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A STUDY ON UPPER DEG-CENTRIC GRAPHS

TIMMY TOMY THALAVAYALIL1, JOHAN KOK1, SUDEV NADUVATH1∗, §

Abstract. The upper deg-centric graph of a simple, connected graph G, denoted by
Gud, is a graph constructed from G such that V (Gud) = V (G) and E(Gud) = {vivj :
dG(vi, vj) ≥ degG(vi)}. This paper introduces and discusses the concepts of upper deg-
centric graphs and iterated upper deg-centrication of a graph.
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1. Introduction

For a basic terminology of graph theory, we refer to [3, 1]. For further topics on graph
classes, [11, 7, 10]. All graphs discussed in this paper are finite, simple, connected, and
undirected. Without loss of generality, the vertex set of a graph G of order n will be
V (G) = {vi : 1 ≤ i ≤ n}. The order and size of G are denoted by |G| and ε(G),
respectively. Recall that the distance between two distinct vertices vi and vj of G, denoted
by dG(vi, vj), is the length of the shortest path joining them. The eccentricity of a vertex
vi ∈ V (G), denoted by e(vi), is the furthest distance from vi to some vertex of G. Vertices
at a distance e(vi) from vi are called the eccentric vertices of vi. An eccentric graph of a
graph G denoted by Ge, is obtained from the same set of vertices as G with two vertices vi
and vj being adjacent in Ge if and only if vj is an eccentric vertex of vi or vi is an eccentric
vertex of vj (see[1, 2]). The iterated eccentric graph of G, denoted by Gek , is defined in
[8], as the derived graph obtained by taking the eccentric graph successively k-times; that
is, Gek = ((Ge)e . . .)e, (k-times).

The degree centric graph or deg-centric graph of G is the graph Gd with V (Gd) = V (G)
and E(Gd) = {vivj : dG(vi, vj) ≤ degG(vi)} (see[4]). Let G be a graph and Gd be the
deg-centric graph of G. Then, the successive iteration deg-centric graph of G, denoted by
Gdk , is defined as the derived graph obtained by taking the deg-centric graph successively
k times; that is Gdk= ((Gd)d...)d, (k-times). This process is known as deg-centrication
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process (see[4]). The exact degree centric graph or exact deg-centric graph of a graph G
and denoted by Ged, is the graph with V (Ged) = V (G) and E(Ged) = {vivj : dG(vi, vj) =
degG(vi)}. This graph transformation is called exact deg-centrication (see[5]). Let G be a
graph and Ged be the exact deg-centric graph of G. Then, the iterated exact deg-centric
graph of G, denoted by Gedk , is defined as the graph obtained by applying exact deg-
centrication successively k-times; That is, Gedk= ((Ged)ed . . .)ed, (k-times) (see[5]). The
coarse degree centric graph or coarse deg-centric graph of a graph G, denoted by Gcd, is
the graph with V (Gcd) = V (G) and E(Gcd) = {vivj : dG(vi, vj) > degG(vi)}. Then the
iterated coarse deg-centric graph of G, denoted by Gcdk , is defined as the graph obtained
by applying coarse deg-centrication successively k-times; That is, Gcdk= ((Gcd)cd...)cd,
(k-times) (see[6].

Motivated by the studies mentioned above, in this paper, we introduce a new class of
transformed graphs, called the upper deg-centric graphs, and investigate the properties
and structural characteristics of this type of transformed graph.

2. Upper Deg-centric Graphs

Definition 2.1. The upper degree centric graph or upper deg-centric graph of a graph G,
denoted by Gud, is the graph with V (Gud) = V (G) and E(Gud) = {vivj : dG(vi, vj) ≥
degG(vi)}. This graph transformation is called upper deg-centrication. Note that this
process is independent of the choice of vi or vj in the above sets.

