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ESTIMATES OF TOEPLITZ DETERMINANTS FOR CERTAIN

SUBCLASSES OF BI-UNIVALENT FUNCTION RELATED TO

MODIFIED SIGMOID FUNCTION

S. P. VIJAYALAKSHMI1,∗, SREE RITHIKA J.2, §

Abstract. The current comprehensive study aimed to determine upper bounds of
Toeplitz determinants for some subclasses of bi-univalent functions. A function f ∈ A
is said to be bi-univalent in ∆ if both f and f−1 are univalent in ∆. Modified sigmoid
function play an important role in Geometric function theory and in this paper we derive
the Sharp coefficient estimates, Fekete-Szegö inequality, second and third order Toeplitz
determinants, for the subclasses S∗

σ(S), Cσ(S) of bi-univalent Sakaguchi type functions
associated with the modified sigmoid function.
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1. Introduction

Let A be the class of functions of the form

f(z) = z +
∞∑
n=2

anz
n, (1)

which are analytic in the open unit disk ∆ := {z ∈ C : |z| < 1} normalized by the
conditions f(0) = 0 and f ′(0) = 1 also let S denote the subclass of all functions in
A which are univalent in ∆ (see [5] for details). It is well known that every univalent
function f has an inverse f−1 satisfying

f−1(f(z)) = z, (z ∈ ∆) and

f(f−1(w)) = w, (|w| < r0(f), r0(f) ≥ 1/4).
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The inverse function may have an analytic continuation to ∆, with

f−1(w) = w − a2w
2 + (2a22 − a3)w

3

−(5a32 − 5a2a3 + a4)w
4 + · · · . (2)

A function f ∈ A is said to be bi-univalent in ∆ if both f and f−1 are univalent in ∆.
Let Σ denote the class of bi-univalent functions defined in the unit disk ∆.
Lewin [13] studied the class Σ of bi-univalent functions and derived the bound for the
second coefficient. Lewin [13] also established that |a2| ≤ 1.51. Further, Brannan and
Clunie conjectured [4] that |a2| ≤

√
2.

Examples of bi-univalent functions are

z

1− z
,

1

2
log

1 + z

1− z
, −log(1− z).

(See also [22]). However the familiar Koebe function z
(1−z)2

and its rotations are not

members of Σ.
An analytic function f is subordinate to an analytic function g, written f(z) ≺ g(z) [5],
provided there is an analytic function w defined on ∆ with w(0) = 0 and |w(z)| < 1
satisfying f(z) = g(w(z)). Several authors have investigated similar problems in this
direction (see [3, 15]). Srivastava et al. [22] introduced and studied subclasses of bi-
univalent functions and obtained bounds for the initial coefficients. Bounds for the initial
coefficients of several classes of functions were also investigated in [1, 2, 17, 20, 21]. In
the univalent function theory, an extensive focus has been given to estimate the bounds
of Hankel matrices.
Pommerenke [18] defined the qth Hankel determinant for q ≥ 1 and n ≥ 1 by

Hq(n) =

∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1

an+1 · · · · · · an+q

· · · · · · · · · · · ·
an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣ ,
(a1 = 1) .

In particular the second Hankel determinant is given by

H2(2) =

∣∣∣∣ a2 a3
a3 a4

∣∣∣∣ .
One can easily observe that Fekete-Szegö inequality is H2(1). Many Researchers have
obtained the upper bounds for the second Hankel determinant (see for details [7],[8],[10],
[11], [16], [24]).

The Hankel determinants are more closely related to the Toeplitz determinants. One
way to conceptualise a Toeplitz determinant is as a “upside-down” Hankel determinant,
in which Hankel determinant have constant entries along the reverse diagonal, whereas
Toeplitz matrices have constant entries along the diagonal.

Thomas and Halim [23] defined the symmetric Toeplitz determinant Tq(n) as follows:

Tq(n) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1

an+1 an · · · an+q
...

an+q−1 an+q · · · an

∣∣∣∣∣∣∣∣∣ .
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In particular,

T2(2) =

∣∣∣∣ a2 a3
a3 a2

∣∣∣∣ , T3(1) =

∣∣∣∣∣∣
1 a2 a3
a2 1 a2
a3 a2 1

∣∣∣∣∣∣ .
A comprehensive overview of the various uses of Toeplitz matrices in pure and applied
mathematics can be found in [25] . Many researchers have focussed on finding estimates
for second and third order Toeplitz determinants [6, 9].
One may comprehend the significance of the modified sigmoid function from [12]. Geomet-
ric function theory relies heavily on special functions. Activation function is an example
of a special function. In a neural network, the activation function serves as a squashing
function, ensuring that a neuron’s output falls between predetermined values (typically, 0
and 1 or -1 and 1). Piecewise-linear, sigmoid, and threshold functions are the three differ-
ent forms of activation functions. The sigmoid function is the most often used activation
function in artificial neural network hardware implementations. The sigmoid function,
g(z) = 1

1+e−z is useful because it is differentiable, which is important for the weight-
learning algorithms. The sigmoid function will increase the size of the hypothesis space
that the network can represent. Neural networks can be used for complex learning tasks.
The sigmoid function has very important properties,

• It outputs real numbers between 0 and 1.
• It maps a very large input domain to a small range of outputs.
• It never loses information because it is a one-to- one function.
• It increases monotonically.

