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STUDY OF GROWTH OF CERTAIN SECOND ORDER LINEAR

DIFFERENTIAL EQUATIONS
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Abstract. In this article, we study the solutions of second-order linear differential equa-
tions by considering various conditions on the coefficients of the homogeneous linear dif-
ferential equation and non-homogeneous linear differential equation.
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1. Introduction

Consider the homogeneous linear complex differential equation:

f ′′ +A(z)f ′ +B(z)f = 0, (1)

where A(z) and B(z) ̸≡ 0 are entire functions. All solutions of equation (1) are of finite
order if and only if the coefficients A(z) and B(z) are polynomials (see [23]). A natural
question arises: what happens when at least one of the coefficients is a transcendental
entire function? M. Frei [3] addressed this question, proving that, in such a case, all non-
trivial solutions of equation (1) are of infinite order.

The main aim of this work is to identify conditions on the entire coefficients A(z) and
B(z) under which all non-trivial solutions of equation (1) are of infinite order. Many
researchers have studied this problem previously. Gundersen [6] proved that if ρ(A) <
ρ(B), then all non-trivial solutions of equation (1) are of infinite order. It is clear that if
the coefficient A(z) is a polynomial and B(z) is a transcendental entire function, then all
non-trivial solutions are of infinite order. However, the case where ρ(A) ≥ ρ(B) remained
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unexplored until the work of Ozawa [19]. Following Ozawa’s paper, other researchers have
explored this case partially.

The following result is a collection of such findings.

Theorem A. All non-trivial solutions of equation (1) are of infinite order if the coeffi-
cients A(z) and B(z) satisfy any of the following conditions:

(a) [6] ρ(A) < ρ(B);
(b) [8] ρ(B) < ρ(A) ≤ 1

2 ;
(c) [6] A(z) is a transcendental entire function with ρ(A) = 0 and B(z) is a polynomial;
(d) [6] A(z) is a polynomial and B(z) is a transcendental entire function.

Example 1. (i) f ′′ − ezf ′ + (ez − 1)f = 0 has the solution f(z) = ez.
(ii) f ′′ + (sin2 z − 2 tan z)f ′ − tan zf = 0 has the solution f(z) = tan z.

It can be observed from the above examples that differential equations may have finite
order solutions when ρ(A) = ρ(B) or ρ(A) > ρ(B) and ρ(A) > 1/2. This raises the
question: under what conditions does equation (1) possess only non-trivial solutions of
infinite order? In the next section, we partially address this question.

The corresponding non-homogeneous second-order linear differential equation is:

f ′′ +A(z)f ′ +B(z)f = H(z), (2)

where A(z), B(z), and H(z) are entire functions. A non-homogeneous linear differential
equation can always be reduced to a homogeneous one, so the basic results are similar.
If all the coefficients and H(z) are entire functions, then all solutions of equation (2) are
also entire functions (see [21]). If all the coefficients are polynomials and H(z) ̸= 0 has
finite order of growth, then all solutions of equation (2) are of finite order (see [4, Lemma
2]). Therefore, if at least one coefficient is a transcendental entire function, then almost
all solutions are of infinite order. Let ρ be the minimal order of solutions of equation
(1); it is well-known that there may exist at most one solution of order less than ρ for
equation (2) (see [13]). Thus, even if all non-trivial solutions of equation (1) are of infinite
order, a finite order solution may exist for equation (2). This is illustrated by the following
examples.

Example 2. The equation

f ′′ + zf ′ + ezf = e−z(1− z) + 1

has a finite order solution, f(z) = e−z, whereas, using Theorem A(d), we can conclude
that the associated homogeneous equation has all non-trivial solutions of infinite order.

Example 3. Let b(z) be a finite order entire function with a multiply connected Fatou
component. Then, the equation

f ′′ − ezf ′ + b(z)f = 0

has all non-trivial solutions of infinite order (see [18, Theorem B]). However, the associated
non-homogeneous equation

f ′′ − ezf ′ + b(z)f = e−z(1 + b(z)) + 1

has a finite order solution, f(z) = e−z.
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2. Results

2.1. Second Order Homogenous Linear Differential Eqaution. G. Zhang [24] in-

vestigated the solutions of the equation (1), where A(z) = eP (z), with P (z) and B(z) are
polynomials of degrees m and n respectively.

Theorem B. [24] Consider the equation

f ′′ + eP (z)f(z) +Q(z) = 0,

where P (z) and Q(z) are polynomials of degrees n ≥ 2 and m( ̸= 0), respectively. All
non-trivial solutions are of infinite order if m+ 2 > 2n and n ∤ (m+ 2).

In our first main result, we replace eP (z) by h(z)eP (z) in Theorem B, where ρ(h) < n.

Theorem 1. Consider the equation

f ′′ + h(z)eP (z)f ′ +Q(z)f = 0, (3)

where P (z) and Q(z) are polynomials of degrees n ≥ 2 and m( ̸= 0), respectively. All
non-trivial solutions are of infinite order if m+ 2 > 2n and n ∤ (m+ 2).