The upper deg-centric graph of cycle C7 is given in Figure 1b for illustration.
The upper deg-centric graph Gud of a graph G need not be a connected graph (For

illustration, see Figure1(c)).

Observation 2.1. The upper deg-centric graph of a complete graph Kn of order n ̸= 2
is an empty graph Kn.

Observation 2.2. If there exists a vertex vi ∈ V (G) with degG(vi) > eG(vi), then vi
cannot initiate an edge in Gud.

Lemma 2.1. The upper deg-centric graph of a graph G is an empty graph if and only if
δ(G) > diam(G).

Proof. Assume that δ(G) > diam(G). If any vertex, say vi, initiates at least one edge,
say vivj , it implies that degG(vi) ≥ dG(vi, vj). Subsequently, the edge vivk, where e(vi) =
dG(vi, vk), must be formed as well. The aforesaid implies that either degG(vi) < δ(G) or
e(vi) > diam(G). In both cases, we have a contradiction.

Conversely, assume that Gud = Kn. In turn, it implies that for each vertex vi,
degG(vi) > eG(vi). Therefore, any vertex vj with dG(vj) = δ(G) has eG(vj) ≥ δ(G).
This settles the result. □

Definition 2.2. Let G be a graph and Gud be the upper deg-centric graph of G. Then, the
iterated upper deg-centric graph of G, denoted by Gudk , is defined as the graph obtained
by applying upper deg-centrication successively k-times. That is, Gudk= ((Gud)ud...)ud,
(k-times).

The upper deg-centrication process of the cycle C7 is given in Figure 1.

Lemma 2.2. For a graph G of order n, which has at least one pendant vertex. Then, any
pendant vertex of G will be a universal vertex of Gud.

Proof. The result is a direct consequence of Definition 2.1. □
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Figure 1. The upper deg-centrication process of C7.

Theorem 2.1. Consider a graph G of order n ̸= 2. If Gud does not have a K2 component,
then the iterated upper deg-centric graph Gudk , 1 ≤ k ≤ 2 is the empty graph Kn.

Proof. Note that should one or more trivial graphsK1 result inGud, each remains an empty
component. On the other hand, a component K2 remains connected through iterated
upper deg-centrication. Therefore, the order to be considered is n ̸= 2. If G ≡ Kn, then
Gud = Kn. Thus k = 1 < 2.

Assume that G is not a complete graph. Since diam(G) is finite there exists a pair of
vertices say, vi, vj such that dG(vi, vj) = diam(G) = e(vi). Hence, in Gud, the degrees of
vi and vj have increased and the respective eccentricity decreased. Hence, from Definition
2.1, the vertices vi, vj will be isolated vertices in Gud2 . Similar reasoning is valid between
all pairs of vertices. Hence, the result is settled by mathematical induction. □

For convenience, a path Pn is depicted on a horizontal line, and the vertices are labelled
from left to right as v1, v2, v3,. . . , vn.

Proposition 2.1. Consider a path Pn, n ≥ 4. If V = {v1, v2, v3, . . . , vn} is the vertex set
of the upper deg-centric graph, then we have

(a) The vertices v2, vn−1 have a degree of n− 2.

(b) The vertices v3, v4, . . . , vn−3, vn−2 have a degree of n− 3.

Proof. (a) Consider the vertices v2 and vn−1. Both deg(v2) = deg(vn−1) = 2, in the
path and hence according to Definition 2.1, both v2 and vn−1 will incident an edge
to all other vertices except to their respective neighbours. Therefore each of v2 and
vn−1 forms exactly n − 3 edges. However, since v1 and vn respectively formed an
extra edge, it follows that deg(v2) = deg(vn−1) = n− 2 in (Pn)ud.

(b) Consider the vertices v3, v4, . . . , vn−3, vn−2. By Definition 2.1, each vertex is adjacent
to all vertices except their respective neighbours. Hence, the result holds.

□

An illustration of Proposition 2.1 is given in Figure 2.

