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ON THE CLASSIFICATION OF PYTHAGOREAN FUZZY

SUBGROUPS OF ABELIAN GROUPS

S. BHUNIA1, G. GHORAI1∗, §

Abstract. Pythagorean fuzzy set is one of the most used tool for depicting uncertainty.
A divisible subgroup is among the most significant categories of subgroups of an abelian
group. The number of Pythagorean fuzzy subgroups in any group is infinite without
a suitable equivalence constraint on the Pythagorean fuzzy sets. To get a meaningful
categorization, a sufficient equivalent condition on the collection of all Pythagorean fuzzy
subgroups needs to be defined. In this paper, the concept of Pythagorean fuzzy divisible
subgroups of a group is introduced. An equivalence relation on Pythagorean fuzzy sets is
defined. Several properties of this equivalence relation on Pythagorean fuzzy subgroups
are explained. Pythagorean fuzzy subgroups related to their maximal chains are intro-
duced. All possible Pythagorean fuzzy subgroups of finite abelian groups are investigated.

Keywords: Pythagorean fuzzy set, Pythagorean fuzzy divisible subgroup, equivalence
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1. Introduction

Analysis of the subgroups of finite groups in a fuzzy environment is a critical issue.
The discussion of fuzzy subgroups has advanced significance in past years. To deal with
uncertainty in practical problems, Zadeh [31] created fuzzy set (FS) in 1965. Rosenfeld
[21] established the idea of a fuzzy subgroup (FSG) in 1971. In 1979, FSG was redefined
with the t-norm by Sherwood and Anthony [7]. Das [13] first mentioned the terminology of
a fuzzy level subgroup. Level subgroups in the fuzzy environment and the union property
of FSGs were explained by Dixit et al. [14] in 1990. Alkhamees [6] studied fuzzy cyclic
p-subgroups as well as fuzzy cyclic subgroups. Sidky and Mishref introduced divisible
fuzzy subgroups in 1990. In 2021, Ejegwa et al. [15] described divisible and pure fuzzy
multigroups. In 2015, Tarnauceanu [26] classified fuzzy normal subgroups of finite groups.
In 2016, Onasanya [20] reviewed some anti-fuzzy properties of fuzzy subgroups. In 2018,
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Addis [2] developed fuzzy homomorphism theorems on groups. Solairaju [23] and Maha-
lakshmi described hesitant intuitionistic fuzzy soft groups in 2018. Abuhijleh et al. [1]
worked on complex fuzzy groups in 2021. Alolaiyan et al. [4] studied algebraic structure
of (α, β)-complex fuzzy subgroups. Alolaiyan et al. [5] developed bipolar fuzzy subrings
in 2021. In 2021, Talafha et al. [24] studied fuzzy fundamental groups and fuzzy folding
of fuzzy Minkowski space.

On the set that includes all fuzzy subsets, the FSGs of a group can be categorised
by proper equivalence relations on that set. Numerous papers have discussed how to
analyze FSGs for specific instances of groups in terms of appropriate equivalence relations.
In 1998, Zhang and Zou [32] determined the count of FSGs in a group that has the
same equivalence classes. They specified the count of FSGs of cyclic groups. Murali and
Makamba [16] described the circumstances by which the level subsets of FSs can explain
the equivalent relations of FSs in 2001. Additionally, they suggested that only finite groups
should utilize the equivalence approach to analyze FSGs. Murali and Makamba [17, 18],
identified the quantity of FSGs in cyclic groups of order without square. In 2004, Volf [27]
discussed chains of subgroups for counting fuzzy subgroups. Tarnauceanu and Benta [25]
investigated the count of FSGs of Abelian groups of finite order in 2008.

1986, Atanassov [8] invented the intuitionistic fuzzy set (IFS). Yamak et al.[30] studied
divisible and pure intuitionistic fuzzy subgroups in 2008. In 2013, Pythagorean fuzzy set
(PFS) was introduced by Yager[28]. In many decision-making issues, the PFS is very
effective. This idea is completely suited to mathematically illustrate uncertainty. Also
to create a formalized method to deal with imprecision in practical scenarios. In 2021,
Bhunia et al. [10] introduced Pythagorean fuzzy subgroups (PFSG) of any groups. Bhunia
and Ghorai [9, 11] explained (α, β)-PFSs in 2021. In 2024, a number of findings regarding
Pythagorean fuzzy subgroups are offered in [12]. In 2018, Naz et al. [19] proposed a novel
approach to decision-making problems using Pythagorean fuzzy set. In 2019, Akram and
Naz [3] applied complex Pythagorean fuzzy set to decision-making problems.