Example 4. The equation

f ′′ + sin zez
2
f ′ + z3f = 0

satisfies the conditions of Theorem 1 and thus all non-trivial solutions are of infinite order.

Definition 1. [16] Consider a polynomial P (z) = anz
n+ . . .+a0, where an = α+ ιβ ̸= 0.

A ray arg z = θ is known as a critical ray of eP (z), if δ(P, θ) = 0, where

δ(P, θ) = ℜ(aneιnθ) = α cos(nθ)− β sin(nθ).

The concept of critical rays was first introduced by Long et al.[16]. According to their

findings, there are a total of 2n critical rays for the function eP (z). These critical rays
divide the entire complex plane into 2n sectors, each with an equal angular length of π

n .
Furthermore, these sectors exhibit a particular property. In n distinct sectors, δ(P, θ) ≥ 0,
and in the remaining n sectors, δ(P, θ) ≤ 0 (see [17]).

Lemma 1. [2] Let P (z) be a polynomial of degree n and h(z) an entire function of order

less than n. Consider A(z) = h(z)eP (z). There exists a set E ⊂ [0, 2π) of linear measure
zero such that for every ϵ > 0, the following hold:

(i) For θ ∈ [0, 2π) \ E with δ(P, θ) > 0, there exists R > 1 such that

exp((1− ϵ)δ(P, θ)rn) ≤ |A(reιθ)|,
for r > R, and

(ii) For θ ∈ [0, 2π) \ E with δ(P, θ) < 0, there exists R > 1 such that

|A(reιθ)| ≤ exp((1− ϵ)δ(P, θ)rn),

for r > R.

The following Lemma is given by Langley [15].

Lemma 2. [15] Assume S is the strip

z = x+ ιy, x ≥ x0, |y| ≤ 4.

Assume that in S,

Q(z) = anz
n +O(|z|n−2),
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where n is a natural number and an > 0. Then, there exists a path Γ tending to ∞ in S
such that all the solutions of

w′′ +Q(z)w = 0

tend to zero on Γ.

The following Lemma gives the logarithmic estimate of a meromorphic function outside
an R-set. It is Proposition 5.12 from [14].

Lemma 3. [14] Assume f is a meromorphic function of finite order. Then, there exists
N = N(f) > 0 such that ∣∣∣∣f ′(z)

f(z)

∣∣∣∣ = O(rN ),

holds outside an R-set.

The growth estimate in the following Lemma is deduced in [2] from Herold’s Comparison
Theorem [9].

Lemma 4. [15] Suppose A(z) is analytic in a sector containing the ray Γ : reιθ and that
as r → ∞, A(reιθ) = O(rn) for some n ≥ 0. Then, all solutions of

w′′ +A(z)w = 0

satisfy

log+ |w(reιθ)| = O(r
n+2
2 )

on Γ.

Remark 1. Let f(reιθ1) → a and f(reιθ2) → b as r → ∞, and assume f(z) is analytic
and bounded between the angles θ1 and θ2. Then, a = b, and f(z) → a uniformly in the
angle. The straight lines z = reιθ1 and z = reιθ2 may be replaced by curves approaching
∞.

Remark 2. In Theorem 1, if m = 1 or 2, the possible values of n are 0 and 1 satisfying
m+ 2 = 2n. However, since n ≥ 2, the result is proven for m > 2.

Proof of Theorem 1. Let us suppose that the equation (3) has a solution f of finite order
and assume

f = w exp

{
−1

2

∫ z

0
h(z)eP (z)dz

}
. (4)

Substituting (4), the equation (3) is transformed into

w′′ +

(
Q(z)− 1

4
(heP (z))2 − 1

2
h′(z)eP (z) − 1

2
h(z)P ′(z)eP (z)

)
w = 0. (5)

By a translation, we can assume that

Q(z) = amzm + am−2z
m−2 + · · · , m > 2.

We define the critical ray for the polynomial Q(z) as the ray reιθ, for which

θj =
− arg am + 2jπ

m+ 2
, (6)

where j = 0, 1, 2, . . . ,m + 1. Substituting z = xeιθj , where θj , j = 0, 1, . . . , n + 1 is a
critical ray of the polynomial Q(z), transforms equation (5) into

d2w

dx2
+ (Q1(x) + P1(x))w = 0, (7)
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where

Q1(x) = α1x
m +O(xm−2), α1 > 0

and

P1(x) = −1

4
(heP (xeιθj ))2 − 1

2
h′(xeιθj )eP (xeιθj ) − 1

2
h(xeιθj )P ′(xeιθj )eP (xeιθj ).

