TWMS J. App. and Eng. Math. V.15, N.7, 2025, pp. 1824-1835

A STUDY ON UPPER DEG-CENTRIC GRAPHS

TIMMY TOMY THALAVAYALIL¹, JOHAN KOK¹, SUDEV NADUVATH^{1*}, §

ABSTRACT. The upper deg-centric graph of a simple, connected graph G, denoted by G_{ud} , is a graph constructed from G such that $V(G_{ud}) = V(G)$ and $E(G_{ud}) = \{v_i v_j : d_G(v_i, v_j) \ge deg_G(v_i)\}$. This paper introduces and discusses the concepts of upper deg-centric graphs and iterated upper deg-centrication of a graph.

Keywords: Distance, eccentricity, deg-centric graphs, upper deg-centric graphs, upper deg-centrication process.

AMS Subject Classification: 83-02, 99A00

1. INTRODUCTION

For a basic terminology of graph theory, we refer to [3, 1]. For further topics on graph classes, [11, 7, 10]. All graphs discussed in this paper are finite, simple, connected, and undirected. Without loss of generality, the vertex set of a graph G of order n will be $V(G) = \{v_i : 1 \leq i \leq n\}$. The order and size of G are denoted by |G| and $\varepsilon(G)$, respectively. Recall that the distance between two distinct vertices v_i and v_j of G, denoted by $d_G(v_i, v_j)$, is the length of the shortest path joining them. The eccentricity of a vertex $v_i \in V(G)$, denoted by $e(v_i)$, is the furthest distance from v_i to some vertex of G. Vertices at a distance $e(v_i)$ from v_i are called the eccentric vertices of v_i . An eccentric graph of a graph G denoted by G_e , is obtained from the same set of vertices as G with two vertices v_i and v_j being adjacent in G_e if and only if v_j is an eccentric vertex of v_i or v_i is an eccentric vertex of v_j (see[1, 2]). The iterated eccentric graph of G, denoted by G_{e^k} , is defined in [8], as the derived graph obtained by taking the eccentric graph successively k-times; that is, $G_{e^k} = ((G_e)_{e} \dots)_e$, (k-times).

The degree centric graph or deg-centric graph of G is the graph G_d with $V(G_d) = V(G)$ and $E(G_d) = \{v_i v_j : d_G(v_i, v_j) \leq deg_G(v_i)\}$ (see[4]). Let G be a graph and G_d be the deg-centric graph of G. Then, the successive iteration deg-centric graph of G, denoted by G_{d^k} , is defined as the derived graph obtained by taking the deg-centric graph successively k times; that is $G_{d^k} = ((G_d)_{d...})_d$, (k-times). This process is known as deg-centrication

e-mail: timmy. thalavayalil@res. christuniversity.in; ORCID: https://orcid.org/0009-0001-9389-7165.

¹ Department of Mathematics, Christ University, Bangalore, India.

e-mail:johan.kok@christuniversity.in; ORCID: https://orcid.org/0000-0003-0106-1676 e-mail:sudev.nk@christuniversity.in; ORCID: https://orcid.org/0000-0001-9692-4053

^{*} Corresponding author.

[§] Manuscript received: June 03, 2024; accepted: December 16, 2024.

TWMS Journal of Applied and Engineering Mathematics, Vol.15, No.7; © Işık University, Department of Mathematics, 2025; all rights reserved.

process (see[4]). The exact degree centric graph or exact deg-centric graph of a graph Gand denoted by G_{ed} , is the graph with $V(G_{ed}) = V(G)$ and $E(G_{ed}) = \{v_i v_j : d_G(v_i, v_j) = deg_G(v_i)\}$. This graph transformation is called exact deg-centrication (see[5]). Let G be a graph and G_{ed} be the exact deg-centric graph of G. Then, the iterated exact deg-centric graph of G, denoted by G_{ed^k} , is defined as the graph obtained by applying exact degcentrication successively k-times; That is, $G_{ed^k} = ((G_{ed})_{ed} \dots)_{ed}$, (k-times) (see[5]). The coarse degree centric graph or coarse deg-centric graph of a graph G, denoted by G_{cd} , is the graph with $V(G_{cd}) = V(G)$ and $E(G_{cd}) = \{v_i v_j : d_G(v_i, v_j) > deg_G(v_i)\}$. Then the iterated coarse deg-centric graph of G, denoted by G_{cd^k} , is defined as the graph obtained by applying coarse deg-centrication successively k-times; That is, $G_{cd^k} = ((G_{cd})_{cd} \dots)_{cd}$, (k-times) (see[6].

Motivated by the studies mentioned above, in this paper, we introduce a new class of transformed graphs, called the upper deg-centric graphs, and investigate the properties and structural characteristics of this type of transformed graph.

2. Upper Deg-centric Graphs

Definition 2.1. The upper degree centric graph or upper deg-centric graph of a graph G, denoted by G_{ud} , is the graph with $V(G_{ud}) = V(G)$ and $E(G_{ud}) = \{v_i v_j : d_G(v_i, v_j) \ge deg_G(v_i)\}$. This graph transformation is called upper deg-centrication. Note that this process is independent of the choice of v_i or v_j in the above sets.