Corollary 2.1. For a path Pn, n ≥ 4, ε((Pn)ud) =
n2−3n+6

2 .

Proof. By Lemma 2.2, the degree of each of v1, vn is n − 1. In view of the results above,
together with the results of Proposition 2.1, in the well-known formula,

ε(pn) =
1

2

∑
vi∈V (pn)

deg(vi)
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Figure 2. Upper deg-centric graph of P7.

yields the result. □

A non-trivial bistar graph, denoted by Sa,b, is a graph obtained by joining the centers
of two non-trivial star graphs K1,a, a ≥ 1 and K1,b, b ≥ 1 with the edge v0u0.

Proposition 2.2. For a, b ≥ 1,

ε((Sa,b)ud) =

(
a+ b+ 2

2

)
− 1.

Proof. Note that all pendant vertices of Sa,b will be adjacent to all other vertices in the
upper deg-centric graph,(Sa,b)ud. Also, the central vertices of Sa,b cannot be adjacent to
each other in the upper deg-centric graph since they are at a distance of one and their
degree greater than one. Therefore the upper deg-centric graph of Sa,b is isomorphic to
Ka+b+2 − {u0, v0}. Hence,

ε((Sa,b)ud) =

(
a+ b+ 2

2

)
− 1.

□

Proposition 2.3. For a cycle Cn, n ≥ 5, the upper deg-centric graph, (Cn)ud is always a
(n− 3)-regular graph.

Proof. Because degCn(vi) = 2, for all vi ∈ V (Cn), any vertex vi in (Cn)ud is adjacent to all
vertices in V (Cn)\NCn [vi]. It immediately follows that (Cn)ud is always a (n− 3)-regular
graph. □

A wheel graph, denoted by W1,n, n ≥ 3, is obtained by taking a cycle Cn, n ≥ 3 (the
rim with rim-vertices) and adding the central vertex v0 with spokes namely, edges v0vi,
1 ≤ i ≤ n. Note that, in view of Lemma 2.1, the upper deg-centric graph of a wheel graph
W1,n is the empty graph Kn+1. Since minimum degree, δ(W1,n) > diam(W1,n).

Recall that the sequence of the second pentagonal numbers denoted by pn is generated by

pn = n(3n+1)
2 , n = 0, 1, 2, . . .. This sequence is: 0, 2, 7, 15, 26, 40, 57, 77, 100, 126, 155, 187, . . .

The relation between the size of the upper deg-centricated Helm graphs and the second
pentagon numbers follows immediately as a proposition.
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A helm graph, denoted by H1,n, n ≥ 3, is a graph obtained from a wheel graph W1,n

by attaching a pendant vertex ui to the corresponding rim vertex vi (see Figure 3 for
illustration).

Proposition 2.4. For n ≥ 3, ε((H1,n)ud) = pn.

Proof. Note that the helm graph H1,n, n ≥ 3 is of the order 2n + 1. Let V (H1,n) =
{v0, v1, v2, . . . , vn, u1, u2, . . . , un︸ ︷︷ ︸

pendant vertices

}. Since deg(v0) = n > e(v0) = 2 no edge forms from v0

in the upper deg-centric graph,(H1,n)ud. Also, since each degH1,n(vi) = 4 > e(vi), no edge
forms from a vi in (H1,n)ud. However, since all ui are pendant vertices, each ui forms the
edge uivi in the upper deg-centric graph. In view of Lemma 2.2, the n pendant vertices
u1, u2, . . . , un are adjacent to all other 2n vertices that is deg(un) = 2n in (H1,n)ud . All
other n+ 1 vertices are adjacent with each un hence, deg(vn) = n in (H1,n)ud. Finally,

ε((H1,n)ud) =

∑
wi∈V ((H1,n)ud)

deg(wi)

2
=

n(2n) + (n+ 1)(n)

2
=

n(3n+ 1)

2
.

