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CONNECTED CERTIFIED DOMINATION STABLE AND CRITICAL

GRAPHS UPON EDGE ADDITION

A. ILYASS 1,∗, N. MANI2, V. GOSWAMI1, §

Abstract. A set of vertices Dc in a connected graph Γ = (VΓ, EΓ) is called a certified
dominating set if |NΓ(u) ∩ (VΓ − Dc)| is either 0 or at least 2, ∀u ∈ Dc. The set Dc is
called as connected certified dominating set if |N(u) ∩ (VΓ −Dc)| is either 0 or at least
2, ∀u ∈ Dc and the subgraph Γ[Dc] induced by Dc is connected. The cardinality of
the smallest connected certified dominating set is called connected certified domination
number of the graph Γ denoted by γc

cer(Γ). In this article, we examine and characterize
those graphs that exhibit both connected certified domination stable and critical behavior
when an edge is added to them. Also we will discuss characterization of connected
certified domination stable trees.

Keywords: Connected certified dominating set, Connected certified domination edge
stable graphs, Connected certified domination edge critical graphs.
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1. Introduction

For general definitions and notations used in the article we refer the readers [1], [2] and
[3].

In the context of this article, when we refer to a graph Γ = (VΓ, EΓ), we are specifically
describing a connected, undirected, and unweighted simple graph. We will denote the set
of leaves, weak support and strong support vertices of a graph Γ by LΓ, S1(Γ) and S2(Γ),
respectively. Furthermore, pn(u,D) and epn(u,D) will be used to denote the D−private
neighborhood of u and D−external private neighborhood of u, where u ∈ D and D ⊆ VΓ.

Connected domination is an interesting domination parameter which is in the literature
for over more than four decades. Sampathkumar and Walikar first proposed the concept of
connected domination in 1979 in response to a suggestion from S.T. Hedetniemi [4]. A set
of nodes that dominates an isolate-free graph Γ and whose induced subgraph is connected
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is referred to as a connected dominating set (CDS). The cardinality of such a set is known
as the connected domination number of graph Γ and is denoted by γc(Γ). The theory of
connected domination is widely used in wireless sensor networks (WSNs), where a CDS is
considered as the virtual backbone (VB) of the WSN. This concept is essential in many
applications of sensor networks. The WSN is modeled by a graph Γ, and a VB is modeled
by a connected dominating set of Γ. To make the transmission easier and use less energy,
it is interesting to find a minor VB i.e., finding a smallest CDS.

Detlaff et al [5] introduced certified domination as a new parameter in graph domina-
tion theory in 2020, which has various applications in social networks. Since then, certified
domination has become a well-studied domination parameter, as evidenced by recent lit-
erature on the topic (e.g.,[6, 7, 8, 9, 10]). In a connected graph Γ = (VΓ, EΓ) a set D ⊆ VΓ

is called as certified dominating set if |N(u) ∩ (VΓ −D)| is either 0 or at least 2, ∀u ∈ D.
A set of vertices Dc ⊆ VΓ in a connected graph Γ = (VΓ, EΓ) is a connected certified
dominating set, abbrevaited CCDS, if:

(1) Every node in the graph Γ either belongs to Dc or is adjacent to at least one node
in the set Dc,

(2) For every node u ∈ Dc, |N(u) ∩ (VΓ −Dc)| is either 0 or at least 2, and
(3) The subgraph induced by Dc, i.e., Γ[Dc] is connected.

The cardinality of the smallest CCDS of Γ, is the connected certified domination number
of the graph Γ denoted by γccer(Γ) and is abbrevaited CCDN. In this paper, we continue
our study on connected certified domination which is introduced in [3, 11]. We shall
further attempt to evaluate the criticality and stability parameters of a graph considering
its importance in evaluating the CCDN.

