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NEUTROSOPHIC OVER SOFT GENERALIZED CONTINUOUS

FUNCTIONS: A PARADIGM SHIFT IN BEST INVENTION

COMPETITION MACHINE SELECTION

R. NARMADA DEVI1,∗, YAMINI PARTHIBAN1, §

Abstract. In today’s complex and uncertain world, the emergence of neutrosophic en-
vironments is becoming increasingly essential. These frameworks excel at navigating
ambiguity, providing valuable tools for understanding and managing uncertainty. A
significant advancement in this field is the introduction of Neutrosophic Over Soft Gen-
eralized Closed Sets and Continuous Functions. These concepts offer refined methods
for grappling with nuanced uncertainties, providing a deeper understanding of complex
situations. To illustrate their effectiveness, let’s consider a practical example involving
the selection of machines for the prestigious Best Invention Competition. By employing
tangent similarity measures, we can identify optimal candidates with precision. This nu-
merical demonstration vividly showcases the tangible utility of these concepts in decision-
making within intricate and uncertain landscapes. Furthermore, this example hints at
the transformative potential of neutrosophic frameworks across various domains. These
concepts promise to enhance problem-solving capabilities in contexts where uncertainty
is prevalent, enabling the emergence of more informed and resilient decisions.

Keywords: neutrosophic over soft generalized closed set, neutrosophic over soft general-
ized open set, neutrosophic over soft generalized interior, neutrosophic over soft gener-
alized closure, neutrosophic over soft generalized continuose function.
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1. Introduction

It all started in 1965 with Zadeh’s seminal paper introducing the concept of fuzzy
sets [24], which provided a mathematical framework for dealing with uncertainty and
imprecision. This laid the foundation for many future works in decision-making and
uncertainty modeling. Zadeh further expanded his theory in 1978 by establishing fuzzy
sets as a basis for the theory of possibility [25], broadening the applications of fuzzy
sets. In 1970, Bellman and Zadeh [2] applied these fuzzy concepts to decision-making,
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demonstrating how fuzzy environments can aid in addressing real-world problems where
precise data is scarce.

The late 1990s witnessed a significant development with Molodtsov’s introduction of soft
set theory in 1999 [14], providing a generalized mathematical tool for handling uncertainty
without the limitations of traditional set theory. Concurrently, Smarandache’s work in
1999 introduced Neutrosophic Logic [21], which extended fuzzy logic by incorporating
the notion of indeterminacy, thus offering a more flexible framework. Maji, Biswas, and
Roy continued this momentum by advancing soft set theory in 2003 [12], adding to its
theoretical foundation.

Atanassov’s 2012 book on intuitionistic fuzzy sets theory [1] presented a comprehensive
exploration of intuitionistic fuzzy sets, which added another layer of complexity to fuzzy set
theory by allowing the degree of non-membership alongside membership. In 2013, Broumi
proposed the generalized neutrosophic soft set [3], pushing the boundaries of neutrosophic
theory, and in 2015, Broumi and Deli further explored its applications in medical diagnosis
[4], illustrating the practical utility of these sets in healthcare decision-making.

The tangent similarity measure was introduced in 2015 by Pramanik and Mondal
[15, 17], providing an innovative method for multiple attribute decision-making, which
enhanced decision analysis frameworks. Smarandache and Pramanik (2016) provide an
extensive overview of neutrosophic theory and its applications, covering key advancements.
This work serves as a fundamental resource in understanding neutrosophic concepts [22].
Smarandache (2016) introduces the concepts of neutrosophic overset, underset, and offset,
expanding neutrosophic logic, probability, and statistics. This work enhances understand-
ing of handling over- and under-defined data in uncertain environments [23]. Dhavaseelan
and Jafari (2017) introduce generalized neutrosophic closed sets, extending traditional
closed set concepts into the neutrosophic environment. This extension aids in handling
uncertainty and indeterminate information in decision-making. Their work enriches the
field of neutrosophic mathematics [9]. Jansi, Mohana, and Smarandache’s 2019 study [10]
brought forward the concept of Pythagorean neutrosophic sets, where the dependency
of truth and falsity components provided a new way to handle uncertainty in complex
situations.

In the recent years, particularly the 2020s, there has been a surge in applying these
theories across diverse fields. Saqlain et al. (2020) developed the single and multi-valued
neutrosophic hypersoft set [20], expanding the adaptability of neutrosophic sets. Radha et
al. (2021) [18] focused on improving correlation coefficients for Pythagorean neutrosophic
sets, which enhanced decision-making processes with more refined measures.