□

An illustration to Proposition 2.4 is given in Figure 3.
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Figure 3. Upper deg-centric graph of H1,4.

A closed helm graph, denoted by CH1,n, n ≥ 3, is the graph obtained from a helm graph
H1,n by joining the pendant vertices, in order, forming a cycle, called the outer rim.

Proposition 2.5. For n ≥ 3,

ε((CH1,n)ud) =

{
n(n− 3) if n = 3, 4, 5.
1
2n(3n− 11) if n ≥ 6.

Proof. Note that diam(CH1,3) = 2 and δ(CH1,3) = 3 and hence its upper deg-centric
graph is empty. Also, diam(CH1,4) = 3 and δ(CH1,4) = 3. It is easy to see that,
dCH1,4(u1, v3) = 3 = diam(CH1,4). Hence, by Definition 2.1, each outer-rim vertex
forms one edge. Therefore, ε((CH1,4)ud) = 4. For CH1,5 we have diam(CH1,5) = 3
and δ(CH1,3) = 3. It is easy to see that, dCH1,5(u1, v3) = dCH1,5(v4) = 3 = diam(CH1,5).
By Definition 2.1, each outer-rim vertex forms two edges. Therefore, ε((CH1,5)ud) = 10.



T.T. THALAVAYALIL et al.: A STUDY ON UPPER DEG-CENTRIC GRAPHS 1829

Consider CH1,n, n ≥ 6. In view of the reasoning in Part (a), it follows that each outer-rim
vertex forms (n − 3) edges to vertices on the inner-rim. With regards to the outer-rim,
any vertex ui forms (n − 5) edges to outer-rim vertices. Altogether, 2n − 8 such edges
will incident to the outer rim vertices in the upper deg-centric graph. Therefore, a total

of n(n−3)+(n−5)
2 edges are formed to obtain (CH1,n)ud. In inner rim vertices, n − 3 edges

form in the upper deg-centric graphs. Therefore, a total of n(n−3)
2 edges are formed to

obtain (CH1,n)ud. The aforesaid yield the result,

ε((CH1,n)ud) =
n[(n− 3) + (n− 5)]

2
+

n(n− 3)

2
=

1

2
n(3n− 11).

□

If the edge v1v3 joins vertices v1 and v3, then the subdivision of v1v3 replaces v1v3 by a
new vertex v2 and two new edges v1v2 and v2v3. A gear graph, denoted by Gn, n ≥ 3, is
a graph obtained by applying subdivision to each edge of the rim of a wheel graph W1,n.

Proposition 2.6. For n ≥ 3, ε((Gn)ud) =
3
2n(n− 1).

Proof. For a gear graph Gn, n ≥ 3, is of the order 2n+1. Let V (Gn) = v0, v1, v2, . . . , vn, u1,
u2, . . . , un. Since degGn(v0) = n ≥ 3 > e(v0) = 2, no edges formed from v0 in (Gn)ud.
However, since deg(vi) = 3, there are n − 2 edges incident on any vertex vi and since
deg(ui) = 2, there are 2n− 2 edges incident on any vertex ui in (Gn)ud. Then, deg(vi) =
n− 2, deg(ui) = 2n− 2 and deg(v0) = n in (Gn)ud . Finally,

ε((Gn)ud) =

∑
wi∈V ((Gn)ud)

deg(wi)

2
=

n(n− 2) + n(2n− 2) + n

2
=

3

2
n(n− 1).

□

Corollary 2.2. The gear graph Gn, n ≥ 3 has the following properties:

(a) (Gn)ud is a split graph with a clique of order n+ 1.

(b) (Gn)ud is connected.

(c) diam((Gn)ud) = 3.

Proof. For a gear graph Gn, n ≥ 3 is of the order 2n+ 1. Let V (Gn) = v0, v1, v2, . . . , vn,
u1, u2, . . . , un.

