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NON-EXPLOSION AND PATHWISE UNIQUENESS OF STRONG

SOLUTIONS FOR JUMP-TYPE STOCHASTIC DIFFERENTIAL

EQUATIONS DRIVEN BY OPTIONAL SEMIMARTINGALES UNDER

NON-LIPSCHITZ CONDITIONS

M. HADDADI1∗, K. AKDIM2, §

Abstract. This paper is devoted to the question of the pathwise uniqueness and the
non-explosion property of strong solutions for a class of jump-type stochastic differen-
tial equations (JSDEs) with respect to optional semimartingales under non-Lipschitz
conditions. Optional semimartingales have right and left limits (làdlàg) but are not
necessarily continuous, therefore, defined on unusual probability spaces. Some models in
financial and insurance mathematics which can be described by the jump-type stochastic
differential equations (JSDEs) are presented.
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1. Introduction

Optional semimartingales have been introduced by Gal’čuk (see [14, 16, 17]), Lenglart
[22] and Mertens [23]. The first motivation of this paper is to bring attention to the theory
of semimartingales in a general framework where the semimartingales are optional. Such
processes have been studied in mathematical finance for portfolio optimization when the
transaction costs are not neglected, in particular the dual optimizer under transaction costs
is in general a làdlàg strong optional supermartingale (see Czichowsky and Schachermayer
[13]). Recently, this direction received a new impulse mostly by the works of Abdelghani
and Melnikov [5, 1, 2, 4], Abdelghani, Melnikov and Pak [7, 6]. Apparently, this direction
attracts substantial attention and many works have appeared during the last couple of
years, to mention a few [20, 9, 21, 8].
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The second motivation of this paper is to develop the theory of optional processes for
stochastic differential equations (SDEs), by studying the problem of existence and unique-
ness of SDEs driven by làdlàg optional semimartingales. Specially, the study of Jump-type
stochastic differential equations (JSDEs), as natural extensions of SDEs, for their potential
applications to mathematical finance and physics. On the financial applications, Shreve
[24] and Tankov [25] have listed several financial models that can be modeled using JS-
DEs. As for the applications in physics, Chudley and Elliott [11] applied JSDEs to describe
atomic diffusion, which typically involves jumps between vacant lattice sites. For more
applications see [19, 27]. In addition, the important viewpoints on risk assessment and
market dynamics are provided by mathematical models ([19, 9, 10]).

This work is a further extension of Gou et al. [19] for the optional framework. As in
[19], the first task of this paper is to provide a sufficient super linear growth condition
for ensuring the non-explosion of strong optional solutions for JSDEs. The second task
is to guarantee the existence and the uniqueness of strong solutions to JSDEs under non-
lipschitz condition.
As an example in this paper, we prove under some assumptions that the following JSDE:

X(t) =X0 −
∫ t

0
|X(s)| ln |X(s)|ds+

∫ t

0

√
|X(s)|dBs

+

∫ t

0

∫
|u|≤1

√
|X(s)|Ñd

1 (ds, du) +

∫ t

0

∫
|u|≤1

√
|X(s)|Ñg

1 (ds, du)

+

∫ t

0

∫
|u|>1

γ|u|X(s)Nd
2 (ds, du) +

∫ t

0

∫
|u|>1

β|u|X(s)Ng
2 (ds, du),

possesses a unique non-explosive strong solution.
The paper is organized as follows. The section 2 presents, in the first, some material
on stochastic processes on unusual probability spaces and their stochastic calculus is pre-
sented, covering important topics, such as, optional làdlàg martingales, optional increasing
and finite variation processes and optional ladlag semimartingales. Also, the definition of
stochastic integrals with respect to optional ladlag semimartingales and elements of the
stochastic calculus of optional processes are presented. In the second, some necessary
preliminaries about JSDEs including assumptions and lemmas. In section 3, we prove the
main results which are the non-explosion and the pathwise uniqueness of strong optional
solutions for JSDEs under super linear growth and non-Lipschitz conditions. In section
4, some models in financial and insurance mathematics which can be described by the
jump-type stochastic differential equations (JSDEs) are presented.

2. Preliminaries

2.1. Optional semimartingale process. Let us consider a complete probability space
(Ω,F ,F = (F)t, P ), because F contains all P null sets. The space (Ω,F ,F = (F)t, P )
is unusual probability space, because the family F is not assumed to be right or left
continuous.
We use the following notation:

• B(R) is the Borel σ–algebra on R.
• O(F) is the optional σ–algebras on (Ω,R+).
• P(F) is the predictable σ–algebras on (Ω,R+).
• Mloc is the set of the optional local martingale.
• Mr

loc is the set of the right continuous local martingale.

• Md
loc is the set of the discrete right continuous local martingale.
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• Mg
loc is the set of the left continuous local martingale.

• V is the set of the optional finite variation.
• S(F, P ) is the set of optional semimartingales.
• Sp(F, P ) the set of special optional semimartingales.

