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EQUITABLE COLORINGS OF CARTESIAN PRODUCTS OF SQUARE

OF PATHS AND CYCLES WITH SQUARE OF PATHS AND CYCLES

ELUMALAI P.1 AND PARTHIBAN A.1,∗, §

Abstract. Let [p] = {1, 2, 3, . . . , p} and G be an undirected simple graph. Graph
coloring is a special case of labeling, and G is said to admit a proper coloring if no two
neighbouring vertices of it are given an identical color. The vertices of an identical color
constitute a color class. G is p - colorable if it admits proper p - coloring. The chromatic
number, χ(G) = min {p : G is proper p - colorable} and G is equitably p - colorable
if it admits proper p - coloring and the absolute difference in size between any distinct
pairwise color class is at most 1. The equitable chromatic number, χ=(G) = min {p : G
is equitably p - colorable}. The equitable chromatic threshold, χ∗

=(G) = min {p′ : G is
equitably p - colorable ∀ p ≥ p′}. In this paper, we obtain exact values or bounds of
χ∗
=(G1□G2) and χ=(G1□G2), where G1 = P 2

m or C2
m and G2 = P 2

n or C2
n.

Keywords: Square of a path and cycle graph, Cartesian product, Equitable coloring,
Equitable chromatic number, Equitable chromatic threshold.
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1. Introduction

ConsiderG = (V,E), or simplyG to be a finite, connected, undirected, and simple graph
with V (G) and E(G), respectively, denote the vertex set and edge set. For standard graph
theory notations and terminologies here, we refer to [1, 2, 7, 14, 19, 23, 18]. A (proper)
p - coloring of G is a mapping h : V (G) → [p] such that h(a) ̸= h(b) for ab ∈ E(G), i.e.,
neighbouring vertices receive the different colors and the set of all vertices of an identical
color constitute a color class or independent set. The chromatic number, χ(G) = min
{p : G admits proper p - coloring}. A graph G is said to have an equitable p - coloring if
it admits a proper vertex coloring with p colors such that the size difference between any
two distinct color classes is at most one. The equitable chromatic number of G, denoted
by χ=(G), is the minimum number of colors required for an equitable coloring of G. The
equitable chromatic threshold, denoted by χ∗

=(G), is the smallest integer p′ such that G is
an equitable p - coloring for all p ≥ p′. The maximum degree of a vertex in G, denoted by
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△(G), and ⌈a⌉ and ⌊a⌋ stand for, respectively, the least number that is not lower than a
and the greatest number that is not larger than a. Meyer [15] proposed first the notation
of equitable coloring. Tucker [17] was the source of his inspiration.The equitable graph
coloring progress is discussed in [11]. According to Erdős [9], every G, with maximal
degree △(G) < p permits an equitable (p + 1) - coloring. It is crucial to notice that if
χ=(G) = p, then χ=(G) = p+1 is not possible. In contrast, K3,3, in which two colors are
permitted to be colored equitably but not three. One can observe that (i) χ=(Pn) = 2,
(ii) χ=(Kn,n) = 2, (iii) χ=(Kn) = n, and hence (iv)

χ=(Cn) =

{
2, if n is even

3, if n is odd.

It is straightforward to check that χ(G) ≤ χ=(G) ≤ χ∗
=(G) [3, 4, 20]. In general, strict

inequality is valid. For instance,

χ(K1,4) = 2 < χ=(K1,4) = χ∗
=(K1,4) = 3,

χ(K3,3) = χ=(K3,3) = 2 < χ∗
=(K3,3) = 4,

χ(K5,8) = 2 < χ=(K5,8) = 3 < χ∗
=(K5,8) = 5.

In graph G, the shortest distance between vertices a and b, denoted by d(a, b), is equal to
the number of edges in the path with the fewest edges that connects them. A square of
G is called G2, with V (G) = V (G2), and two vertices a and b are neighboring vertices in
G2 if and only if d(a, b) ≤ 2 in G [8]. Consider the two graphs, G1 and G2, the Cartesian
(square) product of G1 and G2 is represented as G1□G2, with V (G1□G2) and E(G1□G2)
in such a way

{(a1, b1) : a1 ∈ V (G), b1 ∈ V (G2))}, and

{(a1, b1)(a2, b2) : a1 = a2 and b1b2 ∈ E(G2) or b1 = b2 and a1a2 ∈ E(G1)}.