(a) Since deg(ui) = 2 in Gn, it follows by Definition 2.1, that each vertex ui as a
consequence of 2n − 2 edges. All vertices ui together with vertex v0 are pairwise
adjacent. Hence, Kn+1 ⊂ (Gn)ud. In other words, (Gn)ud contains a complete graph
Kn+1. Since deg(vi) = 3 in Gn, for all i and dGn(vi, vj) = 2, i ̸= j it follows
that {vi : 1 ≤ i ≤ n} is a non-empty independent set in (Gn)ud. However, each
vi is adjacent to some uj . Therefore, (Gn)ud is a split graph (a graph that can be
partitioned into a clique and an independent set) with a clique of order n+ 1.

(b) From Part (i), it follows that (Gn)ud is connected.

(c) Since (Gn)ud is a connected split graph, 1 ≤ diam((Gn)ud) ≤ 3. Further, the non-
empty independent set contains all vi, 1 ≤ i ≤ n, n ≥ 3. Thus, there exists at least
one pair of vertices vi, vj such that d(Gn)ud(vi, vj) = 3. The aforesaid implies that
diam((Gn)ud) = 3.

□
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A web graph, denoted by Wb1,n, n ≥ 3, is the graph obtained by attaching a pendant
vertex wi to each corresponding vertex ui of the outer cycle (or rim) of the closed helm
graph CH1,n.

Proposition 2.7. The upper deg-centric graph of a web graph Wb1,n,n ≥ 3, contains n
vertices with degrees 3n and 2n+ 1 vertices with degrees n.

Proof. Note that the web graphWb1,n, is of the order 3n+1. Let V (Wb1,n,) = {v0, v1, v2, . . . ,
vn−1, vn, u1, u2, u3, . . . , un, w1, w2, w3, . . . , wn︸ ︷︷ ︸

pendant vertices

}. Since deg(v0) = n > e(v0) = 3, no edge in-

cident with v0 in upper deg-centric graph. Also, since each deg(vi) = 4 > e(vi) no edge
incident from a vi in (Wb1,n)ud . Similarly, no edge incident from any vertex ui in (Wb1,n)ud
. However, since all wi is an end vertex, each wi forms the edges wiuj , 1 ≤ j ≤ n as well
as wivj , 1 ≤ j ≤ n as well as the edge wiv0 and finally, in a commutative fashion, the
edges wiwj , 1 ≤ j ≤ n, i ̸= j. The summation of incident edges yields the result. □

Proposition 2.8. For n ≥ 3,

ε((Wb1,n)ud) =
n

2
(5n+ 1)

.

Proof. By Lemma 2.2, the degree of each of w1, w2, w3 . . . , wn is n − 1. Utilising those
above together with the results of Proposition 2.7 in the well-known formula,

ε(Wb1,n) =
1

2

∑
vi∈V (Wb1,n)

deg(vi)

yields the result.
□

A double wheel DWn is obtained by taking two copies of a wheelWn, n ≥ 3, and merging
the two central vertices. Note that, given Lemma 2.1, the upper deg-centric graph of a
double wheel DWn, n ≥ 3 is the empty graph K2n+1.

A flower graph, F1,n, n ≥ 3 is a graph obtained from a helm graph H1,n, by joining each
of its pendant vertices ui’s to its central vertex v0.

Proposition 2.9. For n ≥ 3, ε((F1,n)ud) =
3
2n(n− 1).

