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AN IMPROVEMENT AND A GENERALIZATION OF ANKENY AND

RIVLIN’S RESULT ON THE MAXIMUM MODULUS OF

POLYNOMIALS

REINGACHAN NGAMCHUI1, RAJU LAISHANGBAM1, BARCHAND CHANAM1, RANARANJAN
THOUDAM1∗, §

Abstract. For an arbitrary entire function f(z), let

M(f, r) = max
|z|=r

|f(z)|.

By considering the polynomial of degree n having no zero in the interior of the unit circle
|z| = 1, Ankeny and Rivlin obtained

M(p,R) ≤ Rn + 1

2
M(p, 1), R ≥ 1.

In this paper, we consider the polynomial of degree n having no zero in |z| < k, k ≥ 1
and simultaneously considering the sth derivative, 0 ≤ s < n, of the polynomial, we have
obtained an improvement as well as a generalization of Ankeny and Rivlin’s result.
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1. Introduction and statement of results

Approximation by polynomials is a fundamental concept in mathematics and applied
sciences, offering a versatile tool for representing complex functions with simpler polyno-
mial expressions. This approach involves the construction of polynomial functions that
closely mimic the behavior of more intricate functions, facilitating easier analysis, compu-
tation, and problem-solving in various domains. Polynomial approximation plays a pivotal
role in various disciplines such as numerical analysis, signal processing, computer-aided
design, physics, and engineering.

Several approaches have been developed to address this challenge, each tailored to spe-
cific contexts and requirements. Least squares approximation, employing techniques like
linear regression, focuses on minimizing the overall error between the polynomial and
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data points. Chebyshev approximation minimizes the maximum absolute error over an
interval, ensuring robustness. Rational function approximation introduces flexibility by
representing functions as ratios of polynomials. Each approach has its strengths and
is chosen based on factors such as data characteristics, desired accuracy, and computa-
tional efficiency, making polynomial approximation a key tool across diverse disciplines.
Researchers continue to refine and extend these techniques, ensuring that polynomial ap-
proximation remains a powerful and adaptable tool in the ever-expanding landscape of
mathematical and computational sciences.

However, another approach was made through the applications of the Bernstein in-
equality, particularly the trigonometric version that holds significant importance in the
literature for establishing inverse theorems in approximation theory (see Borwein and
Erdélyi [3], Ivanov [9], Lorentz [12], Telyakovskii [18]) and, of course, have their own in-
trinsic interests. The first result in this area was connected with some investigation of
the well-known Russian chemist Mendeleev [15]. In fact, Mendeleev’s problem was to
determine max

−1≤x≤1
|p′(x)|, where p(x) is a quadratic polynomial of real variable x with real

coefficients and satisfying −1 ≤ p(x) ≤ 1 for −1 ≤ x ≤ 1. He himself was able to prove
that if p(x) is a quadratic polynomial and |p(x)| ≤ 1 on [−1, 1], then |p′(x)| ≤ 4 on the
same interval. A. A. Markov [14] generalized this result for a polynomial of degree n in
the real line. In fact, he proved that if p(x) is an algebraic polynomial of degree at most
n with real coefficients, then

max
−1≤x≤1

|p′(x)| ≤ n2 max
−1≤x≤1

|p(x)|.

After about twenty years, Bernstein [2] needed the analogue of Markov’s Theorem for
the unit disc in the complex plane instead of the interval [−1, 1] in order to prove inverse
theorem of approximation (see Borwein and Erdélyi [3, p. 241]) to estimate how well a
polynomial of a certain degree approximates a given continuous function in terms of its
derivatives and Lipschitz constants. This leads to the famous well-known result known
as Bernstein’s inequality which states that if t ∈ τn (the set of all real trigonometric
polynomials of degree at most n), then for K := [0, 2π),

max
θ∈K

|t(m)(θ)| ≤ nmmax
θ∈K

|t(θ)|. (1)

The above inequality remains true for all t ∈ τ cn (the set of all complex trigonomet-
ric polynomials of degree at most n), which implies, as a particular case, the following
algebraic polynomial version of Bernstein’s inequality on the unit disk.

Theorem 1.1. If p(z) is a polynomial of degree n, then

max
|z|=1

|p′(z)| ≤ nmax
|z|=1

|p(z)|. (2)

Equality holds in (2) if and only if p(z) has all its zeros at the origin.