Conjecture 1.1. [15]. Equitable Coloring Conjecture (ECC). Let G be any graph
G ̸= {Kn, C2n+1}. χ=(G) ≤ ∆(G).

It has been demonstrated that this conjecture holds for only graphs with six or fewer
vertices. To demonstrate that ECC is valid for all bipartite graphs, Lih and Wu [12]
provided substantial evidence.
Additionaly, we have a powerful conjecture.

Conjecture 1.2. [5]. Equitable ∆ - coloring conjecture(E∆CC). If G is a connected
graph of degree ∆, other than a complete graph, an odd cycle or a complete bipartite graph
K2n+1,2n+1 for any n ≥ 1, then G is equitably ∆ - colorable.

E∆CC is valid for certain kinds of graphs, such as bipartite graph [12], outerplanar
graphs with ∆ ≥ 3 [22], and planar graphs with ∆ ≥ 13 [21].

Conjecture 1.3. [13]. Let G1and G2, be any two graphs. Then, χ=(G1□G2) ≤ χ(G1)χ(G2).

In 1957, Sabidussi posed the following theorem.

Theorem 1.1. [16]. Let G1 and G2 be any graphs. Then, χ(G1□G2) = max{χ(G1), χ(G2)}.

Theorem 1.2. [10]. Let G1 and G2 be equitably p - colorable, then G1□G2 is equitably p
- colorable.
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As a result, we obtain an inequality that describes the minimum number of colors
required for an equitable chromatic threshold.

Corollary 1.1. χ∗
=(G1□G2) ≤ max {χ∗

=(G1), χ
∗
=(G2)}.

2. Cartesian products of square of paths and cycles

In this section, we derive the equitable chromatic number and threshold for square of
paths with square of paths and cycles.

Theorem 2.1. If m ≥ 3 and n ≥ 3 are two integers, then χ∗
=(P

2
m□P 2

n) = χ=(P
2
m□P 2

n) =
3.

Proof. Suppose that V (P 2
m) = {as : s ∈ [m]} and V (P 2

n) = {bt : t ∈ [n]}. Array the
vertices of Cartesian product of P 2

m and P 2
n in such a way that {(as, bt) : s ∈ [m], t ∈ [n]}.

Note that a color set is any collection of vertices of size no more than
⌈
mn
3

⌉
that have the

arrangement s+ t ≡ 2 (mod 3), s+ t ≡ 0 (mod 3), and s+ t ≡ 1 (mod 3).
Consider the following color classes for P 2

m□P 2
n .

σ1 = {(as, bt) : s+ t ≡ 2 (mod 3), s ∈ [m], t ∈ [n]}
σ2 = {(as, bt) : s+ t ≡ 0 (mod 3), s ∈ [m], t ∈ [n]}
σ3 = {(as, bt) : s+ t ≡ 1 (mod 3), s ∈ [m], t ∈ [n]}.

Clearly, {σs : s ∈ [3]} is a color class of size
⌊
mn
3

⌋
or

⌈
mn
3

⌉
. Therefore, the product P 2

m□P 2
n

is equitably 3 - colorable (see Figure 1).
For p ≥ [3], let

σk =

⌊
mn+ k − 1

p

⌋
for k ∈ [p]. Since

σp =

⌊
mn+ p− 1

p

⌋
≤

⌈
mn

p

⌉
,

one can divide V (P 2
m□P 2

n) into p color classes of sizes σ1, σ2, σ3, . . . , σp in the arrange-
ments. Therefore, V (P 2

m□P 2
n) is equitably p - colorable.

Contrary, it is straightforward to verify that

χ=(P
2
m□P 2

n) ≥ χ(P 2
m□P 2

n) ≥ χ(P 2
m) = 3.

This completes the proof. □

Theorem 2.2. If m ≥ 3 and n ≥ 3 are two integers, then

χ∗
=(P

2
m□C2

n) = χ=(P
2
m□C2

n) =


3, for n ≡ 0 (mod 3),

4, for n ≡ 1 (mod 3),

5, for n ≡ 2 (mod 3).

Proof. Suppose that V (P 2
m) = {as : s ∈ [m]} and V (C2

n) = {bt : t ∈ [n]}. Array the
vertices of Cartesian product of P 2

m and C2
n such as {(as, bt) : s ∈ [m], t ∈ [n]}.