Proof. Recall that the flower graph F1,n,, n ≥ 3 is of the order 2n + 1. Let V (F1,n,) =
{v0, v1, v2, . . . , vn, u1, u2, . . . , un}. Since deg(v0) = n > e(v0) = 2 in F1,n, no edge forms
from v0. That is, deg(v0) = 0 in (F1,n)ud. Also, since each deg(vi) = 4 > e(vi) in F1,n, no
edge exists with a vi as its end vertex, in (F1,n)ud. However, since deg(ui) = 2 in F1,n, each
ui is adjacent to the vertices with at least a distance of 2 from it. In view of Definition
2.1, the n vertices u1, u2, . . . , un are adjacent with 2n−2 vertices that is, deg(un) = 2n−2
in (F1,n)ud. Also, center vertex v0 is non adjacent with all vertices that is, deg(v0) = 0 in
(F1,n)ud. and v1, v2, v3 . . . vn are adjacent with n − 1 vertices and hence deg(vn) = n − 1
in (F1,n)ud. Finally,

ε((F1,n)ud) =
1

2

∑
wi∈V ((F1,n)ud)

deg(wi) =
n(2n− 2) + n(n− 1)

2
=

3

2
n(n− 1).

□
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The sunflower graph, denoted by SF1,n, n ≥ 3 is obtained from the wheel W1,n by
attaching n vertices ui, 1 ≤ i ≤ n such that each ui is adjacent to vi and vi+1 and count
the suffix is taken modulo n.

Proposition 2.10. For n ≥ 3, ε((SF1,n)ud) =
3
2n(n− 1).

Proof. The sunflower graph SF1,n,, n ≥ 3, is of the order 2n + 1. Let V (SF1,n,) =
v0, v1, v2, . . . , vn, u1, u2, . . . , un as mentioned in the definition. Since deg(v0) = n > e(v0) =
2 in SF1,n, no edge forms from v0 in (SF1,n)ud. Also, since each deg(vi) = 5 > e(vi) in
SF1,n, no edge forms from a vi in (SF1,n)ud. However, since deg(ui) = 2 in SF1,n, each
ui forms the edge with at least a distance of two vertices from ui in (SF1,n)ud. In view
of Definition 2.1, the n vertices u1, u2, . . . , un are adjacent with all other 2n − 2 vertices
that is deg(un) = 2n − 2 in (SF1,n)ud. Also center vertex v0 is adjacent with all ui that
is deg(v0) = n in (SF1,n)ud and v1, v2, v3 . . . vn are adjacent with n − 2 vertices hence,
deg(vn) = n− 2 in (SF1,n)ud . Thus, we have

ε((SF1,n)ud) =

∑
wi∈V ((SF1,n)ud)

deg(wi)

2
=

n(2n− 2) + n(n− 2) + n

2
=

3

2
n(n− 1).

□

An illustration to Proposition 2.10 is given in Figure 4.
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Figure 4. Upper deg-centric graph of SF1,4.

A closed sunflower graph CSF1,n is obtained by adding the edges uiui+1, 1 ≤ i ≤ n, to
the sunflower graph.

Proposition 2.11. The upper deg-centric graph of a closed sunflower graph CSF1,n,
n ≥ 3. Then,

ε((CSF1,n)ud) =

{
0 if 3 ≤ n ≤ 7.
n2−7n

2 if n ≥ 8.

Proof. (a) If 3 ≤ n ≤ 7, then the result is a direct consequence of Lemma 2.1.

(b) If n ≥ 8, for a closed sunflower graph CSF1,n. Clearly, the closed sunflower graph
is of the order 2n + 1. Let V (CSF1,n,) = v0, v1, v2, . . . , vn, u1, u2, . . . , un. Since
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deg(v0) = n > e(v0) = 2 in CSF1,n, no edge forms from v0 in upper deg-centric
graph. Also, since each deg(vi) = 5 > e(vi) in CSF1,n, no edge forms from a vi in
upper deg-centric graph. However, since deg(ui) = 4 in CSF1,n, each ui forms the
edge with at least a distance of four vertices from ui in (CSF1,n)ud. By Definition 2.1,
the n vertices u1, u2, . . . , un are adjacent with n− 7 vertices that is deg(un) = n− 7
in (CSF1,n)ud. Finally,

ε((CSF1,n)ud) =

∑
wi∈V ((CSF1,n)ud)

deg(wi)

2
=

n(n− 7)

2
=

n2 − 7n

2
.