It is really of interest both in theoretical and practical aspects that continuous functions
are approximated by polynomials. In this regard, we have the following interesting result
(Theorem 1.2) [3, p. 241, Part (a) of E.18] which approximates m times differentiable
real-valued function on a half-closed interval [0, 2π) by trigonometric polynomials. For
the sake of convenience of the readers, we state the above result more precisely.

Let Lipα, α ∈ (0, 1], denote the family of all real-valued functions g defined on K
satisfying

sup

{
|g(x)− g(y)|

|x− y|α
: x ̸= y ∈ K

}
< ∞.
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If C(K) denotes the set of all continuous functions on K, then for f ∈ C(K), let

En(f) := inf

{
sup
θ∈K

|t− f | : t ∈ τn

}
.

Theorem 1.2. (Direct theorem) Suppose f is m times differentiable on K and f (m) ∈
Lipα for some α ∈ (0, 1]. Then there is a constant C depending only on f so that

En(f) ≤ Cn−(m+α), n = 1, 2, ... .

On the other hand, the converse (inverse) of Theorem 1.2 is essentially of interest and
is stated below.

Theorem 1.3. (Inverse theorem) Suppose m is a non-negative integer, α ∈ (0, 1), and
f ∈ C(K). Suppose there is a constant C > 0 depending only on f such that

En(f) ≤ Cn−(m+α), n = 1, 2, ... .

Then f is m times continuously differentiable on K and f (m) ∈ Lipα.

The proof of Theorem 1.3 is done by the application of the well-known result due to
Bernstein (inequality (1)) given in [3].

From the above discussion, it is worth to note that Bernstein and Markov-type in-
equalities play a significant role in approximation theory. Direct and inverse theorems of
approximation and related matters may be found in many books on approximation theory,
including Cheney [4], Lorentz [12], and DeVore and Lorentz [5].

Inequality (2) can be sharpened, if the zeros of p(z) are restricted. In this direction,
Erdös conjectured and later Lax [11] proved that if p(z) has no zero in |z| < 1, then

max
|z|=1

|p′(z)| ≤ n

2
max
|z|=1

|p(z)|. (3)

As a partial generalization of (3), Malik [13] proved that if p(z) ̸= 0 in |z| < k, k ≥ 1,
then

max
|z|=1

|p′(z)| ≤ n

1 + k
max
|z|=1

|p(z)|. (4)

For the class of polynomials not vanishing in |z| < k, k ≤ 1, the precise estimate for
maximum of |p′(z)| on |z| = 1, in general, does not seem to be easily obtainable. For quite
some time, it was believed that if p(z) ̸= 0 in |z| < k, k ≤ 1, then the inequality analogous
to (4) should be

max
|z|=1

|p′(z)| ≤ n

1 + kn
max
|z|=1

|p(z)|,

till Professor E. B. Saff gave the example p(z) =
(
z − 1

2

) (
z + 1

3

)
to counter this belief.

Thus, the approximation does not seem to be known in general, and this problem is still
open. However, two special cases in this direction have been considered by Govil giving
extensions of (3) with strong restrictions. One such was established by him [6] in 1980
was that if p(z) is a polynomial of degree n which does not vanish in |z| < k, k ≤ 1, then

max
|z|=1

|p′(z)| ≤ n

1 + kn
max
|z|=1

|p(z)|,

provided |p′(z)| and |q′(z)| attain their maxima at the same point on |z| = 1, where

q(z) = znp
(
1
z̄

)
.



R. NGAMCHUI et al.: AN IMPROVEMENT AND A GENERALIZATION OF ANKENY ... 1855

Govil and Rahman [8, Theorem 4] extended inequality (4) to the sth derivative of the
polynomial and proved under the same hypothesis for 1 ≤ s < n that

max
|z|=1

|p(s)(z)| ≤ n(n− 1)...(n− s+ 1)

1 + ks
max
|z|=1

|p(z)|.

For an arbitrary entire function f(z), let

M(f, r) = max
|z|=r

|f(z)|.

If p(z) is a polynomial of degree n, as a consequence of the maximum modulus principle,
we have the following result [16, 17],

M(p,R) ≤ RnM(p, 1), R ≥ 1. (5)

Inequality (5) is best possible and equality holds for p(z) = λzn, λ ̸= 0 being a complex
number.