Claim 1: For n ≡ 0 (mod 3)
Note that a color class is a collection of vertices of size no more than

⌈
mn
3

⌉
that have the
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3 1 2 3 1

2 3 1 2 3

1 2 3 1 2

Figure 1. Equitable 3 - coloring of P 2
3□P 2

5 .

arrangement s+ t ≡ 2 (mod 3), s+ t ≡ 0 (mod 3), and s+ t ≡ 1 (mod 3).
Consider the color classes for P 2

m□C2
n.

σ1 = {(as, bt) : s+ t ≡ 2 (mod 3), s ∈ [m], t ∈ [n]}
σ2 = {(as, bt) : s+ t ≡ 0 (mod 3), s ∈ [m], t ∈ [n]}
σ3 = {(as, bt) : s+ t ≡ 1 (mod 3), s ∈ [m], t ∈ [n]}.

Clearly, {σs : s ∈ [3]} is a color class of size
⌊
mn
3

⌋
or

⌈
mn
3

⌉
. Therefore, P 2

m□C2
n is equitably

3 - colorable (See Figure 2).
For p ≥ [3], let

σk =

⌊
mn+ k − 1

p

⌋
and for k ∈ [p]. Since

σp =

⌊
mn+ p− 1

p

⌋
≤

⌈
mn

p

⌉
,

one can split the vertex set of P 2
m□C2

n into p color classes of sizes σ1, σ2, σ3, . . . , σp sub-
sequently in the arrangement. As a result, the product of P 2

m and C2
n is equitably p -

colorable.
Contrary, it is uncomplicated to confirm that

χ=(P
2
m□C2

n) ≥ χ(P 2
m□C2

n) ≥ χ(C2
n) = 3.

Claim 2: For n ≡ 1 (mod 3)
Note that a color class is any collection of vertices of size no more than

⌈
mn
4

⌉
that have the

arrangement s+ t ≡ 2 (mod 4), s+ t ≡ 3 (mod 4), s+ t ≡ 0 (mod 4) and s+ t ≡ 1 (mod 4).
Consider the following color classes for P 2

m□C2
n.

σ1 = {(as, bt) : s+ t ≡ 2 (mod 4), s ∈ [m], t ∈ [n]}
σ2 = {(as, bt) : s+ t ≡ 3 (mod 4), s ∈ [m], t ∈ [n]}
σ3 = {(as, bt) : s+ t ≡ 0 (mod 4), s ∈ [m], t ∈ [n]}
σ4 = {(as, bt) : s+ t ≡ 1 (mod 4), s ∈ [m], t ∈ [n]}.

Clearly, {σs : s ∈ [4]} is a color class of size
⌊
mn
4

⌋
or

⌈
mn
4

⌉
. Therefore, the product P 2

m□C2
n

is equitably 4 - colorable (See Figure 3).



1800 TWMS J. APP. ENG. MATH. V.15, N.7, 2025

For p ≥ [4], let

σk =

⌊
mn+ k − 1

p

⌋
for k ∈ [p]. Since

σp =

⌊
mn+ p− 1

p

⌋
≤

⌈
mn

p

⌉
,

one can divide the vertex set of P 2
m□C2

n into p color classes of sizes σ1, σ2, σ3, . . . , σp sub-
sequently in the arrangements. Thus, the product graph of P 2

m and C2
n is equitably p -

colorable.
Contrary, it is straightforward to confirm that

χ=(P
2
m□C2

n) ≥ χ(P 2
m□C2

n) ≥ χ(C2
n) = 4.

Claim 3: For n ≡ 2 (mod 3)
Note that a color class is any collection of vertices of size no more than

⌈
mn
5

⌉
that have

the arrangements s+t ≡ 2 (mod 5), s+t ≡ 3 (mod 5), s+t ≡ 4 (mod 5), s+t ≡ 0 (mod 5)
and s+ t ≡ 1 (mod 5).
Consider the following color classes for P 2

m□C2
n.

σ1 = {(as, bt) : s+ t ≡ 2 (mod 5), s ∈ [m], t ∈ [n]}
σ2 = {(as, bt) : s+ t ≡ 3 (mod 5), s ∈ [m], t ∈ [n]}
σ3 = {(as, bt) : s+ t ≡ 4 (mod 5), s ∈ [m], t ∈ [n]}
σ4 = {(as, bt) : s+ t ≡ 0 (mod 5), s ∈ [m], t ∈ [n]}
σ5 = {(as, bt) : s+ t ≡ 1 (mod 5), s ∈ [m], t ∈ [n]}.