Divisible groups are a key concept in group theory, characterized by the property that
for every element in the group and every positive integer, there exists an element whose
multiple equals the given element. They play a crucial role in the classification of abelian
groups and connect deeply with algebraic geometry, particularly in the study of elliptic
curves and Galois representations. Here, we introduce divisible subgroups in Pythagorean
fuzzy environment and study various properties of them. Without a proper equivalence
condition on PFSs of a set, the number of PFSGs of any group is uncountable. An
adequate equivalence condition must be defined on the collection of all PFSGs for obtaining
a meaningful classification. To overcome this situation, we have introduced a proper
equivalence condition on the collection of all PFSs of any set. With the help of proper
equivalence relations, we investigate the total number of PFSGs of finite abelian groups.

The structure of this paper is designed in the following way: in Section 3, Pythagorean
fuzzy divisible subgroups are described. An equivalence relation on PFSGs is defined in
Section 4. In Section 5, results related to the count of PFSGs of abelian groups are given.
Conclusion statements are produced in Section 6.

2. Preliminaries

We review some key terminologies in this section that will be crucial in developing
subsequent sections.

Definition 2.1. [31] Let U be a crisp set. Then µ : U → [0, 1] is called a fuzzy subset of
U . Here, µ(u) is called degree of membership of u ∈ U .
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Definition 2.2. [8] Let U be a crisp set. An IFS I on U is defined by I = {(u, µ(u), ν(u))|u ∈
U}, where µ(u) ∈ [0, 1] and ν(u) ∈ [0, 1] are the degree of membership and non-membership
of u ∈ U respectively, which satisfy the condition 0 ≤ µ(u) + ν(u) ≤ 1, ∀u ∈ u.

Definition 2.3. [21] A FS µ is a FSG of a group U if
(i) µ(u1 · u2) ≥ µ(u1) ∧ µ(u2), ∀u1, u2 ∈ U ,
(ii) µ(u−1) ≥ µ(u), ∀u ∈ U .

Definition 2.4. [22] Let µ be a FSG of U . Then µ is a fuzzy divisible subgroup of U if
∀xa ⊆ µ with a > 0, and ∀n ∈ N, there exists ya ⊆ µ such that n(ya) = xa.

Definition 2.5. [28] A PFS ψ of U is ψ = {(u, µ(u), ν(u))|u ∈ U}, µ(u) ∈ [0, 1] and
ν(u) ∈ [0, 1] are the membership and non membership degrees of u ∈ U respectively, where
0 ≤ µ2(u) + ν2(u) ≤ 1, ∀u ∈ U .

Definition 2.6. [10] Let ψ be a PFS of U . Then ψ is a PFSG of U if
(i) µ2(u1 · u2) ≥ µ2(u1) ∧ µ2(u2) and ν2(u1 · u2) ≤ ν2(u1) ∨ ν2(u2), ∀u1, u2 ∈ U ,
(ii) µ2(u−1) ≥ µ2(u) and ν2(u−1) ≤ ν2(u), ∀u ∈ U .
Here, µ2(u) = {µ(u)}2 and ν2(u) = {ν(u)}2 for all u ∈ U .

Proposition 2.1. [17] The count of maximal chains of Zλ × Zλ is λ + 1, where λ is a
prime.

3. Pythagorean fuzzy divisible subgroups

This section will introduce the concept of Pythagorean fuzzy divisible subgroups. Through
out this section, U stands for an abelian group. The collection of all PFSs of U is denoted
by AU (ψ) and all PFSGs of U is denoted by ASU (ψ).

Definition 3.1. Let ψ be a PFS of U . For n ∈ N, define nψ = (nµ, nν) as follows:

(nµ)2(x) =

{ ∨
x=ny µ

2(y), when x ∈ nU

0, elsewhere

and

(nν)2(x) =

{ ∧
x=ny ν

2(y), when x ∈ nU

1, elsewhere

where nU = {nu|u ∈ U}.