The upper deg-centric graph of cycle C_7 is given in Figure 1b for illustration.

The upper deg-centric graph G_{ud} of a graph G need not be a connected graph (For illustration, see Figure1(c)).

Observation 2.1. The upper deg-centric graph of a complete graph K_n of order $n \neq 2$ is an empty graph \overline{K}_n .

Observation 2.2. If there exists a vertex $v_i \in V(G)$ with $deg_G(v_i) > e_G(v_i)$, then v_i cannot initiate an edge in G_{ud} .

Lemma 2.1. The upper deg-centric graph of a graph G is an empty graph if and only if $\delta(G) > diam(G)$.

Proof. Assume that $\delta(G) > diam(G)$. If any vertex, say v_i , initiates at least one edge, say $v_i v_j$, it implies that $deg_G(v_i) \ge d_G(v_i, v_j)$. Subsequently, the edge $v_i v_k$, where $e(v_i) = d_G(v_i, v_k)$, must be formed as well. The aforesaid implies that either $deg_G(v_i) < \delta(G)$ or $e(v_i) > diam(G)$. In both cases, we have a contradiction.

Conversely, assume that $G_{ud} = \overline{K}_n$. In turn, it implies that for each vertex v_i , $deg_G(v_i) > e_G(v_i)$. Therefore, any vertex v_j with $d_G(v_j) = \delta(G)$ has $e_G(v_j) \ge \delta(G)$. This settles the result.

Definition 2.2. Let G be a graph and G_{ud} be the upper deg-centric graph of G. Then, the *iterated upper deg-centric graph* of G, denoted by G_{ud^k} , is defined as the graph obtained by applying upper deg-centrication successively k-times. That is, $G_{ud^k} = ((G_{ud})_{ud}...)_{ud}$, (k-times).

The upper deg-centrication process of the cycle C_7 is given in Figure 1.

Lemma 2.2. For a graph G of order n, which has at least one pendant vertex. Then, any pendant vertex of G will be a universal vertex of G_{ud} .

Proof. The result is a direct consequence of Definition 2.1.

FIGURE 1. The upper deg-centrication process of C_7 .

Theorem 2.1. Consider a graph G of order $n \neq 2$. If G_{ud} does not have a K_2 component, then the iterated upper deg-centric graph G_{ud^k} , $1 \leq k \leq 2$ is the empty graph \overline{K}_n .

Proof. Note that should one or more trivial graphs K_1 result in G_{ud} , each remains an empty component. On the other hand, a component K_2 remains connected through iterated upper deg-centrication. Therefore, the order to be considered is $n \neq 2$. If $G \equiv K_n$, then $G_{ud} = \overline{K}_n$. Thus k = 1 < 2.

Assume that G is not a complete graph. Since diam(G) is finite there exists a pair of vertices say, v_i, v_j such that $d_G(v_i, v_j) = diam(G) = e(v_i)$. Hence, in G_{ud} , the degrees of v_i and v_j have increased and the respective eccentricity decreased. Hence, from Definition 2.1, the vertices v_i, v_j will be isolated vertices in G_{ud^2} . Similar reasoning is valid between all pairs of vertices. Hence, the result is settled by mathematical induction.

For convenience, a path P_n is depicted on a horizontal line, and the vertices are labelled from left to right as $v_1, v_2, v_3, \ldots, v_n$.

Proposition 2.1. Consider a path P_n , $n \ge 4$. If $V = \{v_1, v_2, v_3, \ldots, v_n\}$ is the vertex set of the upper deg-centric graph, then we have

- (a) The vertices v_2, v_{n-1} have a degree of n-2.
- (b) The vertices $v_3, v_4, \ldots, v_{n-3}, v_{n-2}$ have a degree of n-3.
- *Proof.* (a) Consider the vertices v_2 and v_{n-1} . Both $deg(v_2) = deg(v_{n-1}) = 2$, in the path and hence according to Definition 2.1, both v_2 and v_{n-1} will incident an edge to all other vertices except to their respective neighbours. Therefore each of v_2 and v_{n-1} forms exactly n-3 edges. However, since v_1 and v_n respectively formed an extra edge, it follows that $deg(v_2) = deg(v_{n-1}) = n-2$ in $(P_n)_{ud}$.
 - (b) Consider the vertices $v_3, v_4, \ldots, v_{n-3}, v_{n-2}$. By Definition 2.1, each vertex is adjacent to all vertices except their respective neighbours. Hence, the result holds.

An illustration of Proposition 2.1 is given in Figure 2.

Corollary 2.1. For a path P_n , $n \ge 4$, $\varepsilon((P_n)_{ud}) = \frac{n^2 - 3n + 6}{2}$.

Proof. By Lemma 2.2, the degree of each of v_1, v_n is n - 1. In view of the results above, together with the results of Proposition 2.1, in the well-known formula,

$$\varepsilon(p_n) = \frac{1}{2} \sum_{v_i \in V(p_n)} deg(v_i)$$

(B) $(P_7)_{ud}$

FIGURE 2. Upper deg-centric graph of P_7 .

yields the result.