In applications that utilize graphical parameters, it is crucial to comprehend how these
parameters react when a graph is modified. Graphs that experience changes in parameters
such as domination number or chromatic number due to the removal or addition of edges or
vertices have been extensively researched. Walikar and Acharya [12] studied graphs where
the domination number changes with the removal of one edge, while Dutton and Brigham
[13] investigated graphs where the domination number remains the same. These problems
have been used to study different types of domination, such as global domination, total
domination, connected domination, and certified domination. Chen, Sun, and Ma [14]
in 2004 initiated the study of γc−critical graphs, and Desormeaux, Haynes, and van der
Merwe [15] began the study of γc−stable graphs in 2015. In 2020, Detlaff et al. [5] explored
the impact of edge addition and deletion on the certified domination number of graphs.
The graph’s criticality and stability have been investigated by numerous researchers for
various other domination parameters such as [16, 17, 18], and the influence of edge deletion
on CCDN of graphs has been recently studied in [3]. This research focuses on examining
graphs where adding an edge e ∈ EΓ to graph Γ leads to a change in CCDN, as well as
graphs where the addition of an edge leaves the CCDN unchanged.

Definition 1.1. “Let D be a dominating set of a graph Γ. An element of D that has all
neighbors in D is said to be shadowed with respect to D (shadowed for short), an element of
D that has exactly one neighbor in VΓ(u)\D is said to be half-shadowed (HS) with respect
to D (half-shadowed for short), while an element of D having at least two neighbors in
VΓ(u)\D is said to be illuminated with respect to D (illuminated for short)”[5].

Definition 1.2. A graph Γ is said to be connected certified domination stable graph upon

edge addition denoted by [γccer]
e+− stable, if the addition of any edge e ∈ EΓ does not alter

its CCDN, that is, for any edge e ∈ EΓ, γ
c
cer(Γ + e) = γccer(Γ). If γccer(Γ) = k, and Γ is

[γccer]
e+−stable, we say that Γ is [kccer]

e+−stable.
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Definition 1.3. A graph Γ is connected certified domination critical graph upon edge

addition denote by [γccer]
e+−critical, if the addition of any edge e ∈ EΓ changes the CCDN

of Γ. We note that addition of an edge to a graph Γ cannot increase its CCDN. Hence if

Γ is [γccer]
e+− critical, then γccer(Γ + e) < γccer(Γ) for every edge e ∈ EΓ. If γccer(Γ) = k,

and Γ is [γccer]
e+− critical, we say that Γ is [kccer]

e+−critical.

Definition 1.4. “The C−private neighborhood of u is denoted by pn(u,C), and is defined
by pn(u,C) = NΓ[u]−NΓ[C−u]. Thus if w ∈ pn(u,C), then NΓ(w)∩C = {u}. We refer
to a vertex w ∈ pn(u,C) as a C− private neighborhood of u”[3].

Definition 1.5. “The C−external private neighbor of u ∈ C is a vertex v ∈ V − Γ \ C
which is adjacent to u but to no other vertex of C. The set of C−external private neighbor
of u is denoted by epn(u,C)”[3].

Proposition 1.1. Every vertex in S2(Γ) of graph Γ belongs to every γccer − set of Γ.

Proof. Let Dc be a γccer − set of Γ, let s1 ∈ S2(Γ) be a strong support vertex of Γ, and let
l1 ∈ LΓ is such that l1 ⊆ NΓ(s1). If s1 /∈ Dc, then l1 ∈ Dc. But then l1 would have only
one neighbor in VΓ \Dc, and Dc would not be a γccer−set. □

Observation 1.1. S1(Γ)+L1(Γ) ∈ γccer(Γ)−set, where L1(Γ) is the set of leaves adjacent
to weak supports.

2. [γccer]
e+−Stable Graphs

In this part of the paper we discuss characterization of [γccer]
e+−stable graphs and

[γccer]
e+−stable trees. We start this section with the following proposition.

Proposition 2.1. Let Γ be a connected graph of order n and C be a γccer(Γ)− set then:

(1) C has no half shadowed vertex.
(2) Every vertex in C is either a strong support, or a shadowed vertex, or an illumi-

nated vertex.
(3) If all the vertices of C are shadowed then C = VΓ.
(4) If u ∈ VΓ is a strong support vertex then |epn(u,C)| ≥ 2.
(5) If u ∈ VΓ is a shadowed vertex with respect to C then |epn(u,C)| = 0.
(6) If u ∈ VΓ is an illuminated vertex with respect to C then |epn(u,C)| ≥ 0.

Proof of this preposition follows directly from the definition of γccer(Γ)−set.

Lemma 2.1. Let C be a γccer(Γ)−set of a connected graph Γ of order n ≥ 3, then:

(1) In a γccer−set C, every shadowed vertex is either a weak support or a leaf, or of
same degree in Γ and Γ[C].