Example 3.1. Consider U = (Z3,+).
Assign a PFS ψ = (µ, ν) on U by µ(0̄) = 0.7, µ(1̄) = 0.8, µ(2̄) = 0.6, ν(0̄) = 0.4,

ν(1̄) = 0.3 and ν(2̄) = 0.5.
Then µ2(0̄) = 0.49, µ2(1̄) = 0.64, µ2(2̄) = 0.36, ν2(0̄) = 0.16, ν2(1̄) = 0.09 and

ν2(2̄) = 0.25.
Take n = 2. Therefore 2ψ = (2µ, 2ν) is given by
(2µ)2(0̄) =

∨
0̄=2ȳ µ

2(ȳ) = µ2(0̄) = 0.49, (2µ)2(1̄) =
∨

1̄=2ȳ µ
2(ȳ) = µ2(2̄) = 0.36,

(2µ)2(2̄) =
∨

2̄=2ȳ µ
2(ȳ) = µ2(1̄) = 0.64, (2ν)2(0̄) =

∧
0̄=2ȳ ν

2(ȳ) = ν2(0̄) = 0.16,

(2ν)2(1̄) =
∧

1̄=2ȳ ν
2(ȳ) = ν2(2̄) = 0.25, and (2ν)2(2̄) =

∧
2̄=2ȳ ν

2(ȳ) = ν2(1̄) = 0.09
where ȳ ∈ 2Z3.

Definition 3.2. Let ψ ∈ ASU (ψ). Then ψ is a Pythagorean fuzzy divisible subgroup of U
if nψ = ψ for all n ∈ N.
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Example 3.2. Consider U = (Q,+).
Assign a PFS ψ on U as follows:

µ(u) =

{
0.9, when u ∈ {0}
0.7, elsewhere

and

ν(u) =

{
0.4, when u ∈ {0}
0.5, elsewhere.

Clearly ψ ∈ ASQ(ψ).
Choose n = 2. Then 2ψ = (2µ, 2ν). Now, (2µ)2(0) =

∨
0=2y µ

2(y) =
∨

y=0/2 µ
2(y) =

0.81 and (2ν)2(0) =
∧

0=2y ν
2(y) =

∧
y=0/2 ν

2(y) = 0.16. Again, (2µ)2(u) =
∨

u=2y µ
2(y) =∨

y=u/2 µ
2(y) = 0.49 and (2ν)2(u) =

∧
u=2y ν

2(y) =
∧

y=u/2 ν
2(y) = 0.25. Therefore

2ψ = ψ.
Also, choose n = 3. Then 3ψ = (3µ, 3ν). Now, (3µ)2(0) =

∨
0=3y µ

2(y) =
∨

y=0/3 µ
2(y) =

0.81 and (3ν)2(0) =
∧

0=3y ν
2(y) =

∧
y=0/3 ν

2(y) = 0.16. Again, (3µ)2(u) =
∨

u=3y µ
2(y) =∨

y=u/3 µ
2(y) = 0.49 and (3ν)2(u) =

∧
u=3y ν

2(y) =
∧

y=u/3 ν
2(y) = 0.25. Therefore

3ψ = ψ.
In fact, we can check that, nψ = ψ for all n ∈ N.
Therefore, ψ is a Pythagorean fuzzy divisible subgroup of U .

Theorem 3.1. Let ψ ∈ ASU (ψ). Then ψ is a Pythagorean fuzzy divisible subgroup of U
if and only if U is a divisible group.

Proof. Suppose U is not a divisible group.
So, nU ̸= U for some n ∈ N. Assume for k ∈ N, kU ̸= U .
So, the domain of kψ is different from ψ. Thus kψ ̸= ψ.
Therefore the contrapositive statement is true. That is if U is a divisible group, ψ is a

Pythagorean fuzzy divisible subgroup of U .
Conversely, let ψ be a Pythagorean fuzzy divisible subgroup of U .
Then nψ = ψ ∀n ∈ N.
Therefore (nµ)2(t1) =

∨
t1=nt2

µ2(t2) = µ2(t1).
So,

∨
t1=nt2

µ(t2) = µ(t1).
Similarly, we have

∧
t1=nt2

ν(t2) = ν(t1).
Therefore ∀t1 ∈ U , there exists t2 ∈ U such that t1 = nt2.
Hence U is a divisible group. □

Example 3.3. Consider U = (Z4,+).
Assign a PFS ψ = (µ, ν) on U by µ(0̄) = 0.9, µ(1̄) = 0.7 = µ(3̄), µ(2̄) = 0.8, ν(0̄) = 0.1,