A non-trivial bistar graph, denoted by $S_{a,b}$, is a graph obtained by joining the centers of two non-trivial star graphs $K_{1,a}$, $a \ge 1$ and $K_{1,b}$, $b \ge 1$ with the edge $v_0 u_0$.

Proposition 2.2. For $a, b \ge 1$,

$$\varepsilon((S_{a,b})_{ud}) = \binom{a+b+2}{2} - 1$$

Proof. Note that all pendant vertices of $S_{a,b}$ will be adjacent to all other vertices in the upper deg-centric graph, $(S_{a,b})_{ud}$. Also, the central vertices of $S_{a,b}$ cannot be adjacent to each other in the upper deg-centric graph since they are at a distance of one and their degree greater than one. Therefore the upper deg-centric graph of $S_{a,b}$ is isomorphic to $K_{a+b+2} - \{u_0, v_0\}$. Hence,

$$\varepsilon((S_{a,b})_{ud}) = \binom{a+b+2}{2} - 1.$$

Proposition 2.3. For a cycle C_n , $n \ge 5$, the upper deg-centric graph, $(C_n)_{ud}$ is always a (n-3)-regular graph.

Proof. Because $deg_{C_n}(v_i) = 2$, for all $v_i \in V(C_n)$, any vertex v_i in $(C_n)_{ud}$ is adjacent to all vertices in $V(C_n) \setminus N_{C_n}[v_i]$. It immediately follows that $(C_n)_{ud}$ is always a (n-3)-regular graph.

A wheel graph, denoted by $W_{1,n}$, $n \geq 3$, is obtained by taking a cycle C_n , $n \geq 3$ (the rim with rim-vertices) and adding the central vertex v_0 with spokes namely, edges v_0v_i , $1 \leq i \leq n$. Note that, in view of Lemma 2.1, the upper deg-centric graph of a wheel graph $W_{1,n}$ is the empty graph \overline{K}_{n+1} . Since minimum degree, $\delta(W_{1,n}) > diam(W_{1,n})$.

Recall that the sequence of the second pentagonal numbers denoted by p_n is generated by $p_n = \frac{n(3n+1)}{2}$, $n = 0, 1, 2, \ldots$ This sequence is: 0, 2, 7, 15, 26, 40, 57, 77, 100, 126, 155, 187, \ldots

The relation between the size of the upper deg-centricated Helm graphs and the second pentagon numbers follows immediately as a proposition.

1827

A helm graph, denoted by $H_{1,n}$, $n \geq 3$, is a graph obtained from a wheel graph $W_{1,n}$ by attaching a pendant vertex u_i to the corresponding rim vertex v_i (see Figure 3 for illustration).

Proposition 2.4. For $n \geq 3$, $\varepsilon((H_{1,n})_{ud}) = p_n$.

Proof. Note that the helm graph $H_{1,n}$, $n \ge 3$ is of the order 2n + 1. Let $V(H_{1,n}) = \{v_0, v_1, v_2, \ldots, v_n, \underbrace{u_1, u_2, \ldots, u_n}_{pendant \ vertices}\}$. Since $deg(v_0) = n > e(v_0) = 2$ no edge forms from v_0

in the upper deg-centric graph, $(H_{1,n})_{ud}$. Also, since each $deg_{H_{1,n}}(v_i) = 4 > e(v_i)$, no edge forms from a v_i in $(H_{1,n})_{ud}$. However, since all u_i are pendant vertices, each u_i forms the edge $u_i v_i$ in the upper deg-centric graph. In view of Lemma 2.2, the *n* pendant vertices u_1, u_2, \ldots, u_n are adjacent to all other 2*n* vertices that is $deg(u_n) = 2n$ in $(H_{1,n})_{ud}$. All other n + 1 vertices are adjacent with each u_n hence, $deg(v_n) = n$ in $(H_{1,n})_{ud}$. Finally,

$$\varepsilon((H_{1,n})_{ud}) = \frac{\sum_{w_i \in V((H_{1,n})_{ud})} deg(w_i)}{2} = \frac{n(2n) + (n+1)(n)}{2} = \frac{n(3n+1)}{2}.$$

An illustration to Proposition 2.4 is given in Figure 3.

FIGURE 3. Upper deg-centric graph of $H_{1,4}$.

A closed helm graph, denoted by $CH_{1,n}$, $n \ge 3$, is the graph obtained from a helm graph $H_{1,n}$ by joining the pendant vertices, in order, forming a cycle, called the outer rim.

Proposition 2.5. For $n \geq 3$,

$$\varepsilon((CH_{1,n})_{ud}) = \begin{cases} n(n-3) & \text{if } n = 3, 4, 5, \\ \frac{1}{2}n(3n-11) & \text{if } n \ge 6. \end{cases}$$

Proof. Note that $diam(CH_{1,3}) = 2$ and $\delta(CH_{1,3}) = 3$ and hence its upper deg-centric graph is empty. Also, $diam(CH_{1,4}) = 3$ and $\delta(CH_{1,4}) = 3$. It is easy to see that, $d_{CH_{1,4}}(u_1, v_3) = 3 = diam(CH_{1,4})$. Hence, by Definition 2.1, each outer-rim vertex forms one edge. Therefore, $\varepsilon((CH_{1,4})_{ud}) = 4$. For $CH_{1,5}$ we have $diam(CH_{1,5}) = 3$ and $\delta(CH_{1,3}) = 3$. It is easy to see that, $d_{CH_{1,5}}(u_1, v_3) = d_{CH_{1,5}}(v_4) = 3 = diam(CH_{1,5})$. By Definition 2.1, each outer-rim vertex forms two edges. Therefore, $\varepsilon((CH_{1,5})_{ud}) = 10$.