□

A blossom graph, denoted by Bl1,n, is obtained by making each ui adjacent to the
central vertex of the closed sunflower graph. In view of Lemma 2.1, the upper deg-centric
graph of a blossom graph Bln, n ≥ 3, is the empty graph K2n+1.

Recall that a complete bipartite graph Kn,m, n,m ≥ 1 is a graph whose vertex set can
be partitioned into two independent sets X, |X| = n and Y , |Y | = m and each vertex in
X is adjacent to all vertices in Y .

Proposition 2.12. For a complete bipartite graph K2,m, m ≥ 3. Then, the upper deg-

centric graph is the disjoint union of the empty graph K2 and the complete graph Km.

Proof. Consider a complete bipartite graph K2,m, m > 2. Clearly, K2,m is a graph whose
vertex set can be partitioned into two independent sets X, |X| = 2 and Y , |Y | = m. Let
X = v1, v2, and Y = u1,2 , . . . , vm,. In accordance with Definition 2.1 construct (K2,m)ud
as follows: since degK2,m(ui) = 2 and all pairs of vertices ui, uj have dK2,m(ui, uj) = 2 set

Y yields a complete graph Km. Clearly, set X yields the empty graph K2. Hence, the
upper deg-centric graph is the disjoint union of the empty graph K2 and the complete
graph Km. □

Proposition 2.13. Let G be a complete bipartite graph Kn,m, n,m ≥ 3. Then, the upper

deg-centric graph is the empty graph Kn+m.

Proof. The result is a direct consequence of Lemma 2.1. □

A tree denoted by Tn, n ≥ 1 is a connected acyclic graph. It is known that a tree Tn

has n− 1 edges.

Proposition 2.14. If n ≥ 3, Tn, then in the upper deg-centric graph a vertex vi has
deg(Tn)ud(vi) ≥ 2.

Proof. It is known that a tree Tn of order n ≥ 3 has at least two pendant vertices. By
Lemma 2.2, each pendant vertices forms an edge to all vertices. Therefore, each internal
vertex vi has deg(vi) ≥ 2 in (Tn)ud. It is known from Lemma 2.2 that each pendant vertex
has degree n− 1 ≥ 3− 1 ≥ 2. Hence, the result. □

An illustration of a proposition 2.14 is given in Figure 5.
A sunlet graph, denoted by Sln, n ≥ 3, is a graph obtained by attaching a pendant

vertex to every vertex of a cycle graph cn, n ≥ 3. In other words, a sunlet graph on 2n
vertices is obtained by taking the corona product Cn ◦K1.

Proposition 2.15. For n ≥ 3,

ε((Sln)ud) =

{
3n2−n

2 if n = 3, 4, 5.

n(2n-3) if n ≥ 6.
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Figure 5. A tree of order seven and its upper deg-centric graph

Proof. (a) If n = 3, 4, 5. For a sunlet graph Sln, n ≥ 3, is of the order 2n. Let
V (Sln) = {v1, v2, . . . , vn, u1, u2, . . . , un︸ ︷︷ ︸

pendant vertices

}. Since all ui are pendant vertices, each

ui forms the edge uivi. Then, by Lemma 2.2, the n pendant vertices u1, u2, . . . , un
are adjacent to all other 2n − 1 vertices that is deg(un) = 2n − 1 in (Sln)ud. All
other n vertices are adjacent with each un hence, deg(vn) = n in (Sln)ud. Then we
have,

ε((Sln)ud) =

∑
wi∈V ((Sln)ud)

deg(wi)

2
=

3n2 − n

2
.