(2) Every non leaf neighbor of a shadowed weak support is either an illuminated or
weak support vertex.

Proof of this lemma directly follows from the proof of lemma 6.1 in [5].

Observation 2.1. Let Γ be a connected graph of order n and C be a γccer(Γ)−set. If all

the vertices of C are strong supports then the graph Γ is always [γccer]
e+−stable.

Next we present the characterization of [γccer]
e+−stable graph. We start with the fol-

lowing observation.

Observation 2.2. If C is the γccer−set of a graph Γ then |epn(u,C)| ≥ 0, ∀u ∈ C.



A. ILYASS et al.: CONNECTED CERTIFIED DOMINATION STABLE AND... 1745

Addition of an edge from the complement Γ can decrease the CCDN of the graph Γ
by as much as four. We then have the following theorem.

Theorem 2.1. Let Γ be a connected graph of order n. Then, for any edge e = uv ∈
EΓ, γccer(Γ)− 4 ≤ γccer(Γ + e) ≤ γccer(Γ).

Proof. Let Γ be a connected graph of order n, then it is clear that γccer(Γ + e) ≤ γccer(Γ)
where e = uv ∈ EΓ. Now we only show that γccer(Γ) − 4 ≤ γccer(Γ + e) for any edge say
xy = e ∈ EΓ, where x, y ∈ VΓ. Let C be the γccer(Γ + e)−set of Γ + e.

Case 1. If both x, y /∈ C, then C is also γccer− set of the modified graph Γ + e. Thus,
γccer(Γ + e) ≤ γccer(Γ).

Case 2. If y /∈ C and x ∈ C. Then x can be either a strong support, or shadowed, or an
illuminated vertex by proposition 2.1 (the case x /∈ C and y ∈ C is either a strong
support , or shadowed, or an illuminated vertex can be analyzed in a similar way).
Assume that y /∈ C and x ∈ C is a strong support vertex. Since C is γccer− set of Γ,
the vertex y will be adjacent to atleast one vertex in C −x, that is, y ∈ N(C −x).
Now addition of the edge e = xy in Γ, where x ∈ C is a strong support vertex and
y ∈ N(C − x), does not change the CCDN of the modified graph Γ + e, that is,
γccer(Γ+ e) = γccer(Γ). The case when x is an illuminated vertex with respect to C
can be analysed in a similar way. Afterwards, suppose that y /∈ C and x ∈ C is a
shadowed vertex with respect to C, i.e., |N(x) ∩ VΓ − C| = 0 and y ∈ N(C − x),
then the addition of edge e = xy in graph Γ does not change the CCDN of the
modified graph Γ + e implying that γccer(Γ + e) ≤ γccer(Γ).

Case 3. If x ∈ C and y ∈ C, then x and y are either shadowed or strong supports, or
illuminated with respect to C by proposition 2.1. We then have the following
subcases:

Subcase 1. If x and y are both shadowed vertices with respect to γccer(Γ)−set C, then
by lemma 2.1, x and y are either leaves, or weak support vertices, or have
same degree in Γ and Γ[C]. Now if both x and y are leaves then clearly
γccer(Γ + e) ≤ γccer(Γ). The case when both x and y are weak supports is
illustrated in figure 1 below. In situation (a) of figure 1, the CCDN of the

Figure 1. Illustration of the case when both x and y are weak support

modified graph Γ + e is reduced by 3, that is, γccer(Γ) − 3 = γccer(Γ + e). In
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situation (b), the CCDN of the modified graph Γ+ e is reduced by 4, that is,
γccer(Γ) − 4 = γccer(Γ + e) and in last situation (c) it remains the same, that
is, γccer(Γ) = γccer(Γ + e). Similary, assume that NΓ{x} = {x1, x2} such that
x1 ∈ LΓ and x2 is illuminated with respect to C, and NΓ{y} = {y1, y2} such
that y1 ∈ LΓ, y2 is shadowed, and y2 ∼ x2. Then the γccer−set of the modified
graph Γ + e as illustrated in situation (d) of figure 1 will be C − {x1, y1, y2}
implying that γccer(Γ)− 3 = γccer(Γ + e). Finally suppose that x is a leaf and
y is a weak support. Then we have the following possible situations as shown
in Figure 2 below. Clearly, the CCDN of the modified graph Γ + e remains

Figure 2. Illustration of the case when x is a weak support and y is a leaf.

the same in situation (i), (ii), and (iv) in Figure 2, and in situation (iii), it is
reduced by 2, that is γccer(Γ)− 2 = γccer(Γ + e).