Devi and Parthiban emerged as prolific contributors in 2023 and 2024, with their works
encompassing multiple aspects of neutrosophic set theory in decision-making. Their stud-
ies spanned the decision-making process over neutrosophic Pythagorean soft sets [5],
explored decision-making using neutrosophic over soft topological spaces [6], enhanced
parental decision-making for school selection [7], and developed applications in healthcare
[8]. These contributions have significantly enriched the literature on neutrosophic decision-
making.Rodrigo and Maheswari (2023) explore neutrosophic open and closed maps within
neutrosophic topological spaces, expanding beyond traditional topological constructs to
incorporate indeterminacy. This enhancement increases the adaptability and versatility
of the framework, contributing to the theoretical advancement of neutrosophic topology
[19].

Simultaneously, Kumaravel et al. (2023) used fuzzy cognitive maps and neutrosophic
cognitive maps for analyzing dengue fever [11], and Murugesan et al. (2023) conducted
a comparative study on COVID-19 variants using similar approaches [16], showcasing the



1812 TWMS J. APP. ENG. MATH. V.15, N.7, 2025

versatility of fuzzy and neutrosophic techniques in handling complex healthcare issues.
Lastly, Majumder et al. (2023) [13] utilized a single-valued pentapartitioned neutrosophic
weighted hyperbolic tangent similarity measure to address environmental risks during the
COVID-19 pandemic, demonstrating the practical application of these advanced mathe-
matical concepts in real-world problems.

The manuscript introduces the Neutrosophic Over Soft Generalized Closed Set and Neu-
trosophic Over Soft Generalized Continuous Function, along with their basic definitions
and propositions. To demonstrate the practical relevance of these concepts, a numerical
illustration is constructed for selecting the best machine in the Best Invention Compe-
tition using the tangent similarity measure for the Neutrosophic Over Soft Set. Thus,
the manuscript seamlessly integrates theoretical advancements, illustrative examples, and
practical applications, making a substantial contribution to the field of study.

2. Preliminary

This section presents the fundamental definitions for Neutrosophic Set (NS), Neutro-
sophic Over Set (NOS), Neutrosophic Over Soft Set (N o

s -set), and Neutrosophic Over Soft
Topological Space (N o

s -topological space).

Definition 2.1. [21] Let H be a non-empty set, and let J be a Neutrosophic Set (NS).
Then

J = ⟨h,ℵJ (h), ðJ (h),ΥJ (h)⟩ : h ∈ H
where ℵ,ð,Υ : H → [0, 1] and 0 ≤ ℵ(h) + ð(h) + Υ(h) ≤ 3. Here, ℵ(h), ð(h), and Υ(h)
represent the degree of truth membership, indeterminacy, and falsity, respectively.

Definition 2.2. [23] Let J be an NS in H.If J is said to be an NOS in an non-empty
set H then it has at-least one neutrosophic component is > 1 and no other component are
< 0 is defined as,

J = {⟨h,ℵJ (h), ðJ (h),ΥJ (h)⟩ : h ∈ H}
Where ℵ,ð,Υ : H → [0,Ω], 0 ≤ ℵ(h) + ð(h) + Υ(h) ≤ 3 and Ω is said to be over-limit of
NOS

Note: ρ(H) is a set of all the N o
s subset of an non-empty set H

Definition 2.3. [6] A N o
s -set ⊙ = e, ⟨h, 0, 0,Ω⟩ : h ∈ H : e ∈ E is called a Null N o

s -set,
and �= e, ⟨h,Ω,Ω, 0⟩ : h ∈ H : e ∈ E is called a Universal N o

s -set.

Definition 2.4. [6] Let H be an non-empty set and E be a set of parameter on H.Then
N o

s -set is defined by a set valued function
λN o

s
: E → ρ(H)

where ρ(H) is an set of all N o
s -set on H.N o

s -set is an valued function from the set of
parameter E on H is defined as

J = (λN o
s
, E) = {(e, {⟨h,ℵJ (h), ðJ (h),ΥJ (h)⟩ : h ∈ H}) : e ∈ E}

Definition 2.5. [6] Let J = (JN o
s
, E) and W = (WN o

s
, E) be a two N o

s -set.If J is said to
be a subset of W i.e.,J ⊆ W then

ℵJ (h) ≤ ℵW(h), ðJ (h) ≤ ðW(h),ΥJ (h) ≥ ΥW(h)

In other words W is an super set of J

Note:Let J ⊂ W and W ⊂ J then J = W
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Definition 2.6. [6] Let J and W be any N o
s -sets, and let ∀h ∈ H and e ∈ E. Then the

union, intersection, and complement are defined as follows:

(i) Union:

J�W = {e, {⟨h,max(ℵJ (h),ℵW(h)),max(ðJ (h), ðW(h)),min(ΥJ (h),ΥW(h))⟩}}
(ii) Intersection:

J�W = {e, {⟨h,min(ℵJ (h),ℵW(h)),min(ðJ (h), ðW(h)),max(ΥJ (h),ΥW(h))⟩}}
(iii) Complement:

J$ = {e, {⟨h,ΥJ (h),Ω− ðJ (h),ℵJ (h)⟩}}

Definition 2.7. [6] A neutrosophic over soft topology (N o
s -topology) τN o

s
on a non-empty

set H satisfies the following conditions:

(i) ⊙,�∈ τN o
s
.