Ankeny and Rivlin [1] considered the class of polynomials having no zero in the interior
of the unit circle and obtained the following refinement of inequality (5).

Theorem 1.4. If p(z) is a polynomial of degree n having no zero in |z| < 1, then

M(p,R) ≤ Rn + 1

2
M(p, 1), R ≥ 1. (6)

The result is sharp for p(z) = α+ βzn, where |α| = |β|.

In an attempt to obtain a generalization of Theorem 1.4, Jain [10] considered polyno-
mials with no zero in |z| < k, k ≥ 1, and was able to prove the following result concerning
the estimate of the maximum modulus of the sth derivative, 0 ≤ s < n, of the polynomial,
instead of the polynomial itself.

Theorem 1.5. If p(z) is a polynomial of degree n having no zero in |z| < k, k ≥ 1, then
for 0 ≤ s < n,

M(p(s), R) ≤


1

2

{
ds

dRs
(Rn + kn)

}(
2

1 + k

)n

M(p, 1), R ≥ k, (7)

1

Rs + ks

[{
ds

dxs
(1 + xn)

}
x=1

](
R+ k

1 + k

)n

M(p, 1), 1 ≤ R ≤ k. (8)

In this paper, under the same hypotheses, we obtain improved bounds of Theorem 1.5
which does not contain coefficients of the polynomial, proved by Jain [10]. More precisely,
we prove

Theorem 1.6. If p(z) is a polynomial of degree n having no zero in |z| < k, k ≥ 1, then
for 0 ≤ s < n,

M(p(s), R) ≤



1

2

{
ds

dRs
(Rn + kn)

}(
2

1 + k

)n

{M(p, 1)−m} , 1 ≤ s < n, R ≥ k, (9)

1

2
(Rn + kn)

(
2

1 + k

)n

M(p, 1)−
{
Rn + kn

2

(
2

1 + k

)n

− 1

}
m, (10)

s = 0, R ≥ k,

1

Rs + ks

[{
ds

dxs
(1 + xn)

}
x=1

] [(
R+ k

1 + k

)n

{M(p, 1)−m}+m

]
, (11)

0 ≤ s ≤ n, 1 ≤ R ≤ k,

where m = min
|z|=k

|p(z)|.
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Equality holds in (10) (with k = 1) for p(z) = zn + 1 and in (11) (with s = 1) for
p(z) = (z + k)n.

Remark 1.1. By Lemma 2.6, it is evident that inequality (10) is an improvement of the
corresponding inequality (7) for s = 0. Further, it is clear that inequalities (9) and (11)
respectively of the theorem improve over the bounds given by (7) and (8) of Theorem 1.5
due to Jain [10]. Moreover, by means of example, we illustrate sharpness mathematically
and bounds graphically as in Example 4.1.

Remark 1.2. Putting s = 1, k = 1, inequality (10) of our theorem reduces to the following
result, which further sharpens the bound (6) given by Theorem 1.4 of Ankeny and Rivlin
[1].

Corollary 1.1. If p(z) is a polynomial of degree n having no zero in |z| < 1, then for
R ≥ 1,

M(p,R) ≤ Rn + 1

2
M(p, 1)− Rn − 1

2
m,

where m = min
|z|=k

|p(z)|.

2. Lemmas

We require the following lemmas to prove the theorem.
The following two lemmas are due to Jain [10].

Lemma 2.1. Let P (z) be a polynomial of degree n having all its zeros in |z| ≤ 1. If p(z)
is a polynomial of degree at most n such that

|p(z)| ≤ |P (z)|, |z| = 1,

then for 0 ≤ s < n,

|p(s)(z)| ≤ |P (s)(z)|, |z| ≥ 1.

Lemma 2.2. If p(z) is a polynomial of degree at most n, then for 0 ≤ s < n,

|p(s)(z)|+ |q(s)(z)| ≤
{∣∣∣∣ dsdzs

(1)

∣∣∣∣+ ∣∣∣∣ dsdzs
(zn)

∣∣∣∣}M(p, 1), |z| ≥ 1,

where q(z) = znp
(
1
z

)
.

Lemma 2.3. If p(z) is a polynomial of degree n having no zero in |z| < k, k ≥ 1, then
for 1 ≤ R ≤ k2,

M(p,R) ≤
(
R+ k

1 + k

)n

M(p, 1)−
{(

R+ k

1 + k

)n

− 1

}
m, (12)

where m = min
|z|=k

|p(z)|.