A random process X = (Xt), is said to be optional if it is O(F)–measurable. In general,
optional processes have right and left limits but are not necessarily continuous in F. For
an optional process we can define the following properties: X− = (Xt−)t≥0 and X+ =
(Xt+)t≥0, ∆X = (∆Xt)t≥0, ∆X = Xt −Xt− and ∆+X = (∆+Xt)t≥0, ∆

+X = Xt+ −Xt.
An Optional semimartingale X = (Xt) can be decomposed to an optional local martingale
and an optional finite variation

X = X0 +M +A

whereM ∈ Mloc, A ∈ V. A semimartingale X is called special if the above decomposition
exists with a predictable process A. If X ∈ Sp(F, P ) then the semimartingale decomposi-
tion is unique.
By optional martingale decomposition and decomposition of predictable processes (see [16]
and [18]), we can decompose a semimartingale further to

X = X0 +Xr +Xg,

with Xr = Ar +M r, Xg = Ag +Mg and M r = M c +Md where Ar and Ag are finite
variation processes right and left continuous, respectively. M r ∈ Mr

loc right continuous

local martingale, Md ∈ Md
loc discrete right continuous local martingale and Mg ∈ Mg

loc
a left continuous local martingale. This decomposition is useful for defining integration
with respect to optional semimartingales. A stochastic integral with respect to optional
semimartingale was defined by Gal’čuk [18],

φ ◦Xt =

∫ t

0
φsdXs =

∫ t

0+
φs−dX

r
s +

∫ t−

0
φsdX

g
s+, (1)

where ∫ t

0+
φs−dX

r
s =

∫ t

0+
φs−dM

r
s +

∫ t

0+
φs−dA

r
s

and ∫ t−

0
φsdX

g
s+ =

∫ t−

0
φsdM

g
s+ +

∫ t−

0
φsdA

g
s+.

The stochastic integral with respect to the finite variation processes or strongly pre-
dictable process Ar and Ag are interpreted as usual, in the Lebesgue sense. The inte-

gral
∫ t
0+ φs−dM

r
s is our usual stochastic integral with respect to RCLL local martingale

where
∫ t−
0 φsdM

g
s+ is Gal’čuk stochastic integral (see [16] and [18]) with respect to left

continuous local martingale. In general, the stochastic integral with respect to optional
semimartingale X can be defined as a bilinear form (φ, ϕ) ◦Xt such that

Yt = (φ, ϕ) ◦Xt = φ ·Xr
t + ϕ⊙Xg

t ,

φ ·Xr
t =

∫ t

0+
φs−dX

r
s , ϕ⊙Xg

t =

∫ t−

0
ϕsdX

g
s+,

where Y is again an optional semimartingale φ− ∈ P(F), and ϕ ∈ O(F). Note that, the
stochastic integral over optional semimartingale is defined on a much larger space of inte-
grands, the product space of predictable and optional processes, P(F)×O(F).
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Let us recall the change of variables formula for optional semimartingales which are not
necessarily càdlàg. The result can be seen as a generalization of the classical Itô formula.

Lemma 2.1 (Theorem 8.2. [16]). Let n ∈ N. Let X be n-dimensional optional semi-
martingale, i.e, X = (X1, . . . , Xn) is an n-dimensional optional process with decompo-
sition Xk = Xk

0 +Mk + Ak + Bk, for all k ∈ {1, . . . , n}, where Mk is a (càdlàg) local
martingale, Ak is a right–continuous process of finite variation such that A0 = 0, and
Bk is a left–continuous process of finite variation which is purely discontinuous and such
that B0 = 0. Let h(x) = h(x1, . . . , xn) is twice continuously differentiable function on Rn.
Then h(X) is a semimartingale, and for all t ∈ R+,

h(Xt) = h(X0) +

n∑
k=1

∫
]0,t]

Dkh(Xs−)d(A
k +Mk)s +

1

2

∑
1≤k,l≤n

∫
]0,t]

DkDlh(Xs−)d
〈
Mkc,M lc

〉
s

+
∑

0<s≤t

{
h(Xs)− h(Xs−)−

n∑
k=1

Dkh(Xs−)∆X
k
s

}
+

n∑
k=1

∫
[0,t[

Dkh(Xs)d(B
k)s+

+
∑

0≤s<t

{
h(Xs+)− h(Xs)−

n∑
k=1

Dkh(Xs)∆
+Xk

s

}
,

where Dk is the differentiation operator with respect to the k–th coordinate, the process Mkc

denotes the continuous part of Mk.

2.2. Jump-type stochastic differential equations driven by optional semimartin-
gales. Consider the Lusin space (E, E), where E = (R\{0})∪

{
δd1
}
∪
{
δd2
}
∪{δg1}∪{δg2}, δdi

and δgi , i = 1, 2 are Poisson point processes on U1 and U2, E = B(E) is the Borel σ–algebra
in E. Also, define the spaces

Ω̃ = Ω× R+ × E, Ẽ = R+ × E, Ẽ = B(R+)× E ,
Õ(F) = O(F)× E , P̃(F) = P(F)× E .

It was shown by Gal’čuk in [18] that there exist sequences (Sn)n≥1, (Tn)n≥1 and (Un)n≥1

of predictable stopping times, totally inaccessible stopping times and totally inaccessible
stopping times in the broad sense respectively, absorbing all jumps of the process X such
that the graphs of these stopping times do not intersect within each sequence. On Ω̃, let
Nd

i (ω, ., .) and N
g
i (ω, ., .), i = 1, 2 four Poisson random measures defined on the σ−algebra

B(R+)×B(E) that are associated with the sequences of stopping times that are associated
with X. On the σ−algebra B(R+)×B(E) we define the Poisson random measures by the
following relations,

Nd
1 (B × Γ) =

∑
n

1B×Γ(Tn, β
d
Tn
), Ng

1 (B × Γ) =
∑
n

1B×Γ(Un, β
g
Un

),

Nd
2 (B × Γ) =

∑
n

1B×Γ(Sn, β
d
Sn
), Ng

2 (B × Γ) =
∑
n

1B×Γ(Sn, β
g
Sn
),

where B ∈ B(R+) and Γ ∈ B(E), βdt = ∆Xt if ∆Xt ̸= 0 and βdt = δdi if ∆Xt = 0 for
i = 1, 2, βgt = ∆+Xt if ∆

+Xt ̸= 0 and βgt = δgi if ∆+Xt = 0 for i = 1, 2.