Consider $CH_{1,n}$, $n \ge 6$. In view of the reasoning in Part (a), it follows that each outer-rim vertex forms (n-3) edges to vertices on the inner-rim. With regards to the outer-rim, any vertex u_i forms (n-5) edges to outer-rim vertices. Altogether, 2n-8 such edges will incident to the outer rim vertices in the upper deg-centric graph. Therefore, a total of $\frac{n(n-3)+(n-5)}{2}$ edges are formed to obtain $(CH_{1,n})_{ud}$. In inner rim vertices, n-3 edges form in the upper deg-centric graphs. Therefore, a total of $\frac{n(n-3)}{2}$ edges are formed to obtain $(CH_{1,n})_{ud}$. The aforesaid yield the result,

$$\varepsilon((CH_{1,n})_{ud}) = \frac{n[(n-3) + (n-5)]}{2} + \frac{n(n-3)}{2} = \frac{1}{2}n(3n-11).$$

If the edge v_1v_3 joins vertices v_1 and v_3 , then the subdivision of v_1v_3 replaces v_1v_3 by a new vertex v_2 and two new edges v_1v_2 and v_2v_3 . A gear graph, denoted by G_n , $n \ge 3$, is a graph obtained by applying subdivision to each edge of the rim of a wheel graph $W_{1,n}$.

Proposition 2.6. For $n \ge 3$, $\varepsilon((G_n)_{ud}) = \frac{3}{2}n(n-1)$.

Proof. For a gear graph $G_n, n \ge 3$, is of the order 2n+1. Let $V(G_n) = v_0, v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_n$. Since $deg_{G_n}(v_0) = n \ge 3 > e(v_0) = 2$, no edges formed from v_0 in $(G_n)_{ud}$. However, since $deg(v_i) = 3$, there are n-2 edges incident on any vertex v_i and since $deg(u_i) = 2$, there are 2n-2 edges incident on any vertex u_i in $(G_n)_{ud}$. Then, $deg(v_i) = n-2$, $deg(u_i) = 2n-2$ and $deg(v_0) = n$ in $(G_n)_{ud}$. Finally,

$$\varepsilon((G_n)_{ud}) = \frac{\sum_{w_i \in V((G_n)_{ud})} deg(w_i)}{2} = \frac{n(n-2) + n(2n-2) + n}{2} = \frac{3}{2}n(n-1).$$

Corollary 2.2. The gear graph G_n , $n \ge 3$ has the following properties:

- (a) $(G_n)_{ud}$ is a split graph with a clique of order n+1.
- (b) $(G_n)_{ud}$ is connected.
- (c) $diam((G_n)_{ud}) = 3.$

Proof. For a gear graph G_n , $n \ge 3$ is of the order 2n + 1. Let $V(G_n) = v_0, v_1, v_2, \ldots, v_n$, u_1, u_2, \ldots, u_n .

- (a) Since $deg(u_i) = 2$ in G_n , it follows by Definition 2.1, that each vertex u_i as a consequence of 2n 2 edges. All vertices u_i together with vertex v_0 are pairwise adjacent. Hence, $K_{n+1} \subset (G_n)_{ud}$. In other words, $(G_n)_{ud}$ contains a complete graph K_{n+1} . Since $deg(v_i) = 3$ in G_n , for all i and $d_{G_n}(v_i, v_j) = 2$, $i \neq j$ it follows that $\{v_i : 1 \leq i \leq n\}$ is a non-empty independent set in $(G_n)_{ud}$. However, each v_i is adjacent to some u_j . Therefore, $(G_n)_{ud}$ is a split graph (a graph that can be partitioned into a clique and an independent set) with a clique of order n + 1.
- (b) From Part (i), it follows that $(G_n)_{ud}$ is connected.
- (c) Since $(G_n)_{ud}$ is a connected split graph, $1 \leq diam((G_n)_{ud}) \leq 3$. Further, the nonempty independent set contains all v_i , $1 \leq i \leq n$, $n \geq 3$. Thus, there exists at least one pair of vertices v_i, v_j such that $d_{(G_n)_{ud}}(v_i, v_j) = 3$. The aforesaid implies that $diam((G_n)_{ud}) = 3$.

A web graph, denoted by $Wb_{1,n}$, $n \geq 3$, is the graph obtained by attaching a pendant vertex w_i to each corresponding vertex u_i of the outer cycle (or rim) of the closed helm graph $CH_{1,n}$.

Proposition 2.7. The upper deg-centric graph of a web graph $Wb_{1,n}$, $n \ge 3$, contains n vertices with degrees 3n and 2n + 1 vertices with degrees n.