ν(1̄) = 0.4 = ν(3̄), and ν(2̄) = 0.3. Then ψ ∈ ASZ4(ψ).
Choose n = 8. Then 8ψ = (8µ, 8ν) is described by

(8µ)2(x) =

{ ∨
x=8y µ

2(y), when x ∈ 8U

0, elsewhere

and

(8ν)2(x) =

{ ∧
x=8y ν

2(y), when x ∈ 8U

1, elsewhere

where 8U = {0̄}. So, 8Z4 ̸= Z4.
Therefore Z4 is not a divisible group.
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Now, (8µ)2(0̄) =
∨

0̄=8y µ
2(y) =

∨
y=0̄/8 µ

2(y) = 0.81 and (8ν)2(0̄) =
∧

0̄=8y ν
2(y) =∧

y=0̄/8 ν
2(y) = 0.01. Again, (8µ)2(1̄) = (8µ)2(2̄) = (8µ)2(3̄) = 0 and (8ν)2(1̄) =

(8ν)2(2̄) = (8ν)2(3̄) = 1. Thus 8ψ ̸= ψ.
Therefore ψ is not a Pythagorean fuzzy divisible subgroup of Z4.

Definition 3.3. Let ψ ∈ AU (ψ). Then ψ∗ = {t1|t1 ∈ U, µ2(t1) > 0, ν2(t1) < 1} is called
the support of the PFS ψ.

Example 3.4. Consider U = (Z4,+).
Assign a PFS ψ = (µ, ν) on U by µ(0̄) = 0, µ(1̄) = 0.8, µ(2̄) = 1, µ(3̄) = 0.5, ν(0̄) = 1,

ν(1̄) = 0.4, ν(2̄) = 0, and ν(3̄) = 0.6.
Then µ2(0̄) = 0, µ2(1̄) = 0.64, µ2(2̄) = 1, µ(3̄) = 0.25, ν2(0̄) = 1, ν2(1̄) = 0.16,

ν2(2̄) = 0, and ν2(3̄) = 0.36.
Therefore the support of the PFS ψ is ψ∗ = {1̄, 2̄, 3̄}.

Proposition 3.1. Let ψ ∈ ASU (ψ). If ψ is a Pythagorean fuzzy divisible subgroup of U ,
the support ψ∗ of ψ forms a divisible group.

Proof. Here ψ is a Pythagorean fuzzy divisible subgroup of U .
So, nψ = ψ for all n ∈ N.
Therefore (nµ)2(t1) =

∨
t1=nt2

µ2(t2) = µ2(t1) and (nν)2(t1) =
∧

t1=nt2
ν2(t2) = ν2(t1).

The support of ψ is ψ∗ = {t1|t1 ∈ U, µ2(t1) > 0, ν2(t1) < 1}.
Suppose t1 ∈ ψ∗ and n ∈ N.
Then µ2(t1) =

∨
t1=nt2

µ2(t2) > 0 and ν2(t1) =
∧

t1=nt2
ν2(t2) < 1.

So, there exists a t2 ∈ U such that µ2(t2) > 0 and ν2(t2) < 1. Thus t2 ∈ ψ∗.
Therefore ∀t1 ∈ ψ∗ and ∀n ∈ N, there exists a t2 ∈ ψ∗ such that t1 = nt2.
Hence ψ∗ is a divisible group. □

Example 3.5. In Example 3.2, ψ∗ = Q is a divisible group.

Theorem 3.2. Let ψ ∈ ASU (ψ). If ψ is a Pythagorean fuzzy divisible subgroup of U , the
PFLSG ψ(θ,τ) is a divisible group.

Proof. Given ψ is a Pythagorean fuzzy divisible subgroup of U .
Then nψ = ψ for all n ∈ N.
Therefore (nµ)2(t1) =

∨
t1=nt2

µ2(t2) = µ2(t1) and (nν)2(t1) =
∧

t1=nt2
ν2(t2) = ν2(t1).

So, µ2(t1) =
∨

t1=nt2
µ2(t2) and ν

2(t1) =
∧

t1=nt2
ν2(t2).

We have PFLSG ψ(θ,τ) = {t1|t1 ∈ U, µ2(t1) ≥ θ, ν2(t1) ≤ τ}, where 0 ≤ θ2 + τ2 ≤ 1.

Suppose t1 ∈ ψ(θ,τ) and n ∈ N. Then µ2(t1) ≥ θ, ν2(t1) ≤ τ .