For the measures Nd
i (ds, dz) and Ng

i (ds, dz), for i = 1, 2, there exists unique random

measures νdi (du)ds and νg2 (du)ds, for i = 1, 2, respectively, which satisfy
∫
R\{0}(|x|

2 ∧
1)νji (dx) <∞, for i = 1, 2 and j = d, g, such that for any P(F)−function fi : R×Ui → R,
for i = 1, 2 and O(F)−function gi : R×Ui → R :

• The process
∫ t
0+

∫
Ui
fi(X(s−), u)νdi (du)ds and

∫ t−
0

∫
Ui
gi(X(s), z)νgi (dz)ds for i =

1, 2 is P(F)-measurable and O(F)-measurable respectively.
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• The following equalities

E

[∫ t

0

∫
Ui

fi(X(s−), u)Nd
i (ds, du)

]
= E

[∫ t

0

∫
Ui

fi(X(s−), u)νdi (du)ds

]
,

E

[∫ t

0

∫
Ui

gi(X(s), u)Ng
i (ds, du)

]
= E

[∫ T

0

∫
Ui

gi(X(s), u)νgi (du)ds

]
are valid.

In this paper, we consider the following JSDE:

X(t) = X0 +

∫ t

0
σ(X(s))dBs +

∫ t

0

∫
U1

f1(X(s−), u)Ñd
1 (ds, du)

+

∫ t

0

∫
U1

g1(X(s), u)Ñg
1 (ds, du) +

∫ t

0
b(X(s))ds

+

∫ t

0

∫
U2

f2(X(s−), u)Nd
2 (ds, du) +

∫ t

0

∫
U2

g2(X(s), u)Ng
2 (ds, du)

(2)

with E[|X0|2] <∞, where

Ñd
1 (dt, du) = Nd

1 (dt, du)− νd1 (du)dt

Ñg
1 (dt, du) = Ng

1 (dt, du)− νg1 (du)dt

are the compensated Poisson random measures of Nd
1 (dt, du) and N

g
1 (dt, du), respectively.

Definition 2.1. A process X(t) is said to be a optionl strong solution of (2) if it is Ft-
adapted almost surely for every t ≥ 0, where Ft = σ

(
{Bt}, {δd1(t)}, {δd2(t)}, {δ

g
1(t)}, {δ

g
2(t)}

)
is the augmented natural filtration generated by {Bt}, {δd1(t)}, {δd2(t)}, {δ

g
1(t)} and {δg2(t)}

which are independent of each other.

Lemma 2.2. Let U3 be a subsets of U2 respectively, satisfying ν
d
2 (U2\U3) <∞, νg2 (U2\U3) <

∞ and consider the following JSDE:

X(t) = X0 +

∫ t

0
σ(X(s))dBs +

∫ t

0

∫
U1

f1(X(s−), u)Ñd
1 (ds, du)

+

∫ t

0

∫
U1

g1(X(s), u)Ñg
1 (ds, du) +

∫ t

0
b(X(s))ds

+

∫ t

0

∫
U3

f2(X(s−), u)Nd
2 (ds, du) +

∫ t

0

∫
U3

g2(X(s), u)Ng
2 (ds, du).

(3)

Then (2) has an strong optional solution if (3) has an strong optional solution. Moreover,
the pathwise uniqueness of strong solutions holds for (2) if it holds for (3).

Proof. If νd1 (U1 \ U2) = 0 and νg1 (U1 \ U2) = 0, the lemma is trivially valid. Therfore we
suppose that 0 < νd1 (U1 \ U2) < ∞ and 0 < νg1 (U1 \ U2) < ∞. We assume that (3) has a
strong optional solution {x0(t)}. Let {Sk : k = 1, 2, · · · } be the set of jump times of the
Poisson process

t 7→
∫ t

0

∫
U2\U3

Nd
2 (ds, du) +

∫ t

0

∫
U2\U3

Ng
2 (ds, du).
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It’s clear that Sk → ∞ as k → ∞. For 0 ≤ t < S1 set y(t) = x0(t). Suppose that y(t) has
been defined for 0 ≤ t < Sk and let

X0 = y(Sk) +

∫
{Sk}

∫
U2

f1(y(Sk−), u)Nd
2 (ds, du) +

∫
{Sk}

∫
U2

g1(y(Sk), u)N
g
2 (ds, du). (4)

By the assumption there is also a strong solution {xk(t)} to

x(t) = X0 +
∫ t
0 σ(x(s))dB(Sk + s) +

∫ t
0

∫
U1
f1(x(s−), u)Ñd

1 (Sk + ds, du)

+
∫ t
0

∫
U1
g1(x(s), u)Ñ

g
1 (Sk + ds, du) +

∫ t
0 b(x(s))ds

+
∫ t
0

∫
U3
f2(x(s−), u)Nd

2 (Sk + ds, du) +
∫ t
0

∫
U3
g2(x(s), u)N

g
2 (Sk + ds, du).