(ii) The union of any arbitrary collection of sets in τN o
s
is also in τN o

s
.

(iii) The finite intersection of sets in τN o
s
is also in τN o

s
.

Then, (H, τN o
s
) is called a neutrosophic over soft topological space (N o

s -topological space).
An element of τN o

s
is called a neutrosophic over soft open set (N o

s -open set), and the com-
plement of any element in τN o

s
is called a neutrosophic over soft closed set (N o

s -closedset).

Definition 2.8. [6] For an operator on a N o
s -set J ∈ τN o

s
, the neutrosophic over soft

topological closure and interior, denoted by clN o
s
(J ) and intN o

s (J ), are defined as follows:

clN o
s
(J ) = � {G : G is a N o

s -closed set in H and J ⊆ G} .

intN o
s
(J ) = � {O : O is a N o

s -open set in H and J ⊇ O} .

Note:

(i) clN o
s
(J$) = (intN o

s
(J ))$

(ii) intN o
s
(J$) = (clN o

s
(J ))$

Proposition 2.1. [6] Let (H, τN o
s
) be a N o

s -topological space and J is a subset of H, then

(i) clN o
s
(R) is the smallest N o

s − closedset containing R.
(ii) intN o

s
(J ) is the largest N o

s − openset contained in J .

3. Neutrosophic Over Soft Generalized Continuous Function

Definition 3.1. Let (H, τN o
s
) be a N o

s -topological space. A N o
s -set J is said to be a N o

s

Generalized Closed Set (N og
sc -set) if clN o

s
(J ) ⊆ G whenever J ⊆ G and G is a N o

s -openset.
The complement of a N og

sc -set is called a N o
s Generalized Open Set (N og

so -set).

Definition 3.2. Let (H, τN o
s
) be a N o

s -topological space. Then for any N o
s -set J , N o

s

generalized topological interior(intN o
s
(J )) and closure(clN og

sc
(J ))operators are defined as:

intN og
so
(J ) = �{O : O is N og

so in H and J ⊇ O} and

clN og
sc
(J ) = �{G : G is N og

sc in H and J ⊆ G}.

Proposition 3.1. Let (H, τN o
s
) be a N o

s -topological space. Let J and W be any two N o
s -set

in (H, τN o
s
). Then the N og

sc -set satisfy the following properties:

(i) J ⊆ clN og
sc
(J )

(ii) intN og
so
(J ) ⊆ J

(iii) J ⊆ W =⇒ clN og
sc
(J ) ⊆ clN og

sc
(W)

(iv) J ⊆ W =⇒ intN og
so
(J ) ⊆ intN og

so
(W)
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(v) clN og
sc
(J�W) = clN og

sc
(J )�clN og

sc
(W)

(vi) intN og
so
(J�W) = intN og

so
(J )�intN og

so
(W)

(vii) (clN og
sc
(J ))$ = intN og

so
(J$)

(viii) (intN og
so
(J ))$ = clN og

sc
(J$)

Proof. (i) clN og
sc
(J ) = �{G : G is N og

sc in H and J ⊆ G}
ThusJ ⊆ clN og

sc
(J )

(ii) intN og
so
(J ) = �{O : O is N og

so in H and J ⊇ O}
Thus intN og

so
(J ) ⊆ J

(iii) J ⊆ W
clN og

sc
(W) = �{G : G is N og

sc in H and W ⊆ G}
⊇ �{G : G is N og

sc in H and J ⊆ G}
⊇ clN og

sc
(J )

Thus clN og
sc
(J ) ⊆ clN og

sc
(W)

(iv) J ⊆ W
intN og

so
(W) = �{O : O is N og

so in H and W ⊇ O}
⊇ �{O : O is N og

so in H and J ⊇ O}
⊇ intN og

so
(J )

Thus intN og
so
(J ) ⊆ intN og

so
(W)

(v) clN og
sc
(J�W) = �{G : G is N og

sc in H and (J�W) ⊆ G}
= (�{G : G is N og

sc in H and J ⊆ G})�
(�{G : G is N og

sc in H and W ⊆ G})
= clN og

sc
(J )�clN og

sc
(W)