Proof. By hypothesis, p(z) has no zero in |z| < k, k ≥ 1. In case when m = min
|z|=k

|p(z)| ≠ 0,

consider the polynomial P (z) = p(z) + αm, where α is any real or complex number with
|α| < 1.

Now, for |z| = k,

|mα| < m ≤ |p(z)|.
Then it follows from Rouche’s Theorem that P (z) has no zero in |z| ≤ k. The case for

m = 0 is trivially true and hence we conclude that P (z) has no zero in |z| < k.



R. NGAMCHUI et al.: AN IMPROVEMENT AND A GENERALIZATION OF ANKENY ... 1857

Since all the zeros of P (z) lie in |z| ≥ k, k ≥ 1, we can write P (z) = an

n∏
j=1

(
z − rje

iθj
)
,

where rj ≥ k, j = 1, 2, 3, ...., n. Then∣∣∣∣P (Reiθ)

P (eiθ)

∣∣∣∣ =
n∏

j=1

∣∣∣∣Reiθ − rje
iθj

eiθ − rjeiθj

∣∣∣∣
=

n∏
j=1

∣∣∣∣∣Rei(θ−θj) − rj

ei(θ−θj) − rj

∣∣∣∣∣
≤

n∏
j=1

(
R+ rj
1 + rj

)

≤
n∏

j=1

(
R+ k

1 + k

)

=

(
R+ k

1 + k

)n

.

Substituting the value of P (z) = p(z) + αm in the above inequality, we have

|p(Reiθ) + αm| ≤
(
R+ k

1 + k

)n

|p(eiθ) + αm|

≤
(
R+ k

1 + k

)n

max
θ

|p(eiθ) + αm|. (13)

Let θ0 be such that

max
θ

|p(eiθ) + αm| = |p(eiθ0) + αm|. (14)

We choose the argument of α such that

|p(eiθ0) + αm| = |p(eiθ0)| − |α|m
≤ max

|z|=1
|p(z)| − |α|m. (15)

Using (15) to (14), we have

max
θ

|p(eiθ) + αm| ≤ max
|z|=1

|p(z)| − |α|m. (16)

From (13) and (16), we have

|p(Reiθ) + αm| ≤
(
R+ k

1 + k

)n{
max
|z|=1

|p(z)| − |α|m
}
,

which implies

|p(Reiθ)| ≤
(
R+ k

1 + k

)n

max
|z|=1

|p(z)| − |α|m
{(

R+ k

1 + k

)n

− 1

}
,

which on taking limit as |α| → 1 , we obtain inequality (12) and it proves Lemma 2.3
completely. □

Lemma 2.4. If p(z) is a polynomial of degree n having no zero in |z| < k, k ≥ 1, then
1 ≤ s < n,

max
|z|=1

|p(s)(z)| ≤ n(n− 1)(n− 2)...(n− s+ 1)

1 + ks
max
|z|=1

|p(z)|.
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The above result is due to Govil [7].
From Lemma 2.4, it follows readily

Lemma 2.5. If p(z) is a polynomial of degree n having no zero in |z| < k, k ≥ 1, then
0 ≤ s < n,

max
|z|=1

|p(s)(z)| ≤ 1

1 + ks

[{
ds

dxs
(1 + xn)

}
x=1

]
max
|z|=1

|p(z)|.

Lemma 2.6. If R ≥ k ≥ 1, then for any positive integer n,

Rn + kn

2

(
2

1 + k

)n

− 1 ≥ 0. (17)

Proof. We prove this result by mathematical induction. For n = 1, inequality (17) becomes

R+ k

1 + k
≥ 1,

which is true since R ≥ 1.
Suppose inequality (17) is true for any positive integer n, that is

Rn + kn

2

(
2

1 + k

)n

− 1 ≥ 0. (18)

(18) is equivalent to

Rn + kn

2
≥

(
1 + k

2

)n

. (19)

Since R ≥ k, it can be easily verified that

Rn+1 + kn+1

2
≥ Rn + kn

2

R+ k

2
. (20)

Clearly,

R+ k

2
≥ 1 + k

2
. (21)

From (19) and (21), it follows that

Rn + kn

2

R+ k

2
≥

(
1 + k

2

)n+1

. (22)