(5)

For Sk ≤ t < Sk+1 we set y(t) = xk(t − Sk). By (3) and (5) it is not hard to show that
{y(t)} is a strong solution to (2). On the other hand, if {y(t)} is a solution to (2), it
satisfies (3) for 0 ≤ t < S1 and satisfies (5) for Sk ≤ t < Sk+1 with X0 given by (4). Then
the pathwise uniqueness for (2) follows from that for (3) and (5). □

As in [19], let us consider the following assumptions:

Assumption 2.1. Assume that there exists a continuous, non-decreasing and concave
function ρ : [0,∞) → [0,∞) such that ρ(x) > 0 for x > 0 satisfing∫

0+

ds

ρ(s)
= ∞. (6)

It is clear that the following functions satisfy (6):

ρ(x) = x(x > 0); ρ(x) = −x lnx(0 < x ≤ 1

e
);

ρ(x) = x ln(− lnx)(0 < x ≤ 1

e
); ρ(x) = 1− xx(0 < x ≤ 1

e
).

Assumption 2.2. Suppose that there exists a non-decreasing and continuously differen-
tiable function Υ : [0,∞) → [1,∞) satisfying

(i) lim
x→∞

Υ(x) = +∞;

(ii)

∫ ∞

0

ds

sΥ(s) + 1
= +∞;

(iii) 2xb(x) + |σ(x)|2 +
∫
U1

|f1(x−, u)|2νd1 (du) +
∫
U1

|g1(x, u)|2νg1 (du)

+2

∫
U3

|f2(x−, u)|2νd2 (du) + 2

∫
U3

|g2(x, u)|2νg2 (du) ≤ k[x2Υ(x2) + 1] for all x ∈ R,

where k ≥ 0 is a fixed constant.

It’s clear that the following functions satisfy Assumption 2.2:

Υ(x) = lnx (x ≥ e); Υ(x) = lnx ln(lnx) (x ≥ e2).

Assumption 2.3. Assume that there exists a constant δ0 > 0 such that, for any x, y ∈ R
with 0 < |x− y| ≤ δ0,

(i) max
{
(x− y)(b(x)− b(y)), |σ(x)− σ(y)|2

}
≤|x− y|2−αρ(|x− y|α);

(ii)
∫
U1

max{|f1(x, u)− f1(y, u)|α, |x− y|α−1 · |f1(x, u)− f1(y, u)|}νd1 (du) ≤ ρ(|x− y|α);
(iii)

∫
U3

max{|f2(x, u)− f2(y, u)|α, |x− y|α−1 · |f2(x, u)− f2(y, u)|}νd2 (du) ≤ ρ(|x− y|α).
(iv)

∫
U1

max{|g1(x, u)− g1(y, u)|α, |x− y|α−1 · |g1(x, u)− g1(y, u)|}νg1 (du) ≤ ρ(|x− y|α);
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(v)
∫
U3

max{|g2(x, u)− g2(y, u)|α, |x− y|α−1 · |g2(x, u)− g2(y, u)|}νg2 (du) ≤ ρ(|x− y|α).
Where 0 ≤ α < +∞ is a fixed constant and ρ is defined in Assumption 2.1.

In order to prove our results, we need the following lemmas.

Lemma 2.3. ([15]) Suppose that X(t) ∈ R is an optional process of the following form:

dX(t) = b(t, ω)dt+ σ(t, ω)dBt +

∫
R
ϕd(t, u, ω)N

d
(dt, du) +

∫
R
ϕg(t, u, ω)N

g
(dt, du),

where

N i(x) =

{
N i(dt, du)− νi(du)dt, if |u| < c;

N i(dt, du), if |u| ≥ c
for i = d, g (7)

for some c ∈ [0,+∞). Let f ∈ C2(R2) and define Y (t) = h(t,X(t)). Then Y (t) is again
an optional process and

dY (t) =
∂h

∂t
(t,X(t))dt+

∂h

∂x
(t,X(t)) [b(t, ω)dt+ σ(t, ω)dBt] +

1

2
σ2(t,X(t))

∂2h

∂x2
(t,X(t−))dt

+

∫
|u|<c

{
h
(
t,X(t−) + ϕd(t, u)

)
− h(t,X(t−))− ∂h

∂x
(t,X(t−))ϕd(t, u)

}
νd(du)dt

+

∫
|u|<c

{
h (t,X(t) + ϕg(t, u))− h(t,X(t))− ∂h

∂x
(t,X(t))ϕg(t, u)

}
νg(du)dt

+

∫
R

{
h(t,X(t−) + ϕd(t, u))− h(t,X(t−))

}
N

d
(dt, du)

+

∫
R

{
h(t,X(t) + ϕg(t, u))− h(t,X(t))

}
N

g
(dt, du).

In the next, for any f ∈ Cn(R), we will replace ∂n

∂nxf(x) by D
(n)f(x) for convenience.

Lemma 2.4. ([19]) Let u(t) and g(t) be non-negative continuous functions, and f(t) a
non-negative continuously differentiable and non-decreasing function for all t ≥ 0. Fur-
thermore, suppose that ρ : [0,+∞) → [0,+∞) is a non-negative and non-decreasing con-
tinuous function with

ρ(t) = 0 ⇐⇒ t = 0 and

∫
0+

ds

ρ(s)
= ∞.

Then the inequality

u(t)≤f(t) +
∫ t

0
g(s)ρ(u(s))ds

implies the inequality

u(t)≤Ω−1

[
Ω(f(t)) +

∫ t

0
g(s)ds

]
,

where

Ω(t) =

∫ t

0

ds

ρ(s)
, ∀t > 0.

Moreover, if f(t) = 0 and |g(t)| < +∞, then u(t) = 0.