Subcase 2. Suppose that x and y are strong support (illuminated) vertices in graph Γ. If
there exist a strong support (illuminated) vertex z ∈ C such that x ∼ z and
y ∼ z then clearly γccer(Γ + e) ≤ γccer(Γ). Now, assume that the vertex z ∈ C
is a shadowed vertex such that x ∼ z and y ∼ z then the addition of the edge
e = xy in graph Γ will reduce the CCDN of the modified gaph Γ + e by 1,
that is, γccer(Γ)− 1 ≤ γccer(Γ + e).

Subcase 3. Suppose x is shadowed and y is a strong support vertex, then clearly CCDN
of the modified graph Γ + e will not change if x is a weak support or x has
same degree in Γ and Γ[C]. Assume that x is a leaf, since x ∈ C, therefore
x will be the only leaf neigbor of a weak support vertex say u and if u ∼ y
then the size of the γccer(Γ + e)−set will be reduced by 2. Suppose that
u ≁ y, then u will be adjacent to either a shadowed vertex other then x or
strong support (illuminated) vertex. In this particular scenario, the following
possible situations are illustrated in Figure 3 below. In situation (i) of Figure
3, u ∼ v and v ∼ y, where v is shadowed, addition of the edge e = xy in
graph Γ does not change the CCDN of the modified graph Γ+ e. In situation
(ii), the vertex v is weak support (it can be strong support or illuminated),
and the addition of the edge e = xy reduces the CCDN of the modified graph
Γ + e by 3.
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Figure 3. Illustration of the case when x is a leaf and y is a strong support.

Hence, from the above three cases we conclude that γccer(Γ) − 4 ≤ γccer(Γ + e) ≤ γccer(Γ)
for any edge say e ∈ EΓ. □

As a consequence of theorem 2.1 we have the following result.

Corollary 2.1. If γccer(Γ+e) ≤ γccer(Γ) for any edge e = uv ∈ EΓ, then every γccer(Γ+e)−
set C contains at least one of u and v or both u and v.

Theorem 2.2. A connected graph Γ is [γccer]
e+−stable graph with 2 ≤ γccer(Γ) ≤ n − 2 if

and only if for any γccer−set C and a vertex u ∈ C, the following holds.

(1) If u is not a cut vertex in Γ[C], then |epn(u,C)| ≥ 2.
(2) If u ∈ C is such that degΓ[C](u) = degΓ(u) and Γ[C\u] has exactly two components

and then |epn(u,C)| = 0.

Proof. Let Γ be a [γccer]
e+−stable graph upon edge addition with 2 ≤ γccer(Γ) ≤ n− 2, and

let C be a γccer(Γ)−set and u ∈ C. Now, if u is not a cut vertex in Γ[C] then u will be an

end vertex in Γ[C]. Since Γ is [γccer]
e+−stable graph, then u is either an illuminated or a

strong support vertex, and by Proposition 2.2 |epn(u,C)| ≥ 2.
Suppose that u ∈ C is a cut vertex in Γ[C] such that u has exactly two components

and degΓ[C](u) = degΓ(u). If |epn(u,C)| ≥ 2, then u is either an illuminated or strong
support vertex and Γ[C] has more than two components, and also degΓ[C](u) ̸= degΓ(u),
a contradiction to our assumption. Therefore, |epn(u,C)| ≤ 2. Now, since u ∈ C is such
that degΓ[C](u) = degΓ(u) which means that u is shadowed with respect to C and by
Proposition 2.1, |epn(u,C)| = 0. Hence, |epn(u,C)| = 0 whenever Γ[C\u] has exactly two
components and degΓ[C](u) = degΓ(u).