∴ clN og
sc
(J�W) = clN og

sc
(J )�clN og

sc
(W)

(vi) intN og
so
(J�W) = �{O : O is N og

so in H and (J�W) ⊇ O}
= (�{O : O is N og

so in H and J ⊇ O})�
(�{O : O is N og

so in H and W ⊇ O})
= intN og

so
(J )�intN og

so
(W)

∴ intN og
so
(J�W) = intN og

so
(J )�intN og

so
(W)

(vii) clN og
sc
(J ) = �{G : G is N og

sc in H and J ⊆ G}
(clN og

sc
(J ))$ = �{G$ : G$ is N og

so in H and J$ ⊇ G$}
= �{O : O is N og

so in H and J$ ⊇ O}
= intN og

so
(J$)

∴ (clN og
sc
(J ))$ = intN og

so
(J$)

(viii) intN og
so
(J ) = �{O : O is N og

so in H and J ⊇ O}
(intN og

so
(J ))$ = �{O$ : O$ is N og

sc in H and J$ ⊆ O$}
= �{G : G is N og

sc in H and J$ ⊆ G}
= clN og

sc
(J$)

∴ (intN og
so
(J ))$ = clN og

sc
(J$)

□

Proposition 3.2. Let (H, τN o
s
) be a N o

s -topological space. If W is a N og
sc -set in (H, τN o

s
)

and W ⊆ J ⊆ clN og
sc
(W), then J is a N og

sc .

Proof. Let L be a N o
s -openset in (H, τN o

s
) such that J ⊆ L

Since W ⊆ J
W ⊆ L
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Now, W is N og
sc -set and

clN og
sc
(W) ⊆ L

But clN og
sc
(J ) ⊆ clN og

sc
(W)

Since clN og
sc
(J ) ⊆ clN og

sc
(W) ⊆ L

=⇒ clN og
sc
(J ) ⊆ L

Hence J is a N og
sc -set □

Proposition 3.3. Let (H, τN o
s
) be a N o

s -topological space and J be a N o
s -set in (H, τN o

s
).

Then J is a N og
so -set if and only if W ⊆ intN o

s
(J ),whenever W is a N o

s -closedset and
W ⊆ J .

Proof. The proof is obvious. □

Proposition 3.4. If intN o
s
(J ) ⊆ W ⊆ J and if J is a N og

so -set then W is also a N og
so -set.

Proof. Now, J$ ⊆ W$ ⊆ (intN o
s
(J ))$ = clN o

s
(J$)

Since J is a N og
so -set, then J$ is a N og

sc -set
By proposition (3.6)

W$ is a N og
sc -set =⇒ W is a N og

so -set, □

Definition 3.3. Let H and I be any two nonempty sets, and let f : H → I be a function.
The notions of image and preimage of a N o

s -set are defined as follows:

(i) If K = {⟨i,ℵK(i),ðK(i),ΥK(i)⟩ : i ∈ I} is a N o
s -set in I, then the preimage of K

under f, denoted by f→(K), is the N o
s -set in H defined by

f→(K) = {(e, {⟨h, f→(ℵK)(h), f
→(ðK)(h), f→(ΥK)(h)⟩ : h ∈ H}) : e ∈ E}.

(ii) If J = {(e, {⟨h,ℵJ (h), ðJ (h),ΥJ (h)⟩ : h ∈ H}) : e ∈ E} is a N o
s -set in H, then the

image of J under f, denoted by f(J ), is the N o
s -set in I defined by

f(J ) = {(e, {⟨i, f(ℵJ )(i), f(ðJ )(i), (1− f(1−ΥJ )(i))⟩ : i ∈ I}) : e ∈ E}.
where,

f(ℵJ )(i) =

{
suph∈f→(i) ℵJ (h), if f→(i) ̸= ∅
0, otherwise

f(ðJ )(i) =

{
suph∈f→(i) ðJ (h), if f→(i) ̸= ∅
0, otherwise

f(ΥJ )(i) =

{
infh∈f→(i)ΥJ (h), if f→(i) ̸= ∅
1, otherwise

Corollary 3.1. Let Jn be a N o
s -set in H(∀n = 1, 2, . . . ), Km be a N o

s -set in I(∀m =
1, 2, . . . ) and f : H → I be a function. Then

(i) J1 ⊆ J2 =⇒ f(J1) ⊆ f(J2)
(ii) K1 ⊆ K2 =⇒ f→(K1) ⊆ f→(K2)
(iii) J ⊆ f→(f(J )){if f is injective, then J = f→(f(J ))}
(iv) f(f→(K)) ⊆ K{if f is surjective, then f(f→(K)) = K}
(v) f→(�Km) = �f→(Km)
(vi) f→(�Km) = �f→(Km)

