the exact and approximate solutions for
φ(x, 1) in Example 5.2.

x φexact φapprox |φexact − φapprox|

0.1 0.900000 0.900000 1.110223e− 16

0.2 1.600000 1.600000 2.220446e− 16

0.3 2.100000 2.100000 0

0.4 2.400000 2.400000 0

0.5 2.500000 2.500000 4.440892e− 16

0.6 2.400000 2.400000 0

0.7 2.100000 2.100000 0

0.8 1.600000 1.600000 0

0.9 0.900000 0.900000 1.110223e− 16

Execution time (second) 335.068427

Example 5.3. In this example, we consider the time-variable fractional order MIM-ADM
(23), where

λ(x, t) = 1− 0.5e−xt,

G(x, t) = 5(1 + π2(t+ 1)) sin(πx) +
5 sin(πx)t1−λ(x,t)

Γ(2− λ(x, t))
+ 5π(t+ 1) cos(πx).

The exact solution of this example is φ(x, t) = 5(t+1) sin(πx) and the initial and boundary
conditions are derived accordingly.
In Table 5, we compare the exact and approximate solutions at the final time t = 1.
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Figure 3. The L2 and L∞ errors of Example 5.2 at different space levels.

Figure 4. The comparison between the exact solution (shown by continu-
ous lines) and approximate solution (using the proposed method) of φ(x, t)
at different time levels for Example 5.2

Table 4. The comparison L∞ error in Examples 5.1 and 5.2 for different
values of hx and ht.

hx = ht
Example 5.1 Example 5.2

Method of [21] Proposed Method Method of [21] Proposed Method

1/50 9.4391e− 03 1.7291e− 03 2.1562e− 02 3.3307e− 15

1/100 5.0134e− 03 4.3234e− 04 1.0825e− 02 9.7700e− 15

In Figure 5, we show the L2 and L∞ errors for φ(x, t) at different space levels. The
comparison between the exact and approximate solution φ(x, t) at different time levels are
given in Figure 6.

6. Conclusion

In this paper, we have developed a hybrid numerical method that integrates the cubic
B-spline collocation method and the implicit Euler approximation to solve the MIM-ADM.
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Table 5. The comparison among the exact and approximate solutions for
φ(x, 1) in Example 5.3.

x φexact φapprox |φexact − φapprox|

0.1 3.090170 3.089982 1.879619e− 04

0.2 5.877853 5.877480 3.726123e− 04

0.3 8.090170 8.089637 5.327227e− 04

0.4 9.510565 9.509916 6.492514e− 04

0.5 10.000000 9.999293 7.071503e− 04

0.6 9.510565 9.509868 6.967765e− 04

0.7 8.090170 8.089555 6.147649e− 04

0.8 5.877853 5.877388 4.642728e− 04

0.9 3.090170 3.089915 2.545684e− 04

Execution time (second) 328.881762

Figure 5. The L2 and L∞ errors of Example 5.3 at different space levels.

The adoption of the Coimbra variable-order fractional derivative has proven effective in
capturing the complex behavior of transport processes in porous media, which tradi-
tional integer-order models fail to accurately describe. The proposed method leverages
the flexibility and high accuracy of cubic B-splines for spatial discretization, alongside
the robustness of the implicit Euler approximation for time fractional derivatives. This
combination offers a powerful framework for modeling and solving the MIM-ADM with
VO derivatives. Additionally, we have established that the method achieves a theoretical

convergence order of O(h
2−λ(x,t)
t + h4x), where λ(x, t) is the variable fractional order. In

practical computations, when λ(x, t) remains sufficiently small or smooth over the domain,
the dominant temporal error order is typically O(h2t ), as confirmed by our numerical ex-
periments. Numerical experiments have demonstrated the effectiveness and accuracy of
the proposed method. Furthermore, the plotted graphs confirmed the reliability of the
proposed method.
Future work will focus on further refining the numerical method to improve its efficiency



1712 TWMS J. APP. ENG. MATH. V.15, N.7, 2025

Figure 6. The comparison between the exact solution (shown by continu-
ous lines) and approximate solution (using the proposed method) of φ(x, t)
at different time levels for Example 5.3

Table 6. The convergence rate in time direction for φ(x, t).

ht L∞ Error rate P1

Example 5.1

0.1 4.2858e− 04 -

0.05 1.2315e− 04 1.7991

0.025 3.3142e− 05 1.8937

Example 5.2

0.1 4.4409e− 16 -

0.05 1.1938e− 16 1.8953

0.025 3.1072e− 17 1.9419

Example 5.3

0.1 7.071503e− 04 -

0.05 1.796549e− 04 1.9768

0.025 4.494691e− 05 1.9989

and extend its applicability to a broader range of complex transport phenomena. Addi-
tionally, the development of more sophisticated variable-order fractional models and their
integration with advanced numerical techniques will be explored to continue advancing
the field of fractional calculus and its applications in modeling complex systems.
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