Clearly, {σs : s ∈ [5]} is a color class of size
⌊
mn
5

⌋
or

⌈
mn
5

⌉
. Therefore, the product P 2

m□C2
n

is equitably 5 - colorable (see Figure 4).
For p ≥ [5], let

σk =

⌊
mn+ k − 1

p

⌋
for k ∈ [p]. Since

σp =

⌊
mn+ p− 1

p

⌋
≤

⌈
mn

p

⌉
,

one can split the vertex set of P 2
m□C2

n into p color classes of sizes σ1, σ2, σ3, . . . , σp subse-
quently in the arrangements. Hence, P 2

m□C2
n is equitably p - colorable.

Contrary, it is straightforward to verify that

χ=(P
2
m□C2

n) ≥ χ(P 2
m□C2

n) ≥ χ(C2
m) = 5.

This completes the theorem. □



ELUMALAI P., PARTHIBAN A.: EQUITABLE COLORINGS OF CARTESIAN PRODUCTS ... 1801

3 1 2

2 3 1

1 2 3

Figure 2. Equitable 3 - coloring of P 2
3□C2

3 .

3 4 1 2

2 3 4 1

1 2 3 4

Figure 3. Equitable 4 - coloring of P 2
3□C2

4 .

4 5 1 2 3

3 4 5 1 2

2 3 4 5 1

1 2 3 4 5

Figure 4. Equitable 5 - coloring of P 2
4□C2

5 .

3. Cartesian products of square of cycles

In this section, the exact values of the equitable chromatic number and threshold of
square of cycles with square of cycles are obtained and equal.
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Theorem 3.1. [6, 10]. Let m,n ≥ 3. Then

χ∗
=(Cm□Cn) = χ=(Cm□Cn) =

{
2, for mn is even;

3, otherwise.

Theorem 3.2. If m ≥ 1 is an integer, then χ∗
=(C

2
3m□C2

3m) = χ=(C
2
3m□C2

3m) = 3.

Proof. Suppose that V (C2
3m) = {a1, a2, . . . , a3m} and V (C2

3m) = {b1, b2, . . . , b3m}. Arrange
the vertices of Cartesian products of C2

3m and C2
3m in such a way {(as, bt) : s ∈ [3m], t ∈

[3m]}. Note that a color class is any collection of vertices of size no more than 3m2 that
have the arrangement s+ t ≡ 2 (mod 3), s+ t ≡ 0 (mod 3), and s+ t ≡ 1 (mod 3).
Consider the color classes for C2

3m□C2
3m.

σ1 = {(as, bt) : s+ t ≡ 2 (mod 3), s ∈ [m], t ∈ [n]}
σ2 = {(as, bt) : s+ t ≡ 0 (mod 3), s ∈ [m], t ∈ [n]}
σ3 = {(as, bt) : s+ t ≡ 1 (mod 3), s ∈ [m], t ∈ [n]}.

Clearly, {σi : i ∈ [3]} is a color class of size 3m2. Therefore, P 2
m□P 2

n is equitably 3 -
colorable (see Figure 2).

For p ≥ [3], let

σk =

⌊
(3m)2 + k − 1

p

⌋
for k ∈ [p]. Since

σp =

⌊
(3m)2 + p− 1

p

⌋
≤

⌈
(3m)2

p

⌉
,

one can split V (C2
3m□C2

3m) into p color classes of sizes σ1, σ2, σ3, . . . , σp subsequently in
the arrangement. Therefore, the Cartesian product of C2

3m and C2
3m is equitably p - col-

orable.
Contrary, it is straightforward to show that

χ=(C
2
3m□C2

3m) ≥ χ(C2
3m□C2

3m) ≥ χ(C2
3m) = 3.

Hence the theorem.
□

Theorem 3.3. If m ≥ 1 is an integer, then χ∗
=(C

2
3m□C2

3m+1) = χ=(C
2
3m□C2

3m+1) =

χ∗
=(C

2
3m+1□C2

3m+1) = χ=(C
2
3m+1□C2

3m+1) = 4.