M. HADDADI, K. AKDIM: NON-EXPLOSION AND PATHWISE UNIQUENESS OF STRONG. . . 1733

3. Main results

Theorem 3.1. Under Assumption 2.2, the solutions for JSDE (2) have no finite explosion
time.

Proof. Define the follwing function

ϕ(x) = exp

{∫ x

0

ds

sΥ(s) + 1

}
, x ≥ 0.

We have

ϕ′(x) = ϕ(x)
1

xΥ(x) + 1
≥ 0, ϕ′′(x) = ϕ(x)

1−Υ(x)− xΥ′(x)

(xΥ(x) + 1)2
≤ 0.

Then ϕ(x) is a concave function with ϕ(x) → ∞ as x→ ∞. Moreover,

D(1)ϕ(x2) = ϕ′(x2) · 2x, D(2)ϕ(x2) = 2ϕ′(x2) + ϕ′′(x2) · 4x2.
Since ϕ′′(x) ≤ 0, we know that

ϕ(y) ≤ ϕ(x) + (y − x)ϕ′(x), ∀x, y ∈ [0,∞).

Consequently,

ϕ
(
(X(s−) + f1 (X(s−), u))2

)
− ϕ(X2(s−))−D(1)ϕ

(
(X2(s−)

)
· f1(X(s−), u)

≤ ϕ′(X2(s−))
[
2X(s−)f1(X(s−)) + f21 (X(s−), u)

]
+

− ϕ′(X2(s−)).2X(s−)f1 (X(s−), u)

= ϕ′(X2(s−))f21 (X(s−), u).

Similarly, we get

ϕ
(
(X(s) + g1 (X(s), u))2

)
− ϕ(X2(s))−D(1)ϕ

(
(X2(s)

)
· g1(X(s), u)

≤ ϕ′(X2(s))g2(X(s), u).

Let X be a solution to (2) and τ its lifetime. If we define the stopping time τR as

τR := inf {t > 0 : |X(t)| ≥ R} ,
it is clear that τR tends to τ as R→ ∞.
From Lemma 2.3, we have

E
[
ϕ(X2(t ∧ τR))

]
= E[ϕ(|X0|2)]

+ E
[∫ t∧τR

0

D(1)ϕ(X2(s))b(X(s)) +
1

2
σ2(X(s))D(2)ϕ(X2(s))ds

]
+ E

[ ∫ t∧τR

0

∫
U1

ϕ(|X(s−) + f1(X(s−), u)|2)− ϕ(X2(s−))

−D(1)ϕ(|X2(s−)|)f1(X(s−), u)νd1 (du)ds

]
+ E

[∫ t∧τR

0

∫
U3

ϕ
(
(X(s−) + f2(X(s−), u))2

)
− ϕ((X2(s−))νd2 (du)ds

]
+ E

[ ∫ t∧τR

0

∫
U1

ϕ(|X(s) + g1(X(s), u)|2)− ϕ(X2(s))

−D(1)ϕ(|X2(s)|)g1(X(s), u)νg1 (du)ds

]
+ E

[∫ t∧τR

0

∫
U3

ϕ
(
(X(s) + g2(X(s), u))2

)
− ϕ((X2(s))νg2 (du)ds

]
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≤ E[ϕ(|X0)|2] + E
[∫ t∧τR

0

(
ϕ′(X2(s))

[
2X(s)b(X(s)) + σ2(X(s))

]
+

+2(X2(s))ϕ′′(X2(s))σ2(X(s)) +

∫
U1

ϕ′(X2(s−))|f1(X(s−), u)|2νd1 (du)

+

∫
U1

ϕ′(X2(s))|g1(X(s), u)|2νg1 (du)
)
ds

]
+ E

[∫ t∧τR

0

∫
U3

ϕ′(X2(s−))(2X(s−)f2(X(s−), u) + f22 (X(s−), u))νd2 (du)ds

]
+ E

[∫ t∧τR

0

∫
U3

ϕ′(X2(s))(2X(s−)g2(X(s−), u) + g22(X(s−), u))νg2 (du)ds

]
≤ E[ϕ(|X0)|2] + E

[∫ t∧τR

0

(
ϕ′(X2(s))

[
2X(s)b(X(s)) + σ2(X(s))

]
+2(X2(s))ϕ′′(X2(s))σ2(X(s)) +

∫
U1

ϕ′(X2(s−))|f1(X(s−), u)|2νd1 (du)

+

∫
U1

ϕ′(X2(s))|g1(X(s), u)|2νg1 (du)
)
ds

]
+ E

[∫ t∧τR

0

∫
U3

ϕ′(X2(s−))(2|f2(X(s−), u)|2 +X2(s−))νd2 (du)ds

]
+ E

[∫ t∧τR

0

∫
U3

ϕ′(X2(s))(2|g2(X(s), u)|2 +X2(s))νg2 (du)ds

]
≤ E[ϕ(|X0)|2] + E

[∫ t∧τR

0

(
ϕ′(X2(s))

[
2X(s)b(X(s)) + σ2(X(s))

]
+

∫
U1

ϕ′(X2(s−))|f1(X(s−), u)|2νd1 (du)

+

∫
U1

ϕ′(X2(s))|g1(X(s), u)|2νg1 (du)
)
ds

]
+ E

[∫ t∧τR

0

∫
U3

ϕ′(X2(s−))2|f2(X(s−), u)|2νd2 (du)ds
]

+ E
[∫ t∧τR

0

∫
U3

ϕ′(X2(s))2|g2(X(s), u)|2νg2 (du)ds
]

+ E
[∫ t∧τR

0

∫
U3

ϕ′(X2(s−))X2(s−)νd2 (du)ds

]
+ E

[∫ t∧τR

0

∫
U3

ϕ′(X2(s))X2(s)νg2 (du)ds

]
.