Thus µ2(t1) =
∨

t1=nt2
µ2(t2) ≥ θ and ν2(t1) =

∧
t1=nt2

ν2(t2) ≤ τ .

This shows that, there exists a t2 ∈ U such that µ2(t2) ≥ θ and ν2(t2) ≤ τ . So,
t2 ∈ ψ(θ,τ).

Therefore ∀t1 ∈ ψ(θ,τ) and ∀n ∈ N, there exists a t2 ∈ ψ(θ,τ) such that t1 = nt2.
Hence ψ(θ,τ) is a divisible group. □

Definition 3.4. Let ψ ∈ ASU (ψ). Then ψ is a Pythagorean fuzzy λ-divisible subgroup of
U if λψ = ψ for all prime λ.

Proposition 3.2. Every Pythagorean fuzzy divisible subgroup of an abelian group is also
a Pythagorean fuzzy λ-divisible subgroup of the proposed group.

Proof. Let ψ ∈ ASU (ψ) and ψ be a Pythagorean fuzzy divisible subgroup of U .
Then nψ = ψ, ∀n ∈ N.
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Every prime number is also a natural number.
Therefore λψ = ψ for all prime λ.
Hence ψ is a Pythagorean fuzzy λ-divisible subgroup of G. □

4. Equivalence relation on PFSGs

Here, we define an equivalence condition on PFSs. We explain some properties of this
equivalence relation on PFSGs.

Definition 4.1. Let X be a group and AX(ψ) be the set of all PFSs of X. Suppose ψ1 =
(µ1, ν1), ψ2 = (µ2, ν2) ∈ AX(ψ). Then ψ1 is equivalent to ψ2 if the following conditions
holds:

• µ21(x) ≥ µ21(y), ν
2
1(x) ≤ ν21(y) ⇐⇒ µ22(x) ≥ µ22(y), ν

2
2(x) ≤ ν22(y) for all x, y ∈ X.

• ψ∗
1 = ψ∗

2.

If ψ1 is equivalent to ψ2 then we denote it ψ1 ∼ ψ2 and [ψ1] = {ψ ∈ AX(ψ)|ψ1 ∼ ψ}.

Example 4.1. Consider the group (Z2,+2).
We assign two PFSs ψ1 = (µ1, ν1) and ψ2 = (µ2, ν2) on Z2 by µ1(0̄) = 1, µ1(1̄) = 0.5,

µ2(0̄) = 1, µ2(1̄) = 0.3, ν1(0̄) = 0, ν1(1̄) = 0.3, ν2(0̄) = 0 and ν2(1̄) = 0.8.
Here, µ1(0̄) > µ1(1̄) ⇔ µ2(0̄) > µ2(1̄) and ν1(0̄) < ν1(1̄) ⇔ ν2(0̄) < ν2(1̄).
Also, ψ∗

1 = Z2 = ψ∗
2.

Thus ψ1 ∼ ψ2 and [ψ1] = [ψ2].

Definition 4.2. Two PFSGs ψ1 and ψ2 of a group U , are distinct if and only if [ψ1] ̸= [ψ2].

Example 4.2. Let ψ3 = (µ3, ν3) be a PFS on Z2, in Example 4.1.
Assign µ3(0̄) = 1, µ3(1̄) = 0, ν3(0̄) = 0 and ν3(1̄) = 1.
Here, µ1(0̄) > µ1(1̄) ⇔ µ3(0̄) > µ3(1̄) and ν1(0̄) < ν1(1̄) ⇔ ν3(0̄) < ν3(1̄).
But, ψ∗

1 = Z2 ̸= {0̄} = ψ∗
3.

Therefore ψ1 and ψ3 are two distinct PFSGs of Z2.

Remark 4.1. The Second condition of the Definition 4.1, can’t be omitted.

Theorem 4.1. Let ψ1 = (µ1, ν1), ψ2 = (µ2, ν2) ∈ ASU (ψ). Suppose for every (θ1, τ1) with
0 ≤ θ21 + τ21 ≤ 1, there exists a (θ2, τ2) with 0 ≤ θ22 + τ22 ≤ 1 such that ψ1(θ1,τ1) = ψ2(θ2,τ2).
Then [ψ1] = [ψ2].