We denote the sectors as follows:

S+ = {reιθ : 0 < r < +∞,
2iπ

n
< θ <

(2i+ 1)π

n
},

S− = {reιθ : 0 < r < +∞,
(2i+ 1)π

n
< θ <

2(i+ 1)π

n
},

where i = 0, 1, . . . , n − 1, and where δ(P, θ) > 0 on S+ and δ(P, θ) < 0 on S−. By using
Lemma 1, we obtain

|P1(x)| ≤|(h(xeιθj )eP (xeιθj ))2|+ |h′(xeιθj )eP (xeιθj )|+ |h(xeιθj )eP (xeιθj )P ′(xeιθj )|

≤ exp{δ(P, θ)xn}+ exp{1
2
δ(P, θ)xn}+ exp{1

2
δ(P, θ)xn}O(xn−1) → 0 (8)

for xeιθj ∈ S− as x → ∞. Using (7), (8), and Lemma 2 for any critical line arg z = θj ∈ S−,
there exists a path Γθj tending to ∞ such that arg z → θj on Γθj and

y(z) → 0. (9)

Moreover, we have

| exp{−1

2

∫ z

0
h(z)eP (z)dz}| ≤ exp

{
1

2

∣∣∣∣∫ z

0
h(z)eP (z)dz

∣∣∣∣}
≤ exp

{
1

2
r exp{δ(P, θ)rn}

}
→ 1 (10)

for z ∈ S− as r → ∞. Using (4), (9), and (10), we have f(z) → 0 along Γθj tending to ∞.

Substituting V = f ′

f , equation (3) transforms into

V ′ + V 2 + h(z)eP (z)V +Q(z) = 0.

By Lemma 3, we have

|V ′|+ |V |2 = O(|z|N )

outside an R-set U , where N > 0 is a positive integer. If z = reιϕ ∈ S+ is a ray such that
arg z = ϕ meets only finitely many discs of U , we observe that V = o(|z|−2) as |z| → ∞.
Thus, f tends to a finite nonzero limit.

Applying this reasoning to a set of ϕ outside a set of measure zero, we deduce, by
the Phragmén-Lindelöf principle, that without loss of generality, for any sufficiently small
positive ϵ,

f(reιθ) → 1, (11)

as r → ∞ such that

z = reιθ ∈ S+
ϵ = {z = reιθ : 0 < r < ∞,

2iπ

n
+ ϵ < θ <

(2i+ 1)π

n
− ϵ}.
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By Lemma 1, for any z = reιθ ∈ S−, we have

|Q(z)− 1

4
(heP (z))2 − 1

2
h′(z)eP (z) − 1

2
h(z)P ′(z)eP (z)| ≤ |Q(z)|+ |(heP (z))2|

+ |h′(z)eP (z)|+ |h(z)P ′(z)eP (z)|
≤ O(rm) + exp{δ(P, θ)rn}

+ exp{1
2
δ(P, θ)rn}

+ exp{1
2
δ(P, θ)rn}O(rn−1)

≤ O(rm) (12)

for sufficiently large r. Using Lemma 4 along with equations (5) and (12), we have

log+ |w(reιθ)| = O(r
m+2

2 )

as r → ∞ for any z = reιθ ∈ S−. By equations (5) and (10), we have

log+ |f(reιθ)| = O(r
m+2

2 ) (13)

as r → ∞ for any z = reιθ ∈ S−.
Consider the ray arg z = θk such that θ(P, θk) = 0. On the ray arg z = θk, we have

|eP (z)| = |ePn−1(z)|. Now, there arise three cases: either δ(Pn−1, θk) > 0 or δ(Pn−1, θk) < 0
or δ(Pn−1, θk) = 0. For the cases δ(Pn−1, θk) > 0 or δ(Pn−1, θk) < 0, by the same method

as above, we get f(z) → 1 or log+ |f(z)| = O(r
m+2

2 ), respectively, on the ray arg z = θk. If
δ(Pn−1, θk) = 0, repeating the same steps as above, we finally deduce that either f(z) → 1

or log+ |f(z)| = O(r
m+2

2 ) on the rays arg z = θk, where k = 0, 1, . . . , 2n− 1.
By equations (4), (11), (13), and the Phragmén-Lindelöf principle, we have

ρ(f) ≤ m+ 2

2
. (14)

We assert that (2i+1)π
n , where i = 0, . . . , n− 1, are critical rays for the function Q(z). If

this is not the case, it implies the existence of a critical angle θj for Q(z) within the range:

(2i+ 1)π

n
< θj <

2(i+ 1)π

n
+

2π

m+ 2
(i = 0, 1, . . . , n− 1),

because m+2 > 2n. Consequently, this implies the existence of an unbounded domain of
angular measure of at most 2π

m+2 + ϵ, bounded by a path on which f(z) → 0 and a ray on

which f(z) → 1. By Remark 1, this implies ρ(f) > m+2
2 . However, this contradicts the

inequality (14).
Thus, there exists a positive integer k satisfying 2π

n = k 2π
m+2 , that is, m+2 = kn, which

contradicts n ∤ m+ 2. Hence, we have completed the proof. □

Theorem 2 is inspired by Theorem C as presented by Kumar and Saini [12]. They con-
sidered the case where A(z) has Fabry gaps and ρ(B) < ρ(A). We changed the conditions
on A(z) to allow for a multiply connected Fatou component.