(b) If n ≥ 6, by Lemma 2.2, the n pendant vertices u1, u2, . . . , un are adjacent to all
other 2n− 1 vertices that is deg(un) = 2n− 1 in (Sln)ud. Since deg(vn) = 3 in Sln,
these n vertices are adjacent with a distance of three or greater than three vertices
in the cycle and with each un vertices. That is, deg(vn) = 2n−5 in (Sln)ud. Finally,

ε((Sln)ud) =

∑
wi∈V ((Sln)ud)

deg(wi)

2
= n(2n− 3).

□

The ladder graph, Ln, n ≥ 1 is obtained by taking two copies of a path Pn with respective
vertices say, v1, v2, v3, . . . , vn and u1, u2, u3, . . . , un and adding the edges viui, 1 ≤ i ≤ n.
Note that Ln

∼= Pn□K2 where □ denotes the Cartesian product of two graphs.

Proposition 2.16. For a ladder graph Ln, n ≥ 1 it follows that:

ε(L1ud) = 1,
ε(L2ud) = 2,
ε(L3ud) = 8,
ε(L4ud) = 16,

ε(Gud) = ε(Hud) + 4n− 10 where H = Ln−1 and n ≥ 5.

Proof. By applying Definition 2.1, it easily follows that ε(L1ud) = 1, ε(L2ud) = 2, ε(L3ud) =
8 and ε(L4ud) = 16. Now, besides the claimed result, it is valid that for any n ≥ 5 and
H = Ln−1 the size of Hud; that is, ε(Hud) can be determined by applying Definition 2.1.
Consider H = Ln−1 and assume that both Hud and ε(Hud) has been determined. Now
consider the extension from H to G = Ln. Some subgraph of Hud is a subgraph of Gud.
Note that in G the degree of respectively vn−1, un−1 has increased to 3. Therefore, in Gud

the two edges vn−1un−2 and un−1vn−2 as well as the two edges vn−1vn−3 and un−1un−3
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found in Hud are not contributed in Gud. All other edges formed from only amongst the
vertices V (H) ⊂ V (G) replicate exactly in Gud. With regards to say, vn the edges which
contributes are vnun−1 together with vnui, 1 ≤ i ≤ n− 2. A similar thing can be applied
to vertex un. Hence,

ε(Gud) = ε(Hud) + [2× 2(n− 2) + 2− 4]

= = ε(Hud) + 4n− 10.

Finally, since an initial value, that is. ε(L4ud) = 16, is known, the result for n ≥ 5
follows. □

3. Conclusions

From this study, it follows that for any vertex vi ∈ V (G) the open neighborhood
NGud

(vi) can be partitioned into three sets that is:

(i) N→Gud
(vi) = {vj : degG(vi) ≤ dG(vi, vj) and degG(vj) > dG(vj , vi)}.

(ii) N←Gud
(vi) = {vj : degG(vi) > dG(vi, vj) and degG(vj) ≤ dG(vj , vi)}.

(iii) N↔Gud
(vi) = {vj : degG(vi) ≤ dG(vi, vj) and degG(vj) ≤ dG(vj , vi)}.

Hence, (iii) represents the commutative initiation of edges.

Conjecture 3.1. Let G and H be any pair of graphs of order n. If degG(vi) ≤ degH(uj),
then N→Gud

(vi) ≥ N→Hud
(uj).

Although this paper considers connected graphs, upper deg-centrication of a discon-
nected graph is possible. Note that in an empty graph G = Nn, n ≥ 1 each vertex
vi has degG(vi) = 0. If n = 1 then Gud = K1. If n ≥ 2 then dG(vi, vj) = ∞ for
all pairs of distinct vertices. Hence, by Definition 2.1, it follows that Gud

∼= Kn. Let
G + H be the join of G and H. Let G ∪ H be the disjoint union of G and H. If graph
J = (((G1 ∪G2) ∪G3) ∪ · · · ∪Gt−1) ∪Gt then clearly,

Jud = (((G1ud +G2ud) +G3ud) + · · ·+G(t−1)ud) +Gtud . (1)

The above facts highlight the wide scope for further research in this area.
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