Proof. Suppose ψ∗
1 = ∅. Then clearly ψ∗

2 = ∅. So, ψ∗
1 = ψ∗

2.
Let ψ∗

1 ̸= ∅. Suppose x ∈ ψ∗
1. So, µ

2
1(x) > 0 and ν21(x) < 0.

Then x ∈ ψ1(θ1,τ1) for some (θ1, τ1).
Given that for every (θ1, τ1) there exists a (θ2, τ2) such that ψ1(θ1,τ1) = ψ2(θ2,τ2).
So, x ∈ ψ2(θ2,τ2).

This implies µ22(x) ≥ θ2 > 0 and ν22(x) ≤ τ2 < 0. Therefore x ∈ ψ∗
2.

Thus ψ∗
1 ⊂ ψ∗

2.
Similarly, we can show that ψ∗

2 ⊂ ψ∗
1. Therefore ψ

∗
1 = ψ∗

2.
Now, let θ1 = µ21(x) ≥ µ21(y) and τ1 = ν21(x) ≤ ν21(y).
So, x ∈ ψ1(θ1,τ1) and y /∈ ψ1(θ1,τ1).

Thus x ∈ ψ2(θ2,τ2). Therefore µ
2
2(x) ≥ θ2 and ν22(x) ≤ τ2.

If possible let, µ22(x) < µ22(y) and ν
2
2(x) > ν22(y).

Therefore θ2 ≤ µ22(x) < µ22(y) and ν
2
2(y) < ν22(x) ≤ τ2.

So, y ∈ ψ2(θ2,τ2) = ψ1(θ1,τ1), a contradiction.

Hence µ22(x) > µ22(y) and ν
2
2(x) < ν22(y).

Similarly, µ22(x) > µ22(y) and ν
2
2(x) < ν22(y) implies µ21(x) > µ21(y) and ν

2
1(x) < ν21(y).
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So, ψ1 ∼ ψ2. Hence [ψ1] = [ψ2]. □

Theorem 4.2. Suppose ψ1 = (µ1, ν1), ψ2 = (µ2, ν2) ∈ ASU (ψ) such that [ψ1] = [ψ2].
Then for all (θ1, τ1) with 0 ≤ θ21 + τ21 ≤ 1, there exists a (θ2, τ2) with 0 ≤ θ22 + τ22 ≤ 1 such
that ψ1(θ1,τ1) = ψ2(θ2,τ2).

Proof. We have ψ1(θ1,τ1) = {x|µ21(x) ≥ θ1, ν
2
1(x) ≤ τ1} and

ψ2(θ2,τ2) = {x|µ22(x) ≥ θ2, ν
2
2(x) ≤ τ2}.

Let α = ∨{µ21(x)|x ∈ U}, β = ∨{µ22(x)|x ∈ U}, λ = ∧{ν21(x)|x ∈ U} and
δ = ∧{ν22(x)|x ∈ U}.

For, θ1 = α, τ1 = λ; choose θ2 = β and τ2 = δ.
Then ψ1(θ1,τ1) = {e} = ψ2(θ2,τ2).

For, θ1 < α and τ1 > λ, consider θ = ∧{µ21(x)|x ∈ ψ1(θ1,τ1)} and τ = ∨{ν21(x)|x ∈
ψ1(θ1,τ1)}.

Then θ ≥ θ1 and τ ≤ τ1.
Let θ = µ21(a) and τ = ν21(a) for some a ∈ G.
Then choose θ2 = µ22(a) and τ2 = ν22(a).
Let x ∈ ψ1(θ1,τ1). So, µ

2
1(x) ≥ θ1 and ν21(x) ≤ τ1.

Therefore µ21(x) ≥ θ = µ21(a) and ν
2
1(x) ≤ τ = ν21(a).

This implies µ21(x) ≥ µ21(a) and ν
2
1(x) ≤ ν21(a).

As ψ1 ∼ ψ2, µ
2
2(x) ≥ µ22(a) and ν

2
2(x) ≤ ν22(a).

Thus µ22(x) ≥ θ2 and ν22(x) ≤ τ2.
So, x ∈ ψ2(θ2,τ2).
Therefore ψ1(θ1,τ1) ⊆ ψ2(θ2,τ2).
Similarly, we can show that ψ2(θ2,τ2) ⊆ ψ1(θ1,τ1).
Hence ψ1(θ1,τ1) = ψ2(θ2,τ2). □

5. Counting of PFSGs of abelian groups

Here, we introduce PFSGs related with their maximal chains. We investigate all possible
PFSGs of finite abelian groups.