Theorem C. [12] Let A(z) and B(z) be entire functions such that ρ(B) < ρ(A) and A(z)
has Fabry gaps. Then, ρ(f) = ∞ and ρ2(f) = ρ(A), where f is a non-trivial solution of
equation (1).
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Theorem 2. Let A(z) be a transcendental entire function with a multiply connected Fatou
component, and let B(z) be an entire function satisfying ρ(B) < ρ(A). Then, every non-
trivial solution of equation (1) is of infinite order. Moreover,

ρ2(f) = ρ(A).

Example 5. Consider the equation

f ′′ + Cz2
∞∏
n=1

(
1 +

z

an

)
f ′ + p(z)f = 0,

where p(z) is a non-constant polynomial. Here, we have considered

A(z) = Cz2
∞∏
n=1

(
1 +

z

an

)
,

where an satisfies 1 < a1 < a2 < . . . and grows so rapidly that an+1 < A(an) < 2an+1.
This was constructed by Baker [1], and it has a multiply connected Fatou component. As
it satisfies the conditions of Theorem 2, we deduce that all non-trivial solutions are of
infinite order.

We show in Example 6 that the conditions of Theorem 2 are necessary. If we skip the
conditions, we can obtain a solution of finite order.

Example 6. Consider the equation

f ′′ + Cz2
∞∏
n=1

(
1 +

z

an

)
f ′ − Cz

∞∏
n=1

(
1 +

z

an

)
f = 0.

Here, A(z) satisfies the conditions described in Example 5 and thus has a multiply con-
nected Fatou component. However, it does not satisfy the conditions of Theorem 2, as
ρ(A) = ρ(B), and has a solution f(z) = z of finite order of growth.

Lemma 5 is given by Gundersen [5]. He generalized the estimates of logarithmic deriva-
tives of transcendental meromorphic functions of finite order.

Lemma 5. [5] Suppose f is a transcendental meromorphic function with finite order, and
let Γ = {(ki, ji); i = 1, 2, . . . ,m} be a finite set of distinct integers satisfying ki > ji ≥ 0.
Consider a given constant ϵ > 0. The following statements hold:

(a) There exists a set E1 ⊂ [0, 2π] with linear measure zero such that for θ ∈ [0, 2π) \E1,
there exists R(θ) > 0 satisfying the inequality:∣∣∣∣∣f (k)(z)

f (j)(z)

∣∣∣∣∣ ≤ |z|(k−j)(ρ(f)−1+ϵ),

for all (k, j) ∈ Γ, |z| > R(θ), and arg z = θ.
(b) There exists a set E2 ⊂ (1,∞) with finite logarithmic measure such that for all |z| /∈

E2 ∪ [0, 1], the inequality in statement (a) holds for all (k, j) ∈ Γ and |z| ≥ R(θ).
(c) There exists a set E3 ⊂ [0,∞) with finite linear measure such that for all |z| /∈ E3, the

inequality ∣∣∣∣∣f (k)(z)

f (j)(z)

∣∣∣∣∣ ≤ |z|(k−j)(ρ(f)+ϵ),

holds for all (k, j) ∈ Γ.
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These statements provide conditions on the behavior of the function f with respect to
its derivatives and growth in different regions of the complex plane. The sets E1, E2, and
E3 account for exceptional cases or specific regions where the given inequalities may not
hold.

Recently, Pant and Saini [20] proved the following result for an entire function.

Lemma 6. [20] Suppose f is a transcendental entire function. Then, there exists a set
F ⊂ (0,∞) with finite logarithmic measure such that for all z satisfying |z| = r ∈ F and
|f(z)| = M(r, f), we have ∣∣∣∣ f(z)

f (m)(z)

∣∣∣∣ ≤ 2rm,

for all m ∈ N.

Lemma 7. [25] Let f be a transcendental meromorphic function with at most finitely many
poles, and assume that the Julia set J(f) of f consists only of bounded components. Then,
for any complex number, there exist a constant 0 < β < 1 and two sequences of positive
numbers {rn} and {Rn} such that rn → ∞ and Rn/rn → ∞ as n → ∞. Furthermore, for
all r ∈ H =

⋃∞
n=1{r : rn < r < Rn}, the following inequality holds:

M(r, f)β ≤ L(r, f) for r ∈ H,

where M(r, f) denotes the maximum modulus of f on the circle |z| = r, and L(r, f) denotes
the minimum modulus of f on the circle |z| = r.

Lemma 8 is presented in [5], and Lemma 5 follows as a corollary of Lemma 8 as demon-
strated in the same paper by [5].