Combining (20) and (22), we have

Rn+1 + kn+1

2
≥

(
1 + k

2

)n+1

,

which is equivalent to

Rn+1 + kn+1

2

(
2

1 + k

)n+1

− 1 ≥ 0,

and hence by mathematical induction, this lemma is proved. □
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3. Proof of the theorem

Proof of Theorem 1.6 Since p(z) has no zero in |z| < k, k ≥ 1, the polynomial
p(z) + αm, where α is any real or complex number with |α| < 1 and m = min

|z|=k
|p(z)|, has

no zero in |z| < k, k ≥ 1. The case for m = 0 is trivially true. For m > 0, we have
for |z| = k, |mα| < m ≤ |p(z)| and the conclusion follows from Rouche’s Theorem. If

P (z) = p(kz) + αm, then the polynomial Q(z) = znP
(
1
z

)
possesses the property that for

|z| = 1,

|P (z)| ≤ |Q(z)|
and it has all its zeros in |z| ≤ 1. Applying Lemma 2.1 to the polynomials P (z) and Q(z),
we get for any 0 ≤ s < n and t ≥ 1,

|P (s)(teiθ)| ≤ |Q(s)(teiθ)|, 0 < θ ≤ 2π. (23)

Further, by Lemma 2.2, we have for t ≥ 1 and 0 ≤ s < n,

|P (s)(teiθ)|+ |Q(s)(teiθ)| ≤
{

ds

dts
(1 + tn)

}
M(P, 1), 0 < θ ≤ 2π,

which, by (23) implies that

|P (s)(teiθ)| ≤ 1

2

{
ds

dts
(1 + tn)

}
M(P, 1). (24)

Substituting the value of P (z) = p(kz) + αm in (24), we have

|p(s)(kteiθ)| ≤ 1

2ks

{
ds

dts
(1 + tn)

}
max
|z|=k

|p(z) + αm|, s ≥ 1, (25)

and

|p(kteiθ) + αm| ≤ 1

2
(1 + tn)max

|z|=k
|p(z) + αm|, s = 0. (26)

Set kt = R. Since t ≥ 1, R ≥ k.
As t = R

k , we have ds

dts ≡ ks ds

dRs and hence for R ≥ k, inequalities (25) and (26) are
equivalent to

|ps(Reiθ)| ≤ 1

2kn

{
ds

dRs
(Rn + kn)

}
max
|z|=k

|p(z) + αm|, s ≥ 1, (27)

and

|p(Reiθ) + αm| ≤ 1

2kn
(Rn + kn)max

|z|=k
|p(z) + αm|, s = 0. (28)

In both the inequalities (27) and (28), let z0 on |z| = k be such that

max
|z|=k

|p(z) + αm| = |p(z0) + αm|. (29)

Choosing the argument of α such that

|p(z0) + αm| = |p(z0)| − |α|m. (30)

Also, we have

|p(z0)| ≤ max
|z|=k

|p(z)|. (31)

Using (31) and (30) to (29), we have

max
|z|=k

|p(z) + αm| ≤ max
|z|=k

|p(z)| − |α|m. (32)
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Using (32) to (27) and (28), we get for R ≥ k,

|ps(Reiθ)| ≤ 1

2kn

{
ds

dRs
(Rn + kn)

}{
max
|z|=k

|p(z)| − |α|m
}
, s ≥ 1, (33)

and

|p(Reiθ) + αm| ≤ 1

2kn
(Rn + kn)

{
max
|z|=k

|p(z)| − |α|m
}
, s = 0. (34)

By Lemma 2.3, we have for R ≥ k,

max
|z|=k

|p(z)| ≤
(

2k

1 + k

)n

{M(p, 1)−m}+m.

Using the above inequality, (33) and (34) give for R ≥ k,

|ps(Reiθ)| ≤ 1

2

{
ds

dRs
(Rn + kn)

}[(
2

1 + k

)n

{M(p, 1)−m}+ m

kn
− |α|m

kn

]
, s ≥ 1, (35)

and

|p(Reiθ) + αm| ≤ 1

2
(Rn + kn)

[(
2

1 + k

)n

{M(p, 1)−m}+ m

kn
− |α|m

kn

]
, s = 0. (36)

Since |p(Reiθ)| − |α|m ≤ |p(Reiθ) + αm|, (36) implies

|p(Reiθ)| ≤ 1

2
(Rn + kn)

[(
2

1 + k

)n

{M(p, 1)−m}+ m

kn
− |α|m

kn

]
− |α|m, s = 0. (37)

Taking the limit as |α| → 1, and considering the maximum over θ, inequalities (35) and
(37) become inequalities (9) and (10) of the Theorem.