Let U be a finite abelian group. If ψ = (µ, ν) is a PFSG of U , we assume that µ(e) = 1
and ν(e) = 0, where e is the group’s identity.

Definition 5.1. A maximal chain Zλn ⊃ Zλn−1 ⊃ Zλn−2 ⊃ · · · ⊃ Zλ ⊃ {0} defined a
PFSG ψ = (µ, ν) is as follows:

µ(a) =



sn, when a ∈ Zλn \ Zλn−1

sn−1, when a ∈ Zλn−1 \ Zλn−2

...
s1, when a ∈ Zλ \ {0}
1, when a ∈ {0}

and

ν(a) =



tn, when a ∈ Zλn \ Zλn−1

tn−1, when a ∈ Zλn−1 \ Zλn−2

...
t1, when a ∈ Zλ \ {0}
0, when a ∈ {0}

with the conditions 0 ≤ sn ≤ sn−1 ≤ · · · ≤ s1 ≤ 1 and 1 ≥ tn ≥ tn−1 ≥ · · · ≥ t1 ≥ 0, where
0 ≤ s2i + t2i ≤ 1 for i = 0, 1, . . . , n.

This PFSG ψ = (µ, ν) is denoted by ψ = (1s1s2 · · · sn, 0t1t2 · · · tn).
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Example 5.1. Consider the group Zλ, where λ is a prime. The maximal chain associated
with Zλ is Zλ ⊃ {0}.

A PFSG ψ = (µ, ν) defined by this maximal chain is

µ(u) =

{
s, when u ∈ Zλ \ {0}
1, when u ∈ {0}

and

ν(u) =

{
t, when u ∈ Zλ \ {0}
0, when u ∈ {0}

.
This PFSG ψ = (µ, ν) is denoted by ψ = (1s, 0t) with s, t ∈ (0, 1).

Proposition 5.1. Every group of prime order has exactly three distinct equivalence class
of PFSGs.

Proof. Any group of prime order λ is cyclic. So, it is isomorphic to Zλ.
The maximal chain for Zλ is {0} ⊂ Zλ. Then the PFSGs generated by this chain are

ψ = (µ, ν) where

µ(a) =

{
α, when a ∈ Zλ \ {0}
1, when a ∈ {0}

and

ν(a) =

{
β, when a ∈ Zλ \ {0}
0, when a ∈ {0}

with the conditions 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and 0 ≤ µ2(a) + ν2(a) ≤ 1.
Here α = 1 and β = 0 represents the PFSG ψ = (11, 00) which is actually Zλ.
Again α = 0 and β = 1 represents the PFSG ψ = (10, 01) which is trivial subgroup {0}

of Zλ.
Now, 0 < α < 1 and 0 < β < 1 represents the PFSG ψ = (1α, 0β).
Any non-trivial PFSGs of Zλ is equivalent to the PFSG ψ = (1α, 0β).
Hence there are exactly three distinct equivalence class of PFSGs of any group of prime

order. □

Proposition 5.2. Every cyclic group of order λ2 has exactly seven distinct class of PFSGs,
where λ is a prime.

Proof. Cyclic groups of order λ2 is isomorphic to Zλ2 , where λ is prime.
The maximal chain for Zλ2 is {0} ⊂ Zλ ⊂ Zλ2 .
Then the PFSGs generated by this chain are ψ = (µ, ν) where

µ(a) =

 δ, when a ∈ Zλ2 \ Zλ

α, when a ∈ Zλ \ {0}
1, when a ∈ {0}

and

ν(a) =

 σ, when a ∈ Zλ2 \ Zλ

β, when a ∈ Zλ \ {0}
0, when a ∈ {0}

with the conditions 0 ≤ δ ≤ α ≤ 1, 0 ≤ β ≤ σ ≤ 1 and 0 ≤ µ2(a) + ν2(a) ≤ 1.
By the given conditions, the distinct equivalence classes of PFSGs of Zλ2 are (111, 000),

(11α, 00β), (110, 001), (1αα, 0ββ), (1αδ, 0βσ), (1α0, 0β1) and (100, 011).
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Here (1αδ, 0βσ) represents the class of PFSGs

µ(a) =

 δ, when a ∈ Zλ2 \ Zλ

α, when a ∈ Zλ \ {0}
1, when a ∈ {0}

and

ν(a) =

 σ, when a ∈ Zλ2 \ Zλ

β, when a ∈ Zλ \ {0}
0, when a ∈ {0}

.
Any PFSGs of Zλ2 is belongs to one of the above equivalent classes.
Hence a cyclic group of order λ2 has exactly seven distinct class of PFSGs. □

Remark 5.1. We have observed in Proposition 5.2 that there are one more distinct PFSGs
with support Zλ2 than the PFSGs whose supports are contained in Zλ2.