Since ϕ′′(x) ≤ 0,
∫
U i
3
1νi2(du) ≤

∫
U i
2
1νi2(du) ≤M for i = d, g, by Assumption 2.2, we have

E
[
ϕ(X2(t ∧ τR))

]
≤ϕ

(
E[|X0|2]

)
+ E

[∫ t∧τR

0

ϕ′(X2(s))(M + 1)k[X2(s)Υ(X2(s)) + 1]ds

]
=ϕ

(
E[|X0|2]

)
+ (M + 1)k

∫ t

0

E[ϕ(X2(s ∧ τR))]ds,

therefore by using Gronwall stochastic lemma ([2]), we get

E
[
ϕ(X2(t ∧ τR))

]
≤ ϕ

(
E[|X0|2]

)
ek(M+1)t.
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Letting R→ ∞ in above inequality, by Fatou lemma, we get

E
[
ϕ(X2(t ∧ τ))

]
≤ ϕ

(
E[|X0|2]

)
ek(M+1)t.

Letting |X(t ∧ τ)| → ∞, from (ii) of Assumption 2.2, we have t → ∞ as E[|X0|2] < ∞.
Therefore we have

P(τ <∞) = 0.

Consequently, the solutions do not explode in finite time. □

Theorem 3.2. Under Assumptions 2.2 and 2.3, the pathwise uniqueness of strong optional
solutions holds for JSDE (3).

Proof. From the assumptions imposed on ρ, we get a strictly decreasing sequence {an} ⊂ (0, 1]
such that

(i) a0 = 1;
(ii) lim

n→∞
an = 0;

(iii)
∫ an−1

an
1

ρ(r)dr = n for every n ≥ 1.

It’s clear that for each n ≥ 1, there exists a continuous function ρn on R such that

(i) ρn(r) has a supported set (an, an−1);
(ii) 0 ≤ ρn(r) ≤ 2

nρ(r) for every r > 0;

(iii)
∫ an−1

an
ρn(r)dr = 1.

We introduce the following sequence of functions:

ψn(r) =

∫ |r|

0

∫ v

0
ρn(u)dudv, r ∈ R, n ≥ 1.

It’s clear that ψn is even and twice continuously differentiable (except at r = 0) with the
following characteristics::

(i) |ψ′
n(r)| ≤ 1, r ̸= 0;

(ii) lim
n→∞

ψn(r) = |r|, r ̸= 0;

(iii) ψ′′
n(r) ≤ 2

nρ(r)I(an,an−1)(r), r ̸= 0.

Moreover, for each r > 0, the sequence {ψn(r)}n≥1 is non-decreasing. For each n ∈ N, ψn,
ψ′
n and ψ′′

n all vanish on the interval (−an, an). We get for 0 ̸= x ∈ R,

Dψn(|x|α) =
d

dx
ψn(|x|α) = ψ′

n(|x|α)αx|x|α−2

and
D2ψn(|x|α) = ψ′′

n(|x|α)α2|x|2α−2 + ψ′
n(|x|α)α(α− 1)|x|α−2.

Next we assume that X and X̃ are two solutions for (3) of the following forms:

X(t) = X0 +

∫ t

0

σ(X(s))dBs +

∫ t

0

∫
U1

f1(X(s−), u)Ñd
1 (ds, du) +

∫ t

0

∫
U1

g1(X(s), u)Ñg
1 (ds, du)+

+

∫ t

0

b(X(s))ds+

∫ t

0

∫
U3

f2(X(s−), u)Nd
2 (ds, du) +

∫ t

0

∫
U3

g2(X(s), u)Ng
2 (ds, du)

and

X̃(t) = X0 +

∫ t

0

σ(X̃(s))dBs +

∫ t

0

∫
U1

f1(X̃(s−), u)Ñd
1 (ds, du) +

∫ t

0

∫
U1

g1(X̃(s), u)Ñg
1 (ds, du)+

+

∫ t

0

b(X̃(s))ds+

∫ t

0

∫
U3

f2(X̃(s−), u)Nd
2 (ds, du) +

∫ t

0

∫
U3

f2(X̃(s), u)Ng
2 (ds, du)
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for all t ≥ 0, where x, x̃ ∈ R. ∆t := X̃(t)−X(t) for all t ≥ 0 .
Defined

Sδ0 = inf {t ≥ 0 : |∆t| ≥ δ0} = inf
{
t ≥ 0 : |X̃(t)−X(t)| ≥ δ0

}
.

For R > 0, let

τR := inf
{
t ≥ 0 : max

{
|X̃(t)| , |X(t)|

}
≥ R

}
.

Then, by Theorem 3.1, we have τR → ∞ a.s. as R→ ∞. Denote t′ = t ∧ τR ∧ Sδ0 and

∆fi = fi(X̃(s−), u)− fi(X(s−), u), i = 1, 2.

∆gi = gi(X̃(s), u)− gi(X(s), u), i = 1, 2.