(viii) f(�Jn) = �f(Jn)
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(viii) f(�Jn) ⊆ �f(Jn){if f is injective, then f(�Jn) = �f(Jn)}
(ix) f→(�) =�
(x) f→(⊙) = ⊙
(xi) f(�) =�, if f is surjective
(xii) f(⊙) = ⊙
(xiii) (f(J ))$ ⊆ f(J$), if f is surjective

(xiv) f(J$) = (f(J ))$

Definition 3.4. Let (H, τN o1
s
) and (I, τN o2

s
) be any two N o

s -topological spaces. Let f :
(H, τN o1

s
) → (I, τN o2

s
) is a function.

(i) f is said to be a N o
s Generalized Continuous Function (N ogC

s -function) if the inverse
image of every N o

s -closedset in (I, τN o2
s
) is a N og

sc -set in (H, τN o1
s
)

Similarly if the inverse image of every N o
s -openset in (I, τN o2

s
) is a N og

so -set in
(H, τN o1

s
)

(ii) f is said to be a Strongly N o
s Continuous Function (strongly-N oC

s -function)if f→(J )
is both N o

s -openset and N o
s -closedset in (H, τN o1

s
) for each N o

s -set in (I, τN o2
s
)

(iii) f is said to be a Strongly N o
s Generalized Continuous Function (strongly-N ogC

s -
function) if the inverse image of every N og

so -set in (I, τN o2
s
) is a N o

s -openset in
(H, τN o1

s
)

Proposition 3.5. Let (H, τN o1
s
) and (I, τN o2

s
) be any two N o

s -topological space. Let

f : (H, τN o1
s
) → (I, τN o2

s
) is said to be a N ogC

s -function. Then for every N o
s -set J in

H,f(clN og
sc
(J )) ⊆ clN o

s
(f(J ))

Proof. Let J be a N o
s -set in (H, τN o1

s
).

Since clN o
s
(f(J )) is a N o

s -closedset and f is a N ogC
s -function

=⇒ f→(clN o
s
(f(J ))) is a N og

sc -set and f→(clN o
s
(f(J ))) ⊇ J

Now, clN og
sc
(J ) ⊆ f→(clN o

s
(f(J )))

∴ f(clN og
sc
(J )) ⊆ clN o

s
(f(J )) □

Proposition 3.6. Let (H, τN o1
s
) and (I, τN o2

s
) be any two N o

s -topological space. Let

f : (H, τN o1
s
) → (I, τN o2

s
) is said to be a N ogC

s -function. Then for every N o
s -set J in

I,clN og
sc
(f→(J )) ⊆ f→(clN o

s
(J ))

Proof. Let J be a N o
s -set in (I, τN o2

s
).Let K = f→(J ) then

f(K) = f(f→(J )) ⊆ J
By the proposition (3.5),

f(clN og
sc
(f→(J ))) ⊆ clN o

s
(f(f→(J )))

Thus, clN og
sc
(f→(J )) ⊆ f→(clN o

s
(J )) □

Proposition 3.7. Let (H, τN o1
s
) and (I, τN o2

s
) be any two N o

s -topological space. Let f :

(H, τN o1
s
) → (I, τN o2

s
) is said to be a N o

s Continuous function(N oC
s -function) then it is a

N ogC
s -function.

Proof. Let J be a N o
s -openset in (I, τN o2

s
).

Since f is a N oC
s -function, f→(J ) is a N o

s -openset in (H, τN o1
s
).

Every N o
s -openset is a N og

sc -set.
Now, f→(J ) is a N og

so -set in (H, τN o1
s
).

Hence f is a N ogC
s -function □
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Proposition 3.8. The converse of the proposition is not necessarily true. That is, if

f : (H, τN o1
s
) → (I, τN o2

s
) is a N ogC

s -function, it does not imply that f is a N o
s Continuous

function (N oC
s -function).