Proof. Note that the web graph $Wb_{1,n}$, is of the order 3n+1. Let $V(Wb_{1,n}) = \{v_0, v_1, v_2, ..., v_{n-1}, v_n, u_1, u_2, u_3, ..., u_n, \underbrace{w_1, w_2, w_3, ..., w_n}_{\text{pendant vertices}}\}$. Since $deg(v_0) = n > e(v_0) = 3$, no edge in-

cident with v_0 in upper deg-centric graph. Also, since each $deg(v_i) = 4 > e(v_i)$ no edge incident from a v_i in $(Wb_{1,n})_{ud}$. Similarly, no edge incident from any vertex u_i in $(Wb_{1,n})_{ud}$. However, since all w_i is an end vertex, each w_i forms the edges $w_i u_j$, $1 \le j \le n$ as well as $w_i v_j$, $1 \le j \le n$ as well as the edge $w_i v_0$ and finally, in a commutative fashion, the edges $w_i w_j$, $1 \le j \le n$, $i \ne j$. The summation of incident edges yields the result.

Proposition 2.8. For $n \geq 3$,

$$\varepsilon((Wb_{1,n})_{ud}) = \frac{n}{2}(5n+1)$$

Proof. By Lemma 2.2, the degree of each of $w_1, w_2, w_3, \ldots, w_n$ is n-1. Utilising those above together with the results of Proposition 2.7 in the well-known formula,

$$\varepsilon(Wb_{1,n}) = \frac{1}{2} \sum_{v_i \in V(Wb_{1,n})} \deg(v_i)$$

yields the result.

A double wheel DW_n is obtained by taking two copies of a wheel W_n , $n \ge 3$, and merging the two central vertices. Note that, given Lemma 2.1, the upper deg-centric graph of a double wheel DW_n , $n \ge 3$ is the empty graph \overline{K}_{2n+1} .

A flower graph, $F_{1,n}$, $n \ge 3$ is a graph obtained from a helm graph $H_{1,n}$, by joining each of its pendant vertices u_i 's to its central vertex v_0 .

Proposition 2.9. For
$$n \ge 3$$
, $\varepsilon((F_{1,n})_{ud}) = \frac{3}{2}n(n-1)$.

Proof. Recall that the flower graph $F_{1,n,i}$, $n \geq 3$ is of the order 2n + 1. Let $V(F_{1,n,i}) = \{v_0, v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_n\}$. Since $deg(v_0) = n > e(v_0) = 2$ in $F_{1,n}$, no edge forms from v_0 . That is, $deg(v_0) = 0$ in $(F_{1,n})_{ud}$. Also, since each $deg(v_i) = 4 > e(v_i)$ in $F_{1,n}$, no edge exists with a v_i as its end vertex, in $(F_{1,n})_{ud}$. However, since $deg(u_i) = 2$ in $F_{1,n}$, each u_i is adjacent to the vertices with at least a distance of 2 from it. In view of Definition 2.1, the *n* vertices u_1, u_2, \ldots, u_n are adjacent with 2n - 2 vertices that is, $deg(u_n) = 2n - 2$ in $(F_{1,n})_{ud}$. Also, center vertex v_0 is non adjacent with all vertices that is, $deg(v_0) = 0$ in $(F_{1,n})_{ud}$. and $v_1, v_2, v_3 \ldots v_n$ are adjacent with n - 1 vertices and hence $deg(v_n) = n - 1$ in $(F_{1,n})_{ud}$. Finally,

$$\varepsilon((F_{1,n})_{ud}) = \frac{1}{2} \sum_{w_i \in V((F_{1,n})_{ud})} deg_(w_i) = \frac{n(2n-2) + n(n-1)}{2} = \frac{3}{2}n(n-1).$$

The sunflower graph, denoted by $SF_{1,n}$, $n \geq 3$ is obtained from the wheel $W_{1,n}$ by attaching n vertices u_i , $1 \leq i \leq n$ such that each u_i is adjacent to v_i and v_{i+1} and count the suffix is taken modulo n.

Proposition 2.10. For $n \ge 3$, $\varepsilon((SF_{1,n})_{ud}) = \frac{3}{2}n(n-1)$.

Proof. The sunflower graph $SF_{1,n,i}$, $n \geq 3$, is of the order 2n + 1. Let $V(SF_{1,n,i}) = v_0, v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_n$ as mentioned in the definition. Since $deg(v_0) = n > e(v_0) = 2$ in $SF_{1,n}$, no edge forms from v_0 in $(SF_{1,n})_{ud}$. Also, since each $deg(v_i) = 5 > e(v_i)$ in $SF_{1,n}$, no edge forms from a v_i in $(SF_{1,n})_{ud}$. However, since $deg(u_i) = 2$ in $SF_{1,n}$, each u_i forms the edge with at least a distance of two vertices from u_i in $(SF_{1,n})_{ud}$. In view of Definition 2.1, the *n* vertices u_1, u_2, \ldots, u_n are adjacent with all other 2n - 2 vertices that is $deg(u_n) = 2n - 2$ in $(SF_{1,n})_{ud}$. Also center vertex v_0 is adjacent with all u_i that is $deg(v_0) = n$ in $(SF_{1,n})_{ud}$ and $v_1, v_2, v_3 \ldots v_n$ are adjacent with n - 2 vertices hence, $deg(v_n) = n - 2$ in $(SF_{1,n})_{ud}$. Thus, we have

$$\varepsilon((SF_{1,n})_{ud}) = \frac{\sum_{w_i \in V((SF_{1,n})_{ud})} deg(w_i)}{2} = \frac{n(2n-2) + n(n-2) + n}{2} = \frac{3}{2}n(n-1).$$

An illustration to Proposition 2.10 is given in Figure 4.