From Lemma 2.3, we obtain

E [ψn(|∆t′ |α)] = E

[∫ t′

0

I{∆s ̸=0}

{
Dψn(|∆s|α)(b(X̃(s))− b(X(s)))+

+
1

2
D2ψn(|∆s|α)|σ(X̃(s))− σ(X(s))|2ds

}]
+ E

[∫ t′

0

∫
U1

{ψn(|∆s +∆f1 |α)− ψn(|∆s|α)− I{∆s ̸=0}Dψn(|∆s|α)∆f1}νd1 (du)ds

+

∫ t′

0

∫
U3

{ψn(|∆s +∆f2 |α)− ψn(|∆s|α)}νd2 (du)ds

]

+ E

[∫ t′

0

∫
U1

{ψn(|∆s +∆g1 |α)− ψn(|∆s|α)− I{∆s ̸=0}Dψn(|∆s|α)∆g1}ν
g
1 (du)ds

+

∫ t′

0

∫
U3

{ψn(|∆s +∆g2 |α)− ψn(|∆s|α)}νg2 (du)ds

]
= J1 + J2 + J3.

Since

|ψ′
n(r)| ≤ 1, ψ′′

n(r) ≤
2

nρ(r)
I(an,an−1)(r),

by Assumption 2.3, we get

J1 ≤ E

[∫ t′

0

I{∆s ̸=0}

{
|ψ′

n(|∆s|α)| · |α| · |∆s|α−2(X̃(s)−X(s))(b(X̃(s))− b(X(s)))

+
1

2

{
|ψ′′

n(|∆s|α)|α2|∆s|2α−2 + |α(α− 1)| · ψ′
n(|∆s|α)|∆s|α−2

}
|σ(X̃(s))− σ(X(s))|2ds

}]

≤ E

[∫ t′

0

I{∆s ̸=0}

[
|α| · |∆s|α−2|∆s|2−αρ(|∆s|α)

+
1

2

{
2

nρ(|∆s|α)
I(an,an−1)(|∆s|α)α2|∆s|2α−2 + |α(α− 1)| · |∆s|α−2

}
|∆s|2−αρ(|∆s|α)

]
ds

]

≤ E

[∫ t′

0

(
1

2
|α(α− 1)|+ |α|) · ρ(|∆s|α) +

α2|∆s|α

n
I(an,an−1)(|∆s|α)ds

]

≤
(
1

2
|α(α− 1)|+ |α|

)
E
[ ∫ t′

0

ρ(|∆s|α)ds
]
+
α2aαn−1

n
t′.

For J2, by Lagrange’s mean value theorem and the fact that |ψ′
n(r)| ≤ 1, we have the

following cases:
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Case I. For 0 < α ≤ 1, since (A + B)α≤Aα + Bα for all A,B ≥ 0, we know that there
exists some ξ1 ∈ [|∆s|α, (|∆s|+ |∆fi |)α] such that

ψn(|∆s +∆fi |
α)− ψn(|∆s|α) ≤ ψn(|∆s|α + |∆fi |

α)− ψn(|∆s|α)
≤ |ψ′

n(ξ1)| · ||∆s|α + |∆fi |
α − |∆s|α|

≤ |∆fi |
α.

Case II. For 1 < α < +∞, since (A+B)α−1 ≤ (2α−2+1)(Aα−1+Bα−1) for all A,B ≥ 0,
there exists some ξ2 ∈ [min{∆s,∆s +∆fi},max{∆s,∆s +∆fi}] such that

ψn(|∆s +∆fi |
α)− ψn(|∆s|α) ≤ α|ψ′

n(|ξ2|α)| · |ξ2|α−1 · |∆s +∆fi −∆s|
≤ α(|∆s|+ |∆fi |)

α−1|∆fi |
≤ α(2α−2 + 1)(|∆s|α−1|∆fi |+ |∆fi |

α),

where the second inequality follows from

0 ≤ |ξ2| ≤ max{|∆s|, |∆s +∆fi |} ≤ |∆s|+ |∆fi |.

Thus, from Assumption 2.2

J2 ≤ E

[∫ t′

0
2α(2α−2 + 1)ρ(|∆s|α) + αρ(|∆s|α) + 2α(2α−2 + 1)ρ(|∆s|α)

]
ds

≤ α(2α + 5)E

[∫ t′

0
ρ(|∆s|α)ds

]
.

Similarly for J3, we get

J3 ≤ α(2α + 5)E

[∫ t′

0
ρ(|∆s|α)ds

]
then

E [ψn(|∆t′ |α)] ≤ p(α)E

[∫ t′

0
ρ(|∆s|α)ds

]
+
α2aαn−1

n
t,

where

p(α) =
1

2
|α(α− 1)|+ |α|+ α(2α+1 + 10).

Since lim
n→∞

ψn(r) = |r|, letting n→ ∞ yields

E [|∆t′ |α] ≤ p(α)E
[ ∫ t′

0
ρ(|∆s|α)ds

]
≤ p(α)E

[ ∫ t∧τR

0
ρ
(
|∆s∧Sδ0

|α
)
ds

]
≤ p(α)

∫ t

0
ρ
(
E(|∆s∧Sδ0

∧τR |
α)
)
ds,

we get the last inequality from Jensen’s inequality. From using Theorem 3.1, Fatou’s
lemma and the monotone convergence theorem, we obtain

E[|∆t∧Sδ0
|α] ≤ lim

R→∞
E[|∆t′ |α] ≤ p(α)

∫ t

0
ρ
(
E(|∆s∧Sδ0

|α)
)
ds.

From Lemma 2.4, we get E[|∆t∧Sδ0
|α] → 0 and so ∆t∧Sδ0

= 0 a.s.