Proof. It is proved by the help of the example (3.1). □

Example 3.1. Let H = {a, b, c} and E = e. Let N o
s -sets J and K in H as follows:

J = {⟨a, 1.4, 0.7, 0.3⟩, ⟨b, 0.6, 0.9, 1.1⟩, ⟨c, 1.2, 0.9, 0.5⟩}
K = {⟨a, 1.4, 0.7, 0.2⟩, ⟨b, 0.7, 0.9, 1.1⟩, ⟨c, 1.3, 0.7, 0.4⟩}

Then two N o
s -topologies τN o1

s
= {⊙,�,J } and τN o2

s
= {⊙,�,K}. Thus (H, τN o1

s
) and

(H, τN o2
s
) are two N o

s -topological spaces.
Define f1 : (H, τN o1

s
) → (H, τN o2

s
) as f1(a) = b,f(b) = a and f(c) = c.

f−1
1 (K) = {e, {⟨a, 0.7, 0.9, 1.1⟩, ⟨b, 1.4, 0.7, 0.2⟩, ⟨c, 1.3, 0.7, 0.4⟩} : e ∈ E}
(f−1
1 (K))$ = {e, {⟨a, 1.1, 0.6, 0.7⟩, ⟨b, 0.2, 0.8, 1.4⟩, ⟨c, 0.4, 0.8, 1.3⟩} : e ∈ E}

(f−1
1 (K))$ ⊆ G
where,G = {�,J }

(τN o1
s
)$ = {⊙,�, (J )$}

(J )$ = {e, {⟨a, 0.3, 0.8, 1.4⟩, ⟨b, 1.1, 0.6, 0.6⟩, ⟨c, 0.5, 0.6, 1.2⟩} : e ∈ E}
clτoNs

(f→(K)$) = {�}
⊆ G

=⇒ clτoNs
(f→(K)$) ⊆ G

Then f1 is a N ogC
s -function.

∴ f−1
1 (K) is a N o

s -openset

But f−1
1 (K) is not N o

s -openset in (H, τN o1
s
) ∀K ∈ τN o2

s

=⇒ f1 is not a N oC
s -function.

Proposition 3.9. Let (H, τN o1
s
) and (I, τN o2

s
) be any two N o

s -topological space. Let
f : (H, τN o1

s
) → (I, τN o2

s
) is a Strongly Neutrosophic Over Soft Generalized Continuous

function (strongly-N ogC
s -function) then f is a N oC

s -function.

Proof. Let J be a N o
s -openset in (I, τN o2

s
). Every N o

s -openset is a N og
so -set

Now, J is a N og
so -set in (I, τN o2

s
)

Since f is strongly-N ogC
s , f→(J ) is N o

s -openset in (H, τN o1
s
)

Hence, f is a N oC
s -function. □

Remark 3.1. Converse of proposition 3.9 need not be true(shown in example 3.2).

Example 3.2. Let H = {a, b, c} and E = e. Let N o
s -set K and L in H as follows:

K = {e, {⟨a, 1.4, 0.7, 0.2⟩, ⟨b, 1.3, 0.7, 0.4⟩, ⟨c, 0.7, 0.9, 1.1⟩}
L = {e, {⟨a, 1.4, 0.7, 0.2⟩, ⟨b, 0.7, 0.9, 1.1⟩, ⟨c, 1.3, 0.7, 0.4⟩}

Then two N o
s -topologies τN o3

s
= {⊙,�,K} and τN o4

s
= {⊙,�,L}. Thus (H, τN o3

s
) and

(H, τN o4
s
) are two N o

s -topological spaces.
Define f2 : (H, τN o3

s
) → (H, τN o4

s
) as f2(a) = a,f2(b) = c and f2(c) = b.

Then f2 is a N oC
s -function.

Let M = {e, {⟨a, 1.4, 0.8, 0.1⟩, ⟨b, 0.8, 0.9, 1.1⟩, ⟨c, 1.3, 0.7, 0.4⟩} be a N og
so -set in (H, τN o4

s
).

But f→2 (M) is not an N o
s -openset in (H, τN o3

s
).

=⇒ f2 is not a strongly-N ogC
s -function.
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Proposition 3.10. Let (H, τN o1
s
) and (I, τN o2

s
) be two N o

s -topological spaces. If f :

(H, τN o1
s
) → (I, τN o2

s
) is a strongly-N oC

s -function, then f is a strongly-N ogC
s -function.

Proof. Let J be a N og
so -set in (I, τN o2

s
).

Since f is a strongly-N oC
s -function, it follows that f→(J ) is both an N o

s -openset and
a N o

s -closedset in (H, τN o1
s
).