Lemma 8. [5] Let f(z) be a transcendental meromorphic function, and let Γ = {(ki, ji); i =
1, 2, . . . ,m} represent a finite set of distinct pairs of integers such that ki > ji ≥ 0 for
i = 1, 2, . . . ,m. Suppose α > 1 and ϵ > 0 are given real constants. Then, there exists a
set E ⊂ (1,∞) with finite logarithmic measure, ml(E), and there exists a constant c > 0
depending only on α and Γ, such that the following inequality holds:∣∣∣∣∣f (k)(z)

f (j)(z)

∣∣∣∣∣ ≤ c

(
T (αr, f)

r
logα r log T (αr, f)

)k−j

for all z where |z| = r, with r /∈ E ∪ [0, 1], and for all (k, j) ∈ Γ.

Lemma 9. [12] Assume that A(z) and B(z) are entire functions of finite order. Then,
the order of any solution f of equation (1) satisfies the inequality

ρ2(f) ≤ max{ρ(A), ρ(B)}.

In this paper, we utilize Lemma 8 and Lemma 9 to prove the second part of Theorem
2, specifically that ρ2(f) = ρ(A).

Proof of Theorem 2. Suppose f is a finite order non-trivial solution of equation (1).
Applying Lemma 5, there is a set E ⊂ (1,∞) with finite logarithmic measure such that∣∣∣∣∣f

′′
(z)

f ′(z)

∣∣∣∣∣ ≤ |z|2ρ(f), (15)

holds for all z satisfying |z| /∈ E ∪ [0, 1].



1788 TWMS J. APP. ENG. MATH. V.15, N.7, 2025

Suppose that zr = reιθr be the points such that |f(zr)| = M(r, f). Then, applying
Lemma 6, there exists a set G ⊂ (0,∞) with ml(G) < ∞ such that

f(reιθr)

f (m)(reιθr)
≤ 2rm, (16)

holds for all sufficiently large r /∈ G and for all m ∈ N.
Applying Lemma 7, we have

M(r,A)γ ≤ |A(reιθ)|, (17)

for 0 < γ < 1 and r ∈ F1 =
⋃∞

n=1{r : rn < r < Rn}.
Let ρ(B) < β < ρ(A). Then the definition of order of growth of B(z) implies that

|B(reιθ)| ≤ exp(rβ), (18)

for all sufficiently large r.
From equations (1), (15), (16), (17), and (18), there exists a sequence z = reιθ such

that for all r ∈ F1 \ (G ∪ E ∪ [0, 1]), we have

|A(reιθ)| ≤

∣∣∣∣∣f
′′
(reιθ)

f ′(reιθ)

∣∣∣∣∣+ |B(reιθ)|
∣∣∣∣ f(reιθ)f ′(reιθ)

∣∣∣∣
M(r,A)γ ≤ r2ρ(f) + 2r exp(rβ)

≤ 2r exp(rβ)(1 + o(1)).

This gives ρ(A) ≤ β, which is a contradiction. Hence, every non-trivial solution of equa-
tion (1) is of infinite order.

Now, let f be a non-trivial solution of (1), which implies that ρ(f) = ∞. By applying
Lemma 8, for any ϵ > 0, there exists a set E ⊂ (1,∞) with ml(E) < ∞, such that for all
z with |z| = r and r /∈ E ∪ [0, 1], we have∣∣∣∣∣f (k)(z)

f (j)(z)

∣∣∣∣∣ ≤ c[T (2r, f)]2(k−j), (19)

where k > j, with some constant c > 0. Using equations (1), (16), (17), (18) and (19), we
arrive at the inequality

ρ(A) ≤ ρ2(f). (20)

Finally, by Lemma 9 and (20), it follows that ρ2(f) = ρ(A).
□

In 2017, Gundersen [7] asked the question: ”Does every non-trivial solution f of equation
(1) have infinite order, when A(z) satisfies λ(A) < ρ(A) and B(z) is a non-constant
polynomial?” Long et al. [16] partially answered this question.

Theorem D. [16] Suppose A(z) = h(z)eP (z) and B(z) = bmzm + bm−1z
m−1 + · · · + b0.

Let λ(A) < ρ(A). All the non-trivial solutions of equation (1) are of infinite order if any
of the following conditions is satisfied:

(1) m+ 2 < 2n,
(2) m+ 2 > 2n and m+ 2 is not a multiple of 2kn for any integer k,

(3) m+ 2 = 2n and a2n
bm

is not a real negative number.

Kumar et al.[11], motivated by their result, considered ρ(A) > n and B(z) to be a
polynomial in Theorem E.



N. MEHRA et al.: STUDY OF GROWTH OF CERTAIN SECOND ORDER ... 1789

Theorem E. [11] Let us consider a transcendental entire function A(z) = h(z)eP (z),
where P (z) is a non-constant polynomial of degree n, and ρ(h) > n. Here, we assume that
h(z) is bounded away from zero and exponentially blows up in E+ and E−, respectively.
Additionally, let B(z) be a polynomial. Then, any non-trivial solution of the given equation
(1) is of infinite order.

Motivated by Theorem E, we aim to replace the condition on B(z) with certain condi-
tions provided in Theorem 3.