Conversely, suppose that Γ is an isolated free graph that is not [γccer]
e+−stable. There-

fore there exists some edge uv = e ∈ EΓ such that γccer(Γ+e) < γccer(Γ). Let Γ
′
= Γ+uv and

D be any γccer(Γ
′
)−set. By Theorem 2.1, γccer(Γ

′
) ∈ {γccer(Γ)− 4, γccer(Γ)− 3, γccer(Γ)− 2, γccer(Γ)− 1}.

If D ∩ {u, v} = ϕ, then D is a γccer−set of Γ with cardinality less then γccer(Γ), a contra-
diction. Therefore, either u or v, or both, must belong to D. We then have the following
cases:

Case 1. Assume that D ∩ {u, v} = {u, v}. Clearly, D is certified dominating set

of Γ. If Γ
′
[D] − uv is connected then D is γccer−set with cardinality less than γccer(Γ) a

contradiction. Therefore, the edge uv is a bridge in Γ
′
[D], implying that Γ[D] has precisely

two components. DefineDu as the component of Γ[D] that contains vertex u, and letDv be

the component of Γ[D] that contains vertex v. Now, if γccer(Γ
′
) = γccer(Γ)−3 (or γccer(Γ)−4),

then there exists a vertex w ∈ D such that Γ[D\w] has at least two components, implying
that w has at least two D−external private neighbors, that is, |epn(w,D)| ≥ 2, negating

Condition 2; or γccer(Γ
′
) = γccer(Γ)− 2. If γccer(Γ

′
) = γccer(Γ)− 2, then there exists a vertex

x ∈ VΓ\D such that x ∈ N(Du) ∩N(Dv), then D ∪ x is a γccer(Γ)−set with cardinality at
most γccer(Γ)− 1 a contradiction.
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Case 2. Now, assume that D ∩ {u, v} = {u}. It is obvious that Γ[D] is connected,
and D dominates Γ − v. Let y ∈ VΓ\D be a neighbor of v in Γ. Since D is γccer−set,
y has neighbor in D. Assume that u is neighbor oy y in D and u ∈ S2(|gamma), then

C = D ∪ {v, y}will be a γccer−set for the graph Γ, implying that γccer(Γ) ≤ γccer(Γ
′
) + 2, so

γccer(Γ
′
) = γccer(Γ)− 2. But then C is a γccer(Γ)−set in which y is not a cut vertex of Γ[C]

and |epn(y, C)| = 0, a negation of Condition (1).
□

As a consequence of the above result we have the following corollary.

Corollary 2.2. In any isolate free graph Γ if every vertex in γccer(Γ)−set is illuminated

or strong support then Γ is [γccer]
e+−stable.

Proposition 2.2. Let Γ be a connected graph of order n. If Γ has a universal vertex then

the graph Γ is always [γccer]
e+−stable.

Proof. In isolate free graph Γ let v ∈ VΓ is such that degΓ(v) = n − 1 and let C be the
γccer(Γ)−set. Then γccer(Γ) = 1, since Γ has a universal vertex [11]. And we know that if

γccer(Γ) = 1 then Γ is always [γccer]
e+−stable. □

Proposition 2.3. (a) If Γ is a star graph S(1,n), then Γ is [γccer]
e+−stable ∀n ≥ 2.

(b) If Γ is a wheel graph Wn, then Γ is [γccer]
e+−stable ∀n.

(c) If Γ is a complete graph Kn, then Γ is [γccer]
e+−stable.

(d) If Γ is a fan graph F(p.q), then Γ is [γccer]
e+−stable for{

p = 1, q ≥ 2

p ≥ 1, q = 2, 3

(e) If Γ is a double star graph DS(m,n), then Γ is [γccer]
e+−stable ∀m ≥ 2.

(f) If Γ is complete bipartite graph K(m,n), then Γ is [γccer]
e+−stable for max(m,n) ≥ 3.

Proof. Proof of (a)− (d) are obvious by Proposition 2.2.

(e) Let Γ be a double star DS(m,n) and C be the γccer−set of Γ. Let u and v be the
non leaf vertices of the double star graph DS(m,n), then γccer−set C of DS(m,n)
is C = {u, v}. Therefore, it implies that, every vertex of γccer−set C is illuminated

and hence the double star graph DS(m,n) is [γccer]
e+−stable by corollary 2.2.