FIGURE 4. Upper deg-centric graph of $SF_{1,4}$.

A closed sunflower graph $CSF_{1,n}$ is obtained by adding the edges $u_i u_{i+1}, 1 \leq i \leq n$, to the sunflower graph.

Proposition 2.11. The upper deg-centric graph of a closed sunflower graph $CSF_{1,n}$, $n \geq 3$. Then,

$$\varepsilon((CSF_{1,n})_{ud}) = \begin{cases} 0 & \text{if } 3 \le n \le 7, \\ \frac{n^2 - 7n}{2} & \text{if } n \ge 8. \end{cases}$$

Proof. (a) If $3 \le n \le 7$, then the result is a direct consequence of Lemma 2.1.

(b) If $n \ge 8$, for a closed sunflower graph $CSF_{1,n}$. Clearly, the closed sunflower graph is of the order 2n + 1. Let $V(CSF_{1,n}) = v_0, v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_n$. Since $deg(v_0) = n > e(v_0) = 2$ in $CSF_{1,n}$, no edge forms from v_0 in upper deg-centric graph. Also, since each $deg(v_i) = 5 > e(v_i)$ in $CSF_{1,n}$, no edge forms from a v_i in upper deg-centric graph. However, since $deg(u_i) = 4$ in $CSF_{1,n}$, each u_i forms the edge with at least a distance of four vertices from u_i in $(CSF_{1,n})_{ud}$. By Definition 2.1, the *n* vertices u_1, u_2, \ldots, u_n are adjacent with n - 7 vertices that is $deg(u_n) = n - 7$ in $(CSF_{1,n})_{ud}$. Finally,

$$\varepsilon((CSF_{1,n})_{ud}) = \frac{\sum_{w_i \in V((CSF_{1,n})_{ud})} deg(w_i)}{2} = \frac{n(n-7)}{2} = \frac{n^2 - 7n}{2}.$$

A blossom graph, denoted by $Bl_{1,n}$, is obtained by making each u_i adjacent to the central vertex of the closed sunflower graph. In view of Lemma 2.1, the upper deg-centric graph of a blossom graph Bl_n , $n \geq 3$, is the empty graph \overline{K}_{2n+1} .

Recall that a complete bipartite graph $K_{n,m}$, $n, m \ge 1$ is a graph whose vertex set can be partitioned into two independent sets X, |X| = n and Y, |Y| = m and each vertex in X is adjacent to all vertices in Y.

Proposition 2.12. For a complete bipartite graph $K_{2,m}$, $m \ge 3$. Then, the upper degcentric graph is the disjoint union of the empty graph \overline{K}_2 and the complete graph K_m .

Proof. Consider a complete bipartite graph $K_{2,m}$, m > 2. Clearly, $K_{2,m}$ is a graph whose vertex set can be partitioned into two independent sets X, |X| = 2 and Y, |Y| = m. Let $X = v_1, v_2$, and $Y = u_{1,2}, \ldots, v_m$. In accordance with Definition 2.1 construct $(K_{2,m})_{ud}$ as follows: since $deg_{K_{2,m}}(u_i) = 2$ and all pairs of vertices u_i, u_j have $d_{K_{2,m}}(u_i, u_j) = 2$ set Y yields a complete graph K_m . Clearly, set X yields the empty graph \overline{K}_2 . Hence, the upper deg-centric graph is the disjoint union of the empty graph \overline{K}_2 and the complete graph K_m .

Proposition 2.13. Let G be a complete bipartite graph $K_{n,m}$, $n, m \ge 3$. Then, the upper deg-centric graph is the empty graph \overline{K}_{n+m} .

Proof. The result is a direct consequence of Lemma 2.1.

A tree denoted by T_n , $n \ge 1$ is a connected acyclic graph. It is known that a tree T_n has n-1 edges.

Proposition 2.14. If $n \ge 3$, T_n , then in the upper deg-centric graph a vertex v_i has $deg_{(T_n)_{ud}}(v_i) \ge 2$.

Proof. It is known that a tree T_n of order $n \ge 3$ has at least two pendant vertices. By Lemma 2.2, each pendant vertices forms an edge to all vertices. Therefore, each internal vertex v_i has $deg(v_i) \ge 2$ in $(T_n)_{ud}$. It is known from Lemma 2.2 that each pendant vertex has degree $n - 1 \ge 3 - 1 \ge 2$. Hence, the result.

An illustration of a proposition 2.14 is given in Figure 5.