Theorem 3. Assume that A(z) satisfies the conditions outlined in Theorem E, and con-
sider a transcendental entire function B(z) that satisfies the following conditions:

(1) ρ(B) < ρ(A), or
(2) µ(B) < ρ(A).

Then, all non-trivial solutions of the equation (1) have infinite order.

We illustrate with Example 7 the fact that the conditions of Theorem 3 are necessary.
We can obtain a solution of finite order if we skip the conditions.

Example 7. Consider the differential equation

f ′′ + (ez
2
+ 1)ezf ′ + (ez

2+z + ez − 1)f = 0.

Here, h(z) = ez
2
+1 and P (z) = z satisfy the condition ρ(h) > degP (z) = 1. However, it

does not satisfy the conditions of Theorem 3 because h(z) = ez
2
+1 does not exponentially

blow up in E− of ez. Furthermore, for both conditions (i) or (ii), we have µ(B) = ρ(B) =
ρ(A). As a result, there exists a solution f(z) = e−z of finite order.

Lemma 10 provides a lower bound for the modulus of an entire function in the neigh-
borhood of θ, where θ ∈ [0, 2π).

Lemma 10. [22] Let f(z) be an entire function of finite order ρ and assume that M(r, f) =
|f(reιθr)| for every r > 0, then for ζ > 0 and 0 < C(ρ, ζ) < 1, there exists 0 < l0 <

1
2 and

S1 ⊂ (1,∞) such that log dens(S1) ≥ 1− ζ satisfying

e−5πM(r, f)1−C ≤ |f(reιθ)|,

for all very large r ∈ S1 and for all θ satisfying |θ − θr| ≤ l0.

The following lemma is a proposition in the research paper of Kumar et al.[10].

Lemma 11. [10] Assume f(z) and g(z) are entire functions and ρ(g) < ρ(f). Given 0 <

ϵ ≤ min{3ρ(f)
4 , ρ(f)−ρ(g)

2 }, there exists a set S2 satisfying S2 ⊂ (1,∞) with log dens(S2) = 1,
then

|g(z)| = o(M(|z|, f)),
for sufficiently large |z| ∈ S2.

Remark 3. Lemma 11 would also be true if we replace ρ(g) with µ(g).

In Lemma 1, consider A(z) = v(z)eP (z), where v(z) is an entire function and P (z) is
a polynomial of degree n satisfying ρ(v) < degP . In contrast, in Lemma 12, the authors
considered ρ(v) > degP and obtained that

|A(reιθ)| ≥ exp((1− ϵ)δ(P, θ)rn),

for θ ∈ E+ \ E and also for θ ∈ E− \ E, where E is a set of linear measure 0.
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Lemma 12. [11] Consider an entire function A(z) = h(z)eP (z), where P (z) is a polyno-
mial of degree n and h(z) satisfies the conditions of Theorem E. Then, for ϵ > 0, there
exists a set E ⊂ [0, 2π] of linear measure 0 such that the following conditions are satisfied:

(i) For θ ∈ E+ \ E, there exists R(θ) > 1 satisfying

|A(reιθ)| ≥ exp((1− ϵ)δ(P, θ)rn), (21)

for r > R(θ).
(ii) For θ ∈ E− \ E, there exists R(θ) > 1 satisfying

|A(reιθ)| ≥ exp((1− ϵ)δ(P, θ)rn), (22)

for r > R(θ).

Lemma 13 is proved by Gundersen[6], which provides a logarithmic estimate of the
analytic function f(z).

Lemma 13. [6] Consider an analytic function f defined on a ray γ = reιθ. Suppose there
exists a constant α > 1 such that the following condition holds as z tends to infinity along
the ray arg(z) = θ: ∣∣∣∣f ′(z)

f(z)

∣∣∣∣ = O(|z|−α).

Then, there exists a non-zero constant c such that f(z) → c as z tends to infinity along
the ray arg(z) = θ.

The proof of Theorem 3 draws inspiration from the proof of Theorem E. However,
we have made slight modifications to accommodate the specific conditions stated in the
theorem.

Proof of Theorem 3. If ρ(A) = ∞, it is evident that ρ(f) = ∞ for all non-trivial solutions
f of equation (1). Therefore, let us assume that ρ(A) < ∞ and there exists a non-trivial
solution f of equation (1) with ρ(f) < ∞.

From Lemma 5, we obtain a set E1 ⊂ [0, 2π] of linear measure zero and m > 0 such
that ∣∣∣∣f ′′(reιθ)

f(reιθ)

∣∣∣∣ ≤ rm, (23)

for θ ∈ [0, 2π] \ E1 and r > R(θ).
Since A(z) is an entire function of finite order, let M(r,A) = |A(reιθr)| for every r.