(f) Let Γ be a complete bipartite graph K(m,n) with max(m,n) ≥ 3 and C be the
γccer−set. We know that the connected certified domination of complete bipartite
graphs is 2 [11]. So, let C = {u, v} and since max(m,n) ≥ 3 implying that both the

vertices in C are illuminated and hence by corollary 2.2 graph Γ is [γccer]
e+−stable.

□

Afterward, we will provide a description of trees that are [γccer]
e+−stable, We will begin

by making the following observation.

Observation 2.3. If T is a tree with n vertices where n is greater than or equal to 3,
then the set of vertices that contains non-leaves and all the leaves that are adjacent to the
S1(T ) is the only γccer−set of T .

Theorem 2.3. A tree T of order n ≥ 3 is [γccer]
e+−stable if and only if γccer(T ) = 1 or T

has no weak support vertices.
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Proof. As stated above, any graph Γ with γccer(Γ) = 1 is [γccer]
e+−stable. Henceforward,

assume that γccer(T ) ≥ 2. Let T be a [γccer]
e+−stable tree, and assume, to the contrary

that there exists u ∈ T such that u ∈ S1(T ). Let C be a γccer(T )−set. Let l ∈ LT be the
only leaf adjacent to u and v ∈ VT be any non leaf vertex adjacent to u, since deg(u) ≥ 2
as u ∈ S1(T ). By Observation 1.1, {u, l} ∈ C. Let v ∈ C such that v ∼ u and e ∈ ET be

an edge in T such that e = vl. Then, the set C\ {v, l} is a γccer(T + vl)−set, which is a
contradiction.

For the necessary condition, suppose that γccer(T ) ≥ 2 and T has no weak support
vertices. Demonstrating the fulfillment of the two requirements specified in Theorem 2.2 is
sufficient. According to Observation 2.3, the set C ⊆ VΓ comprised of the non-leaf vertices
and adjacent leaves connected to weak support vertices of T is the only γccer(T )−set.
Therefore, based on our assumption, every vertex present in C has a minimum degree of
3.

Now suppose that u is not a cut vertex in T [C]. Since T [C] is a tree, which implies that
u is leaf of T [C]. Furthermore, since degT (u) ≥ 3, it follows that u has at least leaf two
neighbors in T , that implies |epn(u,C)| ≥ 2, satisfying the condition (2) of Theorem 2.2.

For the last condition, let u ∈ C is such that T [C\u] has exactly two components
and degT [C](u) = degT (u). Since u have equal degree in T and the induced sub graph
T [C], which implies there exist no vertex in VT \C which is adjacent to u implying that

|epn(u,C)| = 0. Hence we conclude that T is [γccer]
e+−stable. □

Above result is not satisfied in case of simple trees that is path graphs. For example,

path graph P6 contains weak support vertices but P6 is [γ
c
cer]

e+−critical as shown in Figure
1 below.

Figure 4. Path graph P6 is [γccer]
e+−critical as the CCDN of P6 is 6 and

γccer(P6 + xy) = 2, but P6 has weak support vertices x and y.

We conclude this section with the following observation.

Observation 2.4. Path graph Pn is [γccer]
e+−stable ∀n ̸= 4, 5, 6.

3. [γccer]
e+−Critical Graphs

For any isolate free graph Γ, γccer(Γ) ≥ 1. We have observed that for any graph Γ

if γccer(Γ) = 1 then Γ is always [γccer]
e+− stable. So we will consider graphs for which

γccer(Γ) ≥ 2. We start this section with the following Proposition.

Proposition 3.1. Let Γ be a connected graph of order n. If Γ has at least one vertex of

degree n− 2, then Γ is [γccer]
e+−critical.

Proof. Let be Γ an isolate free graph of order n and C be a γccer(Γ)−set. Assume that in
graph Γ there esist a vertex v ∈ VΓ such that degΓ(v) = n− 2 and let e = uv ∈ EΓ be the
added edge in Γ. Let w ∈ NΓ(v) such that w is adjacent to u, then by properties of γccer−set
it implies that C = {u, v, w}. Now in the modified graph Γ+uv, degΓ+uv(v) = n−1, since
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degΓ(v) = n − 2 which clearly implies that γccer(Γ) < γccer(Γ + uv) and hence graph Γ is

[γccer]
e+−critical. □

We have the following observations as a consequence of the above Proposition 3.1.

Observation 3.1. Cycle graph Cn is [γccer]
e+−critical graph for n = 4, 5, 6.