Proof. Suppose that V (C2
3m+1) = {a1, a2, . . . , a3m+1} and V (C2

3m+1) = {b1, b2, . . . , b3m+1}.
Arrange the vertices of Cartesian product of C2

3m+1 and C2
3m+1 are in such a way that

{(as, bt) : s ∈ [3m], t ∈ [3m+ 1]}.

Claim 1 : C2
3m□C2

3m+1 is equitably 4 - colorable.

Note that a color class is any collection of vertices of size no more than
⌈
(3m)(3m+1)

4

⌉
.
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3 4 1 2

2 3 4 1

1 2 3 4

Figure 5. Equitable 4- coloring of C2
3□C2

4 .

Consider the following color classes for C2
3m□C2

3m+1.

σ1 = {(as, bt) : s+ t ≡ 2 (mod 4), s ∈ [m], t ∈ [n]}
σ2 = {(as, bt) : s+ t ≡ 3 (mod 4), s ∈ [m], t ∈ [n]}
σ3 = {(as, bt) : s+ t ≡ 0 (mod 4), s ∈ [m], t ∈ [n]}
σ4 = {(as, bt) : s+ t ≡ 1 (mod 4), s ∈ [m], t ∈ [n]}.

Clearly, {σs : s ∈ [4]} is a color class of size
⌊
3m(3m+1)

4

⌋
or

⌈
3m(3m+1)

4

⌉
. Hence, C2

3m□C2
3m+1

is equitably 4 - colorable (see Figure 5).

For p ≥ [4], let

σk =

⌊
3m(3m+ 1) + k − 1

p

⌋
and for k ∈ [p]. Since

σp =

⌊
3m(3m+ 1) + p− 1

p

⌋
≤

⌈
(3m)(3m+ 1)

p

⌉
,

one can divide the vertex set of C2
3m□C2

3m+1 into p color classes of sizes σ1, σ2, σ3, . . . , σp
subsequently in the arrangement. Therefore, C2

3m□C2
3m+1 is equitably p - colorable.

Contrary, it is straightforward to verify that

χ=(C
2
3m□C2

3m+1) ≥ χ(C2
3m□C2

3m+1) ≥ χ(C2
3m+1) = 4.

Claim 2 : C2
3m+1□C2

3m+1 is equitably 4 - colorable.

Note that a color class is any collection of vertices of size no more than
⌈
(3m+1)2

4

⌉
.

Consider the following color classes for C2
3m□C2

3m+1.
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4 1 2 3

3 4 1 2

2 3 4 1

1 2 3 4

Figure 6. Equitable 4- coloring of C2
4□C2

4 .

σ1 = {(as, bt) : s+ t ≡ 2 (mod 4), s ∈ [m], t ∈ [n]}
σ2 = {(as, bt) : s+ t ≡ 3 (mod 4), s ∈ [m], t ∈ [n]}
σ3 = {(as, bt) : s+ t ≡ 0 (mod 4), s ∈ [m], t ∈ [n]}
σ4 = {(as, bt) : s+ t ≡ 1 (mod 4), s ∈ [m], t ∈ [n]}.

Clearly, {σs : s ∈ [4]} is a color class of size
⌊
(3m+1)(3m+1)

4

⌋
or

⌈
(3m+1)(3m+1)

4

⌉
.

Hence, C2
3m+1□C2

3m+1 is equitably 4 - colorable (see Figure 6).

For p ≥ [4], let

σk =

⌊
(3m+ 1)2 + k − 1

p

⌋
for k ∈ [p]. Since

σp =

⌊
(3m+ 1)2 + p− 1

p

⌋
≤

⌈
(3m+ 1)2

p

⌉
,

one can divide V (C2
3m+1□C2

3m+1) into p color classes of sizes σ1, σ2, σ3, . . . , σp subsequently

in the arrangement. Thus, C2
3m+1□C2

3m+1 is equitably p - colorable.
Contrary, it is uncomplicated to verify that

χ=(C
2
3m+1□C2

3m+1) ≥ χ(C2
3m+1□C2

3m+1) ≥ χ(C2
3m+1) = 4.

Hence the theorem. □

Theorem 3.4. If m ≥ 1 is an integer, then χ∗
=(C

2
3m□C2

3m+2) = χ=(C
2
3m□C2

3m+2) =

χ∗
=(C

2
3m+1□C2

3m+2) = χ=(C
2
3m+1□C2

3m+2) = χ∗
=(C

2
3m+2□C2

3m+2) = χ=(C
2
3m+2□C2

3m+2) =
5.