Then, from Lemma 10, for 0 < ζ < 1 and 0 < C < 1, there exists 0 < l0 < 1
2 and a set

S1 ⊂ (0,∞) with a lower logarithmic density log dens(S1) ≥ 1− ζ such that

e−5πM(r,A)1−C ≤ |A(reιθ)|, (24)

for all sufficiently large r ∈ S1 and for all θ satisfying |θ − θr| ≤ l0.
Now, let us consider the following cases:

(i) ρ(B) < ρ(A):

From Lemma 11, for 0 < ϵ ≤ min
{

3ρ(A)
4 , ρ(A)−ρ(B)

2

}
, there exists S2 ⊂ (1,∞) with

upper logarithmic density log dens(S2) = 1 such that

|B(z)|
M(|z|, A)

→ 0, (25)
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for sufficiently large |z| ∈ S2.
Using the properties of logarithmic density and the fact that log dens(S1∪S2) ≤ 1,

we can conclude that

log dens(S1 ∩ S2) ≥ log dens(S1) + log dens(S2)− log dens(S1 ∪ S2)

≥ 1− ζ + 1− 1 = 1− ζ.

Therefore, we can choose zr = reιθr with r → ∞ such that r ∈ S1 ∩ S2 and
|A(reιθr)| = M(r,A). We consider the sequence {θr}, where r ∈ S1 ∩ S2, such that
θr → θ0 and r ∈ S1 ∩ S2.

We now consider the following three subcases:
(a) δ(P, θ0) > 0:

From Lemma 12(i), we have

|A(reιθ0)| ≥ exp

(
1

2
δ(P, θ0)r

)
, (26)

for sufficiently large r, where r ∈ S1 ∩ S2 and θ0 ∈ E+/E2, with E2 being a set

of critical rays of eP (z) of linear measure zero.
From equation (1), we have∣∣∣∣f ′(reιθ0)

f(reιθ0)

∣∣∣∣ ≤ ∣∣∣∣f ′′(reιθ0)

f(reιθ0)

∣∣∣∣ 1

|A(reιθ0)|
+

|B(reιθ0)|
M(r,A)

, (27)

for r ∈ S1 ∩ S2 and θ0 ∈ E+/(E1 ∪ E2).
Using equations (23), (24), (25), (26), and (27), we obtain∣∣∣∣f ′(reιθ0)

f(reιθ0)

∣∣∣∣ → 0

as r → ∞ and r ∈ S1 ∩ S2, θ0 ∈ E+/(E1 ∪ E2). This implies that∣∣∣∣f ′(reιθ0)

f(reιθ0)

∣∣∣∣ = O

(
1

r2

)
, (28)

as r → ∞ and r ∈ S1 ∩ S2. From Lemma 13, we have

f(reιθ0) → a (29)

as r → ∞ and r ∈ (S1 ∩S2), for θ0 ∈ E+ \ (E1 ∪E2), where a is a non-zero finite
constant.
Since f(reιθr) → f(reιθ0) and using (29), we obtain

f(reιθr) → a

as r → ∞ and r ∈ (S1 ∩ S2).
Thus, the entire function f is bounded over its entire domain. However, since f
is a non-constant entire function, f(reιθ) is unbounded for all θ ∈ [0, 2π]. This
implies that for θr ∈ [0, 2π], the function f(reιθr) is also unbounded, leading to
a contradiction.

(b) δ(P, θ0) < 0:
From Lemma 12(ii), we have
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|A(reιθ0)| ≥ exp

(
1

2
δ(P, θ0)r

n

)
, (30)

for θ0 ∈ E−/E1 for large r.
Using equations (23), (24), and (30), we have∣∣∣∣f ′(reιθ0)

f(reιθ0)

∣∣∣∣ → 0, (31)

as r → ∞ and θ0 ∈ E−/(E1 ∪ E2). From Lemma 13, we have

f(reιθ0) → b, (32)

as r → ∞ and r ∈ (S1 ∩S2), for θ0 ∈ E− \ (E1 ∪E2), where b is a non-zero finite
constant.
Since f(reιθr) → f(reιθ0) and using (32), we obtain

f(reιθr) → b,

for r → ∞ and r ∈ (S1 ∩ S2).
Thus, the entire function f is bounded over its entire domain. However, since f
is a non-constant entire function, it must be unbounded for all θ ∈ [0, 2π]. This
means that for θr ∈ [0, 2π], the expression f(reιθr) must also be unbounded. This
conclusion leads to a contradiction.

(c) δ(P, θ0) = 0:
Let θ∗0 ∈ [0, 2π] be a neighborhood of θ0 such that δ(P, θ∗0) > 0. Taking the limit
as r → ∞, we have |θ0 − θ∗0| ≤ l0. We can choose C and ζ such that l0 → 0.