A sunlet graph, denoted by Sl_n , $n \ge 3$, is a graph obtained by attaching a pendant vertex to every vertex of a cycle graph c_n , $n \ge 3$. In other words, a sunlet graph on 2n vertices is obtained by taking the corona product $C_n \circ K_1$.

Proposition 2.15. For $n \geq 3$,

$$\varepsilon((Sl_n)_{ud}) = \begin{cases} \frac{3n^2 - n}{2} & \text{if } n = 3, 4, 5.\\ n(2n - 3) & \text{if } n \ge 6. \end{cases}$$

FIGURE 5. A tree of order seven and its upper deg-centric graph

Proof. (a) If n = 3, 4, 5. For a sunlet graph $Sl_n, n \ge 3$, is of the order 2n. Let $V(Sl_n) = \{v_1, v_2, \ldots, v_n, \underbrace{u_1, u_2, \ldots, u_n}_{\text{pendant vertices}}\}$. Since all u_i are pendant vertices, each

 u_i forms the edge $u_i v_i$. Then, by Lemma 2.2, the *n* pendant vertices u_1, u_2, \ldots, u_n are adjacent to all other 2n - 1 vertices that is $deg(u_n) = 2n - 1$ in $(Sl_n)_{ud}$. All other *n* vertices are adjacent with each u_n hence, $deg(v_n) = n$ in $(Sl_n)_{ud}$. Then we have,

$$\varepsilon((Sl_n)_{ud}) = \frac{\sum_{w_i \in V((Sl_n)_{ud})} deg(w_i)}{2} = \frac{3n^2 - n}{2}.$$

(b) If $n \ge 6$, by Lemma 2.2, the *n* pendant vertices u_1, u_2, \ldots, u_n are adjacent to all other 2n - 1 vertices that is $deg(u_n) = 2n - 1$ in $(Sl_n)_{ud}$. Since $deg(v_n) = 3$ in Sl_n , these *n* vertices are adjacent with a distance of three or greater than three vertices in the cycle and with each u_n vertices. That is, $deg(v_n) = 2n - 5$ in $(Sl_n)_{ud}$. Finally,

$$\varepsilon((Sl_n)_{ud}) = \frac{\sum\limits_{w_i \in V((Sl_n)_{ud})} deg(w_i)}{2} = n(2n-3).$$

The ladder graph, L_n , $n \ge 1$ is obtained by taking two copies of a path P_n with respective vertices say, $v_1, v_2, v_3, \ldots, v_n$ and $u_1, u_2, u_3, \ldots, u_n$ and adding the edges $v_i u_i$, $1 \le i \le n$. Note that $L_n \cong P_n \Box K_2$ where \Box denotes the Cartesian product of two graphs.

Proposition 2.16. For a ladder graph L_n , $n \ge 1$ it follows that:

$$\begin{split} \varepsilon(L_{1_{ud}}) &= 1, \\ \varepsilon(L_{2_{ud}}) &= 2, \\ \varepsilon(L_{3_{ud}}) &= 8, \\ \varepsilon(L_{4_{ud}}) &= 16, \\ \varepsilon(G_{ud}) &= \varepsilon(H_{ud}) + 4n - 10 \ \text{where } H = L_{n-1} \ \text{and } n \geq 5. \end{split}$$

Proof. By applying Definition 2.1, it easily follows that $\varepsilon(L_{1_{ud}}) = 1$, $\varepsilon(L_{2_{ud}}) = 2$, $\varepsilon(L_{3_{ud}}) = 8$ and $\varepsilon(L_{4_{ud}}) = 16$. Now, besides the claimed result, it is valid that for any $n \ge 5$ and $H = L_{n-1}$ the size of H_{ud} ; that is, $\varepsilon(H_{ud})$ can be determined by applying Definition 2.1. Consider $H = L_{n-1}$ and assume that both H_{ud} and $\varepsilon(H_{ud})$ has been determined. Now consider the extension from H to $G = L_n$. Some subgraph of H_{ud} is a subgraph of G_{ud} . Note that in G the degree of respectively v_{n-1} , u_{n-1} has increased to 3. Therefore, in G_{ud} the two edges $v_{n-1}u_{n-2}$ and $u_{n-1}v_{n-2}$ as well as the two edges $v_{n-1}v_{n-3}$ and $u_{n-1}u_{n-3}$.

found in H_{ud} are not contributed in G_{ud} . All other edges formed from only amongst the vertices $V(H) \subset V(G)$ replicate exactly in G_{ud} . With regards to say, v_n the edges which contributes are $v_n u_{n-1}$ together with $v_n u_i$, $1 \le i \le n-2$. A similar thing can be applied to vertex u_n . Hence,

$$\varepsilon(G_{ud}) = \varepsilon(H_{ud}) + [2 \times 2(n-2) + 2 - 4]$$

= $\varepsilon(H_{ud}) + 4n - 10.$

Finally, since an initial value, that is. $\varepsilon(L_{4_{ud}}) = 16$, is known, the result for $n \ge 5$ follows.