Since p(z) has no zero in |z| < k, k ≥ 1, the polynomial p(Rz), where R ≤ k, has no
zero in |z| < k

R ,
k
R ≥ 1. Applying Lemma 2.5 to p(Rz), we have for 0 ≤ s < n,

M(p(s), R) ≤ 1

Rs + ks
M(p,R)

[{
ds

dxs
(1 + xn)

}
x=1

]
. (38)

Using Lemma 2.3 for R ≤ k, inequality (38) becomes

M(p(s), R) ≤ 1

Rs + ks

[{
ds

dxs
(1 + xn)

}
x=1

] [(
R+ k

r + k

)n

M(p, 1)

−m

{(
R+ k

r + k

)n

− 1

}]
,

which is inequality (11). This completes the proof of the Theorem.

4. Numerical example and graphical representations

It is clear that the bounds of Theorem 1.6, in general, improve over that of Theorem
1.5 due to Jain [10]. Below, we consider an example which shows that the improvement
is significant.

Example 4.1. Let p(z) = z4 + 44 with all zeros 4e
iπ
4
(1+2l), l = 0, 1, 2, 3 on |z| = 4, so

that Theorem 1.6 holds for 0 < k ≤ 4. If we take k = 3, so that p(z) has all its zeros in
|z| ≥ k = 3 and s = 2, then on |z| = R, we have

|p(Reiθ)| =
√
R8 + 65536 + 512R4 cos 4θ

and their graphics for 0 ≤ θ < 2π and R = 2, 3, 4 are presented below.
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R=2

R=3

R=4

0 1 2 3 4 5 6
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|p
(R
e
i
θ
)|

Fig. 1 Graphics of the periodic functions θ 7→ |p(Reiθ)| with period π
2
for 0 ≤ θ < 2π and

R = 2, 3, 4, clearly showing the extremals

Clearly, we have

M(p,R) = max
0≤θ<2π

|p(Reiθ)| = R4 + 44.

Case 1. For R ≥ k, let R = 4.
Since

M(p, 1) = 257 and M(p′′, 4) = 192,

as well as m = min|z|=k |p(k)| = p(k) = 44 − k4, 1 ≤ k ≤ 4, we can consider the difference
k 7→ ∆(k) between the right and the left hand sides of the inequalities (7) of Theorem 1.5,
and (9) of Theorem 1.6 as

∆(k) =


96

(
2

1 + k

)4

M(p, 1)−M(p′′, 4), inequality (7),

96

(
2

1 + k

)4

{M(p, 1)−m} −M(p′′, 4), inequality (9),

and their graphics for 1 ≤ k ≤ 4 are presented below.
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Fig. 2 Comparison of the differences k 7→ ∆(k), 1 ≤ k ≤ 4 in the inequalities (7) and (9)
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Also, by inequality (7) of Theorem 1.5 for k = 3, we have M(p′′, 4) ≤ 1542, while
inequality (9) of Theorem 1.6 gives M(p′′, 4) ≤ 492, a significant improvement of 68.09%
over the bound obtained from (7) is seen.

Case 2. For 1 ≤ R ≤ k, let R = 2.
Since

M(p, 1) = 257 and M(p′′, 2) = 48,

we consider the difference k 7→ δ(k) between the right and the left-hand sides of the in-
equalities (8) of the Theorem 1.5, and (11) of the Theorem 1.6 as

δ(k) =



(
12

4 + k2

)(
2 + k

1 + k

)4

M(p, 1)−M(p′′, 2), inequality (8),(
12

4 + k2

)[(
2 + k

1 + k

)4

{M(p, 1)−m}+m

]
−M(p′′, 2), inequality (11).

and their graphics for 1 ≤ k ≤ 4 are presented below.
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Fig. 3 Comparison of the differences k 7→ δ(k), 1 ≤ k ≤ 4 in the inequalities (8) and (11)

By inequality (8) of Theorem 1.5 for k = 3, we have M(p′′, 2) ≤ 579.177, while inequality
(11) of Theorem 1.6 gives M(p′′, 2) ≤ 346.334, a considerable improvement of 40.20% over
the bound obtained from (8) happens.
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