The count of distinct PFSGs whose support is Zλ2 is four, whose support is Zλ is two
and whose support is {0} is one.

Proposition 5.3. Every group of order λ1 ·λ2 has exactly eleven distinct class of PFSGs,
where λ1, λ2 are distinct primes.

Proof. Every group of order λ1 · λ2 is isomorphic to Zλ1 × Zλ2 , where λ1, λ2 are distinct
primes.

The maximal chains of Zλ1×Zλ2 are {0} ⊂ Zλ1×{0} ⊂ Zλ1×Zλ2 and {0} ⊂ {0}×Zλ2 ⊂
Zλ1 × Zλ2 .

These two chains are equivalent to the maximal chain {0} ⊂ Zλ ⊂ Zλ2 in Proposition
5.2, where λ is prime.

So, each chain produce seven distinct class of PFSGs.
Among these PFSGs, three class of PFSGs are equivalent in two chain.
They are (111, 000), (1αα, 0ββ) and (100, 011).
So, the total number of distinct PFSGs of Zλ1 × Zλ2 is 2× 7− 3 = 11.
Hence every group of order λ1 · λ2 has exactly eleven distinct PFSGs. □

Proposition 5.4. A non-cyclic group of order λ2 has 4λ + 7 distinct class of PFSGs,
where λ is a prime.

Proof. Let U be a non-cyclic group of order λ2, where λ is prime.
Then U is isomorphic to Zλ × Zλ.
Since the order of U is λ2, the maximal chains of U are equivalent to the maximal chains

of Zλ2 .
According to the Proposition 2.1, there are (λ+ 1) maximal chains of Zλ × Zλ.
Therefore by Proposition 5.2, each maximal chain produce seven distinct class of PFSGs.
Among these seven class of PFSGs of each maximal chain three class of PFSGs are

equivalent.
Thus the total class of distinct PFSGs of Zλ × Zλ is 4(λ+ 1) + 3 = 4λ+ 7. □

Theorem 5.1. Every cyclic group of order λm has
∑m

t=0 2
t = 2m+1−1 distinct equivalence

classes of PFSGs, where λ is a prime and m ∈ N.

Proof. Every cyclic group of order λm is isomorphic to Zλm .
Proposition 5.1 and Proposition 5.2 shows that this is true for m = 1 and m = 2.
Assume that this is also true for m = d.
That is Zλd has 2d+1 − 1 =

∑d
t=0 2

d = 2.2d − 1 distinct equivalent class of PFSGs.

The count of distinct PFSGs of Zλd , whose support is Zλd is 2d.
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This PFSGs increases two PFSG of Zλd+1 whose support is Zλd+1 and one PFSG whose
support is Zλd .

Thus 2d PFSGs of Zλd increases 2.2d + 1.2d PFSGs of Zλd+1 .
The remaining (2d−1) PFSGs of Zλd have support, contained in Zλd and thus yeilds (2d−

1) PFSGs of Zλd+1 by attaching zero to membership grades and one to non-membership
grades.

Therefore the total distinct PFSGs of Zλd+1 is (2.2d+2d)+(2d−1) = 2d(2+1+1)−1 =

2(d+1)+1 − 1 =
∑d+1

t=0 2t.
Thus by principal of induction, this is true for all m ∈ N.
Hence Zλm has 2m+1 − 1 distinct class of PFSGs. □

6. Conclusion

The primary goal of this paper is to research on distinct PFSGs of a commutative
group by a proper equivalence condition. We have introduced the concept of Pythagorean
fuzzy divisible subgroups of a group. We have proved that a group is a divisible group
if and only if every PFSG of this group is a Pythagorean fuzzy divisible subgroup of it.
We have defined an equivalence relation on PFSs. We have explained some properties of
this equivalence relation on PFSGs. We have introduced Pythagorean fuzzy subgroups
related with their maximal chains. We have investigated the count of PFSGs of finite
commutative groups.
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