Proof. Suppose that V (C2
3m+1) = {a1, a2, . . . , a3m+1} and V (C2

3m+2) = {b1, b2, . . . , b3m+2}.
Arrange the vertices of Cartesian product of C2

3m+1 and C2
3m+2 in such a way that
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3 4 1 2 2

2 3 4 1 2

1 2 3 4 2

Figure 7. Equitable 5 - coloring of C2
3□C2

5 .

{(as, bt) : s ∈ [3m+ 1], t ∈ [3m+ 2]}.

Claim 1 : C2
3m□C2

3m+2 is equitably 5 - colorable.

Note that a color class is any collection of vertices of size no more than
⌈
(3m)(3m+2)

5

⌉
,

that have the arrangements s + t ≡ 2 (mod 5), s + t ≡ 3 (mod 5), s + t ≡ 4 (mod 5),
s+ t ≡ 0 (mod 5) and s+ t ≡ 1 (mod 5).
Consider the following color classes for C2

3m□C2
3m+2.

σ1 = {(as, bt) : s+ t ≡ 2 (mod 5), s ∈ [m], t ∈ [n]}
σ2 = {(as, bt) : s+ t ≡ 3 (mod 5), s ∈ [m], t ∈ [n]}
σ3 = {(as, bt) : s+ t ≡ 4 (mod 5), s ∈ [m], t ∈ [n]}
σ4 = {(as, bt) : s+ t ≡ 0 (mod 5), s ∈ [m], t ∈ [n]}
σ5 = {(as, bt) : s+ t ≡ 1 (mod 5), s ∈ [m], t ∈ [n]}.

Clearly, {σs : s ∈ [5]} is a color class of size
⌊
3m(3m+2)

5

⌋
or

⌈
3m(3m+2)

5

⌉
. Hence, C2

3m□C2
3m+2

is equitably 5 - colorable (see Figure 7).

For p ≥ [5], let

σk =

⌊
(3m)(3m+ 2) + k − 1

p

⌋
for k ∈ [p]. Since

σp =

⌊
(3m)(3m+ 2) + p− 1

p

⌋
≤

⌈
(3m)(3m+ 2)

p

⌉
,

one can split the vertex set of C2
3m□C2

3m+2 into p color classes of sizes σ1, σ2, σ3, . . . , σp
subsequently in the arrangement. Hence, C2

3m□C2
3m+2 is equitably p - colorable.

Claim 2 : C2
3m+1□C2

3m+2 is equitably 5 - colorable.

Note that a color class is any collection of vertices of size no more than
⌈
(3m+1)(3m+2)

5

⌉
,

that have the arrangement s + t ≡ 2 (mod 5), s + t ≡ 3 (mod 5), s + t ≡ 4 (mod 5),
s+ t ≡ 0 (mod 5) and s+ t ≡ 1 (mod 5).
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4 5 1 2 3

3 4 5 1 2

2 3 4 5 1

1 2 3 4 5

Figure 8. Equitable 5 - coloring of C2
4□C2

5 .

Consider the following color classes for C2
3m+1□C2

3m+2.

σ1 = {(as, bt) : s+ t ≡ 2 (mod 5), s ∈ [m], t ∈ [n]}
σ2 = {(as, bt) : s+ t ≡ 3 (mod 5), s ∈ [m], t ∈ [n]}
σ3 = {(as, bt) : s+ t ≡ 4 (mod 5), s ∈ [m], t ∈ [n]}
σ4 = {(as, bt) : s+ t ≡ 0 (mod 5), s ∈ [m], t ∈ [n]}
σ5 = {(as, bt) : s+ t ≡ 1 (mod 5), s ∈ [m], t ∈ [n]}.

Clearly, {σs : s ∈ [5]} is a color class of size
⌊
(3m+1)(3m+2)

5

⌋
or

⌈
(3m+1)(3m+2)

5

⌉
. Hence,

C2
3m+1□C2

3m+2 is equitably 5 - colorable (see Figure 8).

For p ≥ [5], let

σk =

⌊
(3m+ 1)(3m+ 2) + k − 1

p

⌋
for k ∈ [p]. Since

σp =

⌊
(3m+ 1)(3m+ 2) + p− 1

p

⌋
≤

⌈
(3m+ 1)(3m+ 2)

p

⌉
,

one can split the vertex set of C2
3m+1□C2

3m+2 into p color classes of sizes σ1, σ2, σ3, . . . , σp
subsequently in the arrangement. Hence, C2

3m+1□C2
3m+2 is equitably p - colorable.