∣∣∣∣f ′(reιθ0)

f(reιθ0)

∣∣∣∣ ∼ ∣∣∣∣f ′(reιθ
∗
0 )

f(reιθ
∗
0 )

∣∣∣∣ ≤ ∣∣∣∣f ′′(reιθ
∗
0 )

f(reιθ
∗
0 )

∣∣∣∣ 1

|A(reιθ∗0 )|
+

∣∣B(reιθ
∗
0 )
∣∣

M(r,A)
, (33)

The remaining proof is similar to part (i).
□

2.2. Second Order Non-Homogenous Linear Differential Equation. Kumar and
Saini[12] gave several results for equation (2). In one of their results, they considered A(z)
to have Fabry gaps, satisfying max(ρ(H), ρ(B)) < ρ(A), and proved the following result.
We change the condition on A(z) and consider A(z) to be a transcendental entire function
having a multiply-connected Fatou component, and we prove Theorem 4.

Theorem F. [12] If the coefficients and H(z) of equation (2) are entire functions satisfy-
ing max(ρ(H), ρ(B)) < ρ(A), and if A(z) has Fabry gaps, then every non-trivial solution
of equation (2) has infinite order.

Theorem 4. If the coefficients and H(z) of equation (2) are entire functions satisfying
max(ρ(H), ρ(B)) < ρ(A), and if A(z) has a multiply-connected Fatou component, then
every non-trivial solution of equation (2) has infinite order.

Example 8. Consider

f ′′(z) + Cz2
∞∏
n=1

(
1 +

z

an

)
f ′ + p1(z)f = p2(z),
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where p1(z) and p2(z) are non-constant polynomials. Here, A(z) has a multiply-connected
Fatou component as described in Example 5. This equation satisfies the conditions of
Theorem 4 and thus has all non-trivial solutions of infinite order.

As demonstrated in Example 9, the conditions specified in Theorem 4 are essential.
Without these conditions, it is possible to obtain a solution of finite order.

Example 9. Consider

f ′′ + Cz2
∞∏
n=1

(
1 +

z

an

)
f ′ − Cz

∞∏
n=1

(
1 +

z

an

)
f = 2.

Here, A(z) has a multiply-connected Fatou component as described in Example 5, but it
skips the condition of Theorem 4 as ρ(A) = ρ(B) and has a solution f(z) = z2 of finite
order of growth.

Proof of Theorem 4. Assume f is a solution of equation (2) with finite order. By applying
Lemma 5, there exists a set E ⊂ (1,∞) with finite logarithmic measure such that the
inequality ∣∣∣∣∣f

′′
(z)

f ′(z)

∣∣∣∣∣ ≤ |z|2ρ(f), (34)

holds for all z satisfying |z| /∈ E ∪ [0, 1].
Given that max(ρ(H), ρ(B)) < ρ(A), choose β such that max(ρ(H), ρ(B)) < β < ρ(A).

Using the definition of the order of growth for B(z) and H(z), we have

|B(reιθ)| ≤ exp(rβ) and |H(reιθ)| ≤ exp(rβ), (35)

for sufficiently large r.
Let zr = reιθr be the points at which |f(zr)| = M(r, f). Applying Lemma 6, there

exists a set F ⊂ (0,∞) with ml(F ) < ∞ such that the inequality

f(reιθr)

fm(reιθr)
≤ 2rm, (36)

holds for all sufficiently large r /∈ F and all m ∈ N.
Using Lemma 7, we obtain the inequality

M(r,A)γ ≤ |A(reιθ)|, (37)

for 0 < γ < 1 and r ∈ F1 = ∪∞
n=1{r : rn < r < Rn}.

Combining equations (2), (34), (35), (36), and (37), we find a sequence z = reιθ such
that for all r ∈ F1 \ (E ∪ F ∪ [0, 1]), we have

|A(reιθ)| ≤

∣∣∣∣∣f
′′
(reιθ)

f ′(reιθ)

∣∣∣∣∣+ |B(reιθ)|
∣∣∣∣ f(reιθ)f ′(reιθ)

∣∣∣∣+ ∣∣∣∣H(reιθ)

f(reιθ)

∣∣∣∣ ∣∣∣∣ f(reιθ)f ′(reιθ)

∣∣∣∣
M(r,A)γ ≤ r2ρ(f) + 2r exp(rβ) + 2r

∣∣∣∣H(reιθ)

M(r, f)

∣∣∣∣
≤ r2ρ(f) + 4r exp(rβ)

≤ 4r exp(rβ)(1 + o(1)).

This leads to the contradiction ρ(A) ≤ β. Therefore, every non-trivial solution of
equation (2) is of infinite order. □
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3. Conclusion

In this paper, we explored the growth of non-trivial solutions for various homogeneous
and non-homogeneous linear differential equations that involve entire functions. We estab-
lished important results regarding the order of these solutions in relation to the properties
of the coefficients and the corresponding entire functions. However, the results achieved
are only partial and indicate several potential directions for future research.

To make our results more useful, we suggest looking into ways to relax the conditions we
currently have. This would allow us to study a broader range of differential equations and
their solutions. We should also look into how our findings can apply to non-homogeneous
equations and equations of higher order. Exploring these areas could help us learn more
about how different solutions behave and improve our understanding of the relationships
between the coefficients and the growth rates of these solutions.
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