One can easily verify that C3 is [γccer]
e+−stable. For n ≥ 5̸= 6 the γccer(Cn)−set C = VCn

and degCn[C](u) = degCn(u) ∀u ∈ C which implies |epn(u, C| = 0 and by Theorem 7, Cn for

n ≥ 5̸= 6 is [γccer]
e+−stable. For n = 4, Cn is [γccer]

e+−critical by Proposition 3.1.

Observation 3.2. If Γ is a fan graph F(p,q), then Γ is [γccer]
e+−critical for{

p = 2, q ≥ 4

p ≥ 2, q = 4

For 2− [γccer]
e+−critical graph we have the following theorem.

Theorem 3.1. An isolate free graph Γ is 2− [γccer]
e+−critical if Γ =

j⋃
i=1

S1,ni for ni ≥ 1

and j ≥ 2.

Proof. Let Γ be an isolate free 2 − [γccer]
e+−critical graph and let e = vw ∈ EΓ be any

edge in Γ. Then γccer(Γ+ vw) = 1.Consequently, it implies, without loss of generality, that
{w} dominates Γ+ vw and so w is an isolate vertex of Γ− vw. Therefore, we have proved
that every edge of Γ is incident with an end vertex of Γ. Since Γ is an isolate free graph,

it follows that Γ =
j⋃

i=1
S1,ni for ni ≥ 1 and j ≥ 2. □

Next we will provide an upper bound on the diameter of k − [γccer]
e+−critical graphs.

Theorem 3.2. Let Γ be a k − [γccer]
e+−critical graph then dia(Γ) ≤ k.

Proof. Let Γ be a k − [γccer]
e+−critical graph. Assume that dia(Γ) = l ≥ k + 1. Let

u, v ∈ VΓ such that d(u, v) = l and let C be the γccer−set of the modified graph Γ + uv.

Then |C| ≤ k − 1, Since Γ is k − [γccer]
e+−critical and by Corollary 3.2 either u ∈ C or

v ∈ C. Without loss of generality assume that u ∈ C. Let Di = {w ∈ C|d(u,w) = i}
for 0 ≤ i ≤ l. Clearly Di ̸= ϕ. Further, D0 = {u} and v ∈ Dl. Let m be a largest

integer in which C ∩ Di ̸= ϕ for each 0 ≤ i ≤ m and Γ[
m⋃
i=0

(C ∩ Di)] is connected. Since

m + 1 ≤ |C| ≤ k − 1 and l ≥ k + 1 , it consequently implies that, m ≤ l − 3. Consider

Dm+2. Clearly no vertex of
m⋃
i=0

(C ∩Di) dominates Dm+2. Thus C ∩ (Dm+2 ∪Dm+3 ̸= ϕ.

It follows that, C ∩Dj ̸= ϕ for each m + 3 ≤ j ≤ l. Then v ∈ C, because C is connected.

Thus,|
l⋃

j=m+3
(C ∩Di)| ≥ l− (m+3)+1 = l−m−2 ≥ k+1−m−2 = k−m−1. Therefore,

|C| = |
m⋃
i=0

(C ∩Di) ∪ (
l⋃

j=m+3
(C ∩Di))| ≥ 1 +m+ (k −m− 1) = k, a contradiction to our

assumption. Hence dia(Γ) ≤ k if Γ is k − [γccer]
e+−critical graph. □
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4. Conclusions

In this article, we have studied the influence of edge addition on CCDN of any arbitrary
graph. We have proved that addition of an edge in a graph Γ from its complement Γ
can decrease the CCDN of the graph Γ by as much as four. We then have provided the

necessary and sufficient condition for a graph to be [γccer]
e+− stable and characterization

of [γccer]
e+− stable graphs. In addition to it, we have proved that a tree T of order n ≥ 3

is [γccer]
e+−stable if and only if γccer(T ) = 1 or T has no weak support vertices.

In the last section, we have discussed the characterization of [γccer]
e+− critical graphs.

We have proved that an isolate free graph Γ is 2−[γccer]
e+−critical if Γ =

j⋃
i=1

S1,ni for ni ≥ 1

and j ≥ 2. And in addition to it, we have provided an upper bound for k−[γccer]
e+−critical

graphs.
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