Hence, f is a strongly-N ogC
s -function. □

Definition 3.5. Let Ti and Wi be N o
s -sets.Where

Ti = {⟨h,ℵTi(h),ðTi(h),ΥTi(h)⟩ : h ∈ H}

Wi = {⟨h,ℵWi
(h), ðWi

(h),ΥWi
(h)⟩ : h ∈ H}

Tangent Similarity Measure :

ρ(Ti,Wi) =
1

n

(
n∑
i=1

1−tan

[
π
[
|ℵTi(h)− ℵWi

(h)|+ |ðTi(h)− ðWi
(h)|+ |ΥTi(h)−ΥWi

(h)|
]

12

])
Absolute Difference :

d(Ti,Wi) =
[
|ℵTi(h)− ℵWi

(h)|+ |ðTi(h)− ðWi
(h)|+ |ΥTi(h)−ΥWi

(h)|
]

Proposition 3.11. Let (ρ(Ti,Wi)) for any two N o
s -sets Ti and Wi over an non-empty set

H .Then it satiesfies the properties

(i) 0 ≤ ρ(Ti,Wi) ≤ 1
(ii) ρ(Ti,Wi) = 1 iff Ti = Wi

(iii) ρ(Ti,Wi) = ρ(Wi, Ti)
(iv) For any Ti ⊆ Wi ⊆ Vi then ρ(Ti,Vi) ≤ ρ(Ti,Wi) and ρ(Ti,Vi) ≤ ρ(Wi,Vi)

Proof. (i) As the sum of the membership, indeterminacy, and non-membership func-
tions of the N o

s -set lies within the interval [0, 3], and given that the similarity
measure based on the tangent function also falls within [0, 1], hence conclude that
the value of the tangent function is constrained between 0°to π

4 .
To prove that ρ(Ti,Wi) ≤ 1
Substitute the lowest range for N o

s -set is 0,
i.e.,

[
|ℵTi(h)− ℵWi

(h)|+ |ðTi(h)− ðWi
(h)|+ |ΥTi(h)−ΥWi

(h)|
]
= 0

then ρ(Ti,Wi) =
1
n

(∑n
i=1 1− tan

[
π(0)
12

])

ρ(Ti,Wi) =
1
n

(∑n
i=1 1− tan(0)

)

ρ(Ti,Wi) =
1
n

(∑n
i=1 1− 0

)
ρ(Ti,Wi) = 1

Substitute the highest range for N o
s -set is 3,

i.e.,
[
|ℵTi(h)− ℵWi

(h)|+ |ðTi(h)− ðWi
(h)|+ |ΥTi(h)−ΥWi

(h)|
]
= 3

then ρ(Ti,Wi) =
1
n

(∑n
i=1 1− tan

[
π(3)
12

])
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ρ(Ti,Wi) =
1
n

(∑n
i=1 1− tan

[
π
4

])

ρ(Ti,Wi) =
1
n

(∑n
i=1 1− tan

[
π
4

])
ρ(Ti,Wi) = 0

Hence 0 ≤ ρ(Ti,Wi) ≤ 1
(ii) For any two N o

s -sets Ti and Wi IF Ti = Wi this implies
ℵTi(h) = ℵWi

(h),ðTi(h) = ðWi
(h),ΥTi(h) = ΥWi

(h)
Then |ℵTi(h)− ℵWi

(h)| = 0,|ðTi(h)− ðWi
(h)| = 0,|ΥTi(h)−ΥWi

(h)| = 0
Thus ρ(Ti,Wi) = 1
Conversely, ρ(Ti,Wi) = 1
then,|ℵTi(h)− ℵWi

(h)| = 0,|ðTi(h)− ðWi
(h)| = 0,|ΥTi(h)−ΥWi

(h)| = 0
=⇒ Ti = Wi

(iii) By the definition of (3.5),

ρ(Ti,Wi) =
1

n

(
n∑
i=1

1−tan

[
π
[
|ℵTi(h)− ℵWi

(h)|+ |ðTi(h)− ðWi
(h)|+ |ΥTi(h)−ΥWi

(h)|
]

12

])

=
1

n

(
n∑
i=1

1−tan

[
π
[
|−(ℵWi

(h)− ℵTi(h))|+ |−(ðWi
(h)− ðTi(h))|+ |−(ΥWi

(h)−ΥTi(h))|
]

12

])
=⇒ ρ(Ti,Wi) = ρ(Wi, Ti)

(iv) By the definition of absolute difference (3.5)

d(Ti,Wi) =
[
|ℵTi(h)− ℵWi

(h)|+ |ðTi(h)− ðWi
(h)|+ |ΥTi(h)−ΥWi

(h)|
]

Since Ti ⊆ Wi ⊆ Vi

d(Ti,Wi) ≤ d(Ti,Vi)

Tangent function is increasing in the interval [0,π4 ].

tan

[
πd(Ti,Wi)

12

]
≤ tan

[
πd(Ti,Vi)

12

]
1− tan

[
πd(Ti,Vi)

12

]
≤ 1− tan

[
πd(Ti,Wi)