3. Conclusions

From this study, it follows that for any vertex $v_i \in V(G)$ the open neighborhood $N_{G_{ud}}(v_i)$ can be partitioned into three sets that is:

- (i) $N_{G_{ud}}^{\to}(v_i) = \{v_j : deg_G(v_i) \le d_G(v_i, v_j) \text{ and } deg_G(v_j) > d_G(v_j, v_i)\}.$
- (ii) $N_{G_{ud}}^{\leftarrow}(v_i) = \{v_j : deg_G(v_i) > d_G(v_i, v_j) \text{ and } deg_G(v_j) \le d_G(v_j, v_i)\}.$
- (iii) $N_{G_{ud}}^{\leftrightarrow}(v_i) = \{v_j : deg_G(v_i) \le d_G(v_i, v_j) \text{ and } deg_G(v_j) \le d_G(v_j, v_i)\}.$

Hence, (iii) represents the commutative initiation of edges.

Conjecture 3.1. Let G and H be any pair of graphs of order n. If $deg_G(v_i) \leq deg_H(u_j)$, then $N_{G_{ud}}^{\rightarrow}(v_i) \geq N_{H_{ud}}^{\rightarrow}(u_j)$.

Although this paper considers connected graphs, upper deg-centrication of a disconnected graph is possible. Note that in an empty graph $G = \mathfrak{N}_n$, $n \geq 1$ each vertex v_i has $deg_G(v_i) = 0$. If n = 1 then $G_{ud} = K_1$. If $n \geq 2$ then $d_G(v_i, v_j) = \infty$ for all pairs of distinct vertices. Hence, by Definition 2.1, it follows that $G_{ud} \cong K_n$. Let G + H be the join of G and H. Let $G \cup H$ be the disjoint union of G and H. If graph $J = (((G_1 \cup G_2) \cup G_3) \cup \cdots \cup G_{t-1}) \cup G_t$ then clearly,

$$J_{ud} = \left(\left(\left(G_{1_{ud}} + G_{2_{ud}} \right) + G_{3_{ud}} \right) + \dots + G_{(t-1)_{ud}} \right) + G_{t_{ud}}.$$
 (1)

The above facts highlight the wide scope for further research in this area.

References

- [1] Akiyama J., Ando K., Avis D., (1985), Eccentric graphs, Discrete Math., 56(1), pp. 1-6.
- [2] Raja M. R., Mangam T. A., Naduvath S. (2022), Eccentric completion of a graph, Commun. Comb. Optim., 7(2), pp. 193-201.
- [3] West D. B., (2001), Introduction to graph theory, Prentice Hall of India, New Delhi.
- [4] Thalavayalil T. T., Kok J., Naduvath S., (2024), A study on deg-centric graphs of graphs, Proyecciones, 43(2), pp. 911-926.
- [5] Thalavayalil T. T., Kok, J., Naduvath, S., (2024)., A study on exact deg-centric graphs of graphs. J. Interconn. Networks, Article Id: 2450004 (Online First).
- [6] Thalavayalil T. T., Naduvath S. (2024), A study on coarse deg-centric graphs, Gulf. J. Math., 16(2), pp. 171-182.
- [7] Brandstädt A., Le V. B., Spinrad J. P., (1999), Graph classes: A survey. SIAM.
- [8] Raja M. R., Kok J., Mangam T. A., Naduvath S., (2023), Cyclic property of iterative eccentrication of a graph. Discrete Math. Algorithm. Appl., 15(07), Article Id: 2250155.
- [9] Thalavayalil T. T., Naduvath S., (2025), A study on deg-centric graphs of some graph families, Palest. J. of Math., To appear.
- [10] Naduvath S., Ellumkalayil M. T., (2022), A note on $\delta^{(k)}$ -coloring of the Cartesian product of some graphs, J. Interconn. Networks, 7(1), pp. 113-120.

- [11] Naduvath S., Mphako-Banda E., and Kok J., (2018), Chromatic probability index of certain cycle related graphs, Far East J. Math. Sci., 107(2), pp. 415-432.
- [12] Thalavayalil T. T., Naduvath S., (2025), A study on lower deg-centric graphs, Palest. J. of Math., To appear.
- [13] Talal Al-Hawary, Sumaya Al-Shalaldeh, Muhammad Akram, (2023), Certain matrices and energies of fuzzy graphs, TWMS JPAM V.14, N.1, pp.50-68.

Timmy Tomy Thalavayalil is currently a research scholar in Christ University, Bangalore, India. He has almost three years of research experience and has published three research papers in reputed international research journals. His area of research is graph theory and applications, with a prime focus on structural graph theory. He secured his master's degree from Christ University, Bangalore.

Dr. Johan Kok obtained his undergraduate and postgraduate degrees from the University of Stellenbosch, South Africa. He then obtained his Ph.D. from Newport University, USA. His primary research area is graph theory. His more recent research projects focus on various parametric analysis within graphs. Currently, he holds the affiliation as a visiting faculty member in the Department of Mathematics at Christ University, Bangalore, India.

Dr. Sudev N. K. is currently working as a Professor in the Department of Mathematics at Christ University, Bangalore, India. He has authored more than 150 research articles, 15 book chapters, and five books and monographs on different areas of mathematics. His primary research area is graph theory. He is an active member of many professional societies, referee panels, and the editorial board of reputed journals. He has more than twenty-five years of teaching experience at the university level and fourteen years of research experience.