1738 TWMS J. APP. ENG. MATH. V.15, N.7, 2025

On the set {Sδ0 ≤ t}, we have |∆t′ | ≥ δ0. Observing that 0 = E[|∆t∧Sδ0
|α] ≥ δα0 P{Sδ0 ≤ t},

we have P{Sδ0 ≤ t} = 0 and hence ∆t = 0 a.s., which is the desired result. □

Theorem 3.3. Under Assumptions 2.2 and 2.3, JSDE (2) has a unique non-explosive
strong optional solution.

Proof. By using the result of Theorems 3.1, we get the existence of unique non-explosive
strong optional solution for (3). Then from Lemma 2.2, we obtain the existence of unique
non-explosive strong optional solution for (2). Indeed similar arguments can be found in
the proof of Theorem 2.8 of [27]. □

Example 3.1. As an application of Theorem 3.3, we will study one particular case:
As in [19], we consider the following JSDE:

X(t) =X0 −
∫ t

0

|X(s)| ln |X(s)|ds+
∫ t

0

√
|X(s)|dBs

+

∫ t

0

∫
|u|≤1

√
|X(s)|Ñd

1 (ds, du) +

∫ t

0

∫
|u|≤1

√
|X(s)|Ñg

1 (ds, du)

+

∫ t

0

∫
|u|>1

γ|u|X(s)Nd
2 (ds, du) +

∫ t

0

∫
|u|>1

β|u|X(s)Ng
2 (ds, du). (8)

Here γ and β are a positive constants, such that
∫
|u|≤1 |γu|

2νd(du) = 1 and∫
|u|≤1 |βu|

2νg(du) = 1. For any x > 0, the coefficient b(x) = −x lnx satisfies Assumptions

2.1 and 2.2, and for any x ≥ 0, the coefficient σ(x) =
√
x satisfies Assumption 2.2. Thus,

b(x) and σ(x) are both non-Lipschitzian due to

lim
x→0+

b′(x) = lim
x→0+

σ′(x) = +∞.

Furthermore,

|b(x)− b(y)| = |
∫ y
x 1 + ln t dt| ≤

∫ |x−y|
0 |1 + ln t| dt = b(|x− y|)

for all 0 < x, y < 1
e , and

(σ(x)− σ(y))2 ≤ |x− y|
for all x, y ≥ 0. Thus, the coefficients of (8) satisfy Assumptions 2.2. By Theorem (3.3),
we know that (8) has a unique non-explosive strong solution.

4. Examples of JSDEs in financial and insurance mathematics

In the first, we give an example of financial model which can be described by the jump-
type stochastic differential equations (JSDEs) with respect to optional semimartingales
(see [3]).
The constant elasticity of variance (CEV) model was proposed by Cox and Ross [12].
It is often used in mathematical finance to capture leverage effects and stochasticity of
volatility. It is also widely used by practitioners in the financial industry for modeling
equities and commodities. Consider a modified version of the CEV model where the stock
price is said to satisfy the following integral equation,

St = ρS.At + σSα.Mt, S0 = s,

At = t+

∫ t

0+

∫
|u|>1

uµd(ds, du) +

∫ t−

0

∫
|u|>1

uµg(ds, du),

Mt = Wt +

∫ t

0+

∫
|u|≤1

u(µd − νd)(ds, du) +

∫ t−

0

∫
|u|≤1

u(µg − νg)(ds, du),
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where ρ and σ are constants and the martingale M is a jump-diffusion process with left
and right jumps. Wt is the Wiener process, µd − νd is the measure of right jumps and
µg − νg is the measure of left jumps. For B ∈ B(R+) and Γ ∈ B(E) the jump measures
are defined as follows

µd(B × Γ) :=
{
(t,∆Ld

t ) ∈ B × Γ | t > 0 such that ∆Ld
t ̸= 0

}
,

µg(B × Γ) :=
{
(t,∆+Lg

t ) ∈ B × Γ | t > 0 such that ∆+Lg
t ̸= 0

}
,

where Ld
t and Lg

t are independent Poisson random measures with constant intensities γd

and γg respectively and compensators νd = γdt and νg = γgt.

In the second we give an example in mathematical risk theory which is the stochastic
model of risk in insurance (see [26]).
Let us consider a risk process whose flow can be summarized by the following equation

Rt = u+Bt +Nt +Dt + Lt,

where u > 0 is the initial capital and B0 = N0 = D0 = L0 = 0.
The process B is a continuous predictable process of finite variation characterizing a sta-
ble flow of income payments including premiums and other sources, N is a continuous
local martingale representing a random perturbation, D and L are right continuous and
left continuous jump processes, respectively. The process L may model some substantial
gains or losses in returns on investment. The process D includes a sum of negative jumps
representing accumulated claims. In addition, D may also consist of jumps formed by
non-anticipated sharp falls or rises in returns on investment.
The risk process can be described by the jump-type stochastic differential equations (JS-
DEs). Consider an optional semimartingale R which is the risk process with the local
characteristics (a, ⟨Xc⟩ , νr, νg) and the following representation:

Rt = u+ at +Xc +

∫
]0,t]

∫
|x|≤1

x(µd − νd)(ds, dx) +

∫
[0,t[

∫
|x|≤1

x(µg − νg)(ds, dx) +

+

∫
]0,t]

∫
|x|>1

xµd(ds, dx) +

∫
[0,t[

∫
|x|>1

xµg(ds, dx),

where

at = Bt +

∫
]0,t]

∫
|x|≤1

xνd(ds, dx) +

∫
[0,t[

∫
|x|≤1

xνg(ds, dx), ⟨Xc⟩t = ⟨N⟩t .
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