12

]
Then ρ(Ti,Vi) ≤ ρ(Ti,Wi)
Similarly,

d(Wi,Vi) ≤ d(Ti,Vi)

Tangent function is increasing in the interval [0,π4 ].

tan

[
πd(Wi,Vi)

12

]
≤ tan

[
πd(Ti,Vi)

12

]
1− tan

[
πd(Ti,Vi)

12

]
≤ 1− tan

[
πd(Wi,Vi)

12

]
Then ρ(Ti,Vi) ≤ ρ(Wi,Vi)

□
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4. Algorithm

Algorithm to solve tangent similarity of two N o
s -set as follows:

Step 1:Collection of data
Consider m attributes A1,A2,A3, . . . ,Am,n replacement C1, C2, C3, . . . , Cn and

h replacement D1,D2,D3, . . . ,Dh

(n ≤ h) for multi-attributes decision making problem(MADMP).
Dh\Ai A1 A2 . . . Am

D1 d11 d12 . . . d1m
D2 d21 d22 . . . d2m
D3 d31 d32 . . . d3m
. . . . . . .
. . . . . . .
Dh dp1 dp2 . . . dpm

Ai\Cj C1 C2 . . . Cn
A1 a11 a12 . . . a1n
A2 a21 a22 . . . a2n
A3 a31 a32 . . . a3n
. . . . . . .
. . . . . . .
Am am1 am2 . . . amn

Step 2:Calculation
Calculating the tangent similarity measure with collected data.

Step 3:Final Decision
Pick the highest tangent measure from each row.

5. Flowchart

A flowchart visually represents an algorithm’s steps in sequential order it simplifies
complex processes, making the algorithm easier to understand and follow.
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6. Numerical application

Selecting the right machine for competition requires a systematic approach. Firstly,
understanding the competition’s requirements and setting clear objectives is crucial. This
forms the basis for decision-making. Analyzing past competitions provides valuable in-
sights and helps avoid common pitfalls. Assessing team resources such as expertise, budget,
and time aids in determining feasible approaches. When evaluating machine types, factors
like performance, reliability, and safety are paramount to align with competition goals.
Prototyping, testing, and iterating on the design are essential for refining performance.
Planning for contingencies and remaining adaptable are key strategies for navigating chal-
lenges. Diligently following these steps maximizes the team’s chances of success.

Consider similar situation arises in a company to participate in Best Invention Compe-
tition. For that they produced three types of machines. To take a good decision regarding
the best one among three machines.

Machine={M1,M2,M3},Criteria={Performance, Reliability, and Safety}
Position={Selected,Non-Selected}

Table 1. Relation between Machine and criteria

Y̆ Performance Reliability Safety
M1 (1.8,0.3,0.1) (1.5,0.4,0.1) (1.6,0.4,0.1)
M2 (1.7,0.3,0.2) (0.7,1.4,0.0) (0.7,0.3,1.2)
M3 (0.8,1.02,1.02) (0.9,1.1,0.1) (0.9,0.1,1.2)

Table 2. Relation between criteria and position

W̆ Non-Selected Selected
Performance (1.7,0.1,0.3) (0.5,0.3,1.3)
Reliability (1.6,0.3,0.2) (0.6,0.3,1.2)
Safety (0.7,1.2,0.1) (0.7,1.3,0.1)

Table 3. Tangent Similarity Measure

ρ Non-Selected Selected
M1 0.9963 0.9903
M2 0.9933 0.9898
M3 0.9902 0.9909

Table 4. Summary

Machine Result
M1 Not selected
M2 Not selected
M3 Selected
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7. Conclusions

This study delves into the application of tangent similarity measures within the frame-
work of Neutrosophic Over Soft Sets , offering a comprehensive exploration of their sig-
nificance. Additionally, it introduces the concept of Neutrosophic Over Soft Generalized
Closed Sets and Neutrosophic Over Soft Generalized Continuous Functions, providing
clear definitions and propositions to elucidate their implications. Furthermore, it presents
a numerical case study focusing on the selection process for the Best Invention Compe-
tition, wherein the analysis demonstrates that the machine denoted as M3 emerges as
the optimal choice, meeting the specified criteria effectively. By highlighting its appli-
cability beyond theoretical realms, the manuscript underscores the practical significance
of employing such measures in real-world scenarios, thereby enhancing decision-making
processes and problem-solving methodologies. The manuscript highlights the versatility
of the N o

s -set correlation measure across diverse domains, such as medicine, industry, and
construction. In medicine, it aids in evaluating patient outcomes, while in industry, it op-
timizes processes. In construction, it enhances project management by assessing risks and
ensuring quality control. This broad applicability underscores its potential as a powerful
analytical tool in various environments.
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