Contrary, it is uncomplicated to verify that

χ=(C
2
3m+1□C2

3m+2) ≥ χ(C2
3m+1□C2

3m+2) ≥ χ(C2
3m+2) = 5.

Claim 3 : C2
3m+2□C2

3m+2 is equitably 5 - colorable.

Note that a color class is any collection of vertices of size no more than
⌈
(3m+2)2

5

⌉
that have
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5 1 2 3 4

4 5 1 2 3

3 4 5 1 2

2 3 4 5 1

1 2 3 4 5

Figure 9. Equitable 5- coloring of C2
5□C2

5 .

the arrangement s+ t ≡ 2 (mod 5), s+ t ≡ 3 (mod 5), s+ t ≡ 4 (mod 5), s+ t ≡ 0 (mod 5)
and s+ t ≡ 1 (mod 5).
Consider the color classes for C2

3m+2□C2
3m+2.

σ1 = {(as, bt) : s+ t ≡ 2 (mod 5), s ∈ [m], t ∈ [n]}
σ2 = {(as, bt) : s+ t ≡ 3 (mod 5), s ∈ [m], t ∈ [n]}
σ3 = {(as, bt) : s+ t ≡ 4 (mod 5), s ∈ [m], t ∈ [n]}
σ4 = {(as, bt) : s+ t ≡ 0 (mod 5), s ∈ [m], t ∈ [n]}
σ5 = {(as, bt) : s+ t ≡ 1 (mod 5), s ∈ [m], t ∈ [n]}.

Clearly, {σs : s ∈ [5]} is a color class of size
⌊
(3m+2)(3m+2)

5

⌋
or

⌈
(3m+2)(3m+2)

5

⌉
. Therefore,

C2
3m+2□C2

3m+2 is equitably 5 - colorable (see Figure 9).

For p ≥ [5], let

σk =

⌊
(3m+ 2)2 + k − 1

p

⌋
for k ∈ [p]. Since

σp =

⌊
(3m+ 2)2 + p− 1

p

⌋
≤

⌈
(3m+ 2)2

p

⌉
,

one can divide V (C2
3m+2□C2

3m+2) into p color classes of sizes σ1, σ2, σ3, . . . , σp subsequently

in the arrangement. Thus, C2
3m+2□C2

3m+2, is equitably p - colorable.
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Contrary, it is straightforward to prove that

χ=(C
2
3m+2□C2

3m+2) ≥ χ(C2
3m+2□C2

3m+2) ≥ χ(C2
3m+2) = 5.

Hence the theorem.
□

4. Conclusions

In this article, we have obtained the following results for the positive integers m and n

(1) χ∗
=(P

2
m□P 2

n) = χ=(P
2
m□P 2

n) = 3.
(2)

χ∗
=(P

2
m□C2

n) = χ=(P
2
m□C2

n) =


3, for n ≡ 0 (mod 3),

4, for n ≡ 1 (mod 3),

5, for n ≡ 2 (mod 3).

(3) χ∗
=(C

2
3m□C2

3m) = χ=(C
2
3m□C2

3m) = 3.
(4) χ∗

=(C
2
3m□C2

3m+1) = χ=(C
2
3m□C2

3m+1) = χ∗
=(C

2
3m+1□C2

3m+1) =

χ=(C
2
3m+1□C2

3m+1) = 4.

(5) χ∗
=(C

2
3m□C2

3m+2) = χ=(C
2
3m□C2

3m+2) = χ∗
=(C

2
3m+1□C2

3m+2) =

χ=(C
2
3m+1□C2

3m+2) = χ∗
=(C

2
3m+2□C2

3m+2) = χ=(C
2
3m+2□C2

3m+2) = 5.

In future, we intend to extend our work to equitable total chromatic number of some
well known graph structures. Furthermore, it’s exciting and challenging to work on the
following problem:
Problem: Determining equitable chromatic number and equitable chromatic thresh-
old of different graph products, namely Cartesian product, lexicographic product, rooted
product, etc.

Acknowledgement. The authors would like to extend their heartfelt gratitude to the
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of the paper.
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