The normalized form of modified sigmoid function is given by G(z) = 2
1+e−z for all

z ∈ ∆. In this paper we investigate the coefficient inequality, Toeplitz determinants and
Fekete-Szegö inequality for the the subclasses S∗

σ, Cσ of sakaguchi type function defined in
modified sigmoid function.

2. preliminaries

Let P denote the class of all functions p(z) given by

p(z) = 1 +
∞∑
i=1

ciz
i, (z ∈ ∆) (3)

such that R{p(z)} > 0 and p(0) = 1.

Lemma 2.1. [5] Let p ∈ P. Then

|ck| ≤ 2, k = 1, 2, 3 · · · (4)

and the inequality is sharp.

Lemma 2.2. [14] Let p ∈ P of the form (1.2). Then there exist some ξ, ζ ∈ C with
|ξ| ≤ 1, |ζ| ≤ 1, such that

2c2 = c21 + (4− c21)ξ,

4c3 = c31 + 2c1ξ(4− c21)− (4− c21)c1ξ
2

+ 2(4− c21)(1− |ξ|2)ζ.

Definition 2.1. [19] Denote by S∗
S the subclass of A consisting of functions given by (1)

and satisfying

Re
zf ′(z)

f(z)− f(−z)
> 0, z ∈ ∆.
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These functions introduced by Sakaguchi are called functions starlike with respect to
symmetric points, and for a function f ∈ A the above inequality is a necessary and
sufficient condition for f to be univalent and starlike with respect to symmetrical points
in ∆ (see [19, Theorem 1]).

Definition 2.2. A function f given by (1) is said to be in the class S∗
σ(S) if the following

subordination hold:

2zf ′(z)

f(z)− f(−z)
≺ 2

1 + e−z
for z ∈ ∆

and

2wg′(w)

g(w)− g(−w)
≺ 2

1 + e−w
for w ∈ ∆,

where the function g is given by

g(w) = w − a2w
2 + (2a22 − a3)w

3

− (5a32 − 5a2a3 + a4)w
4 + · · · . (5)

Definition 2.3. A function f given by (1) is said to be in the class Cσ(S) if the following
subordination hold:

(2zf ′(z))′

(f(z)− f(−z))′
≺ 2

1 + e−z
for z ∈ ∆

and

(2wg′(w))′

(g(w)− g(−w))′
≺ 2

1 + e−w
for w ∈ ∆.

where the function g is given by (5).

Remark 2.1. We shall illustrate with an example that the aforementioned classes S∗
σ(S),

Cσ(S) are non empty.

(1) Taking f1(z) = z + az2, a ∈ C, then

Φ∗(z) =
2zf ′

1(z)

f1(z)− f1(−z)

= 1 + 2za, z ∈ ∆.

For the values of z = 0.9eiθ, a = 0.2 it is clear from the Figure 1 that
Φ∗(∆) ⊂ G(z) = 2

1+e−z and hence the class S∗
σ(S) is non empty.

(2) Taking f1(z) = z + az2, a ∈ C, then

Ψ∗(z) =
(2zf ′

1(z))
′

(f1(z)− f1(−z))′

= 1 + 4za, z ∈ ∆.

For the values of z = 0.9eiθ, a = 0.01 it is clear from the Figure 2 that
Ψ∗(∆) ⊂ G(z) = 2

1+e−z and hence the class Cσ(S) is non empty.
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Figure 1. The image of
Φ∗(z), (blue colour) is con-
tained in G(z)(red colour)

Figure 2. The image of
Ψ∗(z) (blue colour) is con-
tained in G(z)(red colour)

3. Coefficient Estimates

In this section let us derive the coefficient estimates for the subclasses S∗
σ(S) and Cσ(S).

Theorem 3.1. If f ∈ S∗
σ(S) is given by (1), then

|a2| ≤
1

2
√
5
, (6)

|a3| ≤
5

16
. (7)

The inequalities are sharp.

Proof: Let f ∈ S∗
σ(S) and g = f−1. Then there are analytic functions u, v : ∆ → ∆,

with u(0) = v(0) = 0, satisfying

2zf ′(z)

f(z)− f(−z)
= ϕ(u(z)) (8)

and
2wg′(w)

g(w)− g(−w)
= ϕ(v(w)) (9)

where

ϕ(u(z)) =
2

1 + e−u(z)

and

ϕ(v(w)) =
2

1 + e−v(w)
.

Define the functions p1 and p2 by

p1(z) =
1 + u(z)

1− u(z)
= 1 + c1z + c2z

2 + · · ·
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and

p2(z) =
1 + v(z)

1− v(z)
= 1 + b1z + b2z

2 + · · ·

or, equivalently,

u(z) =
p1(z)− 1

p1(z) + 1

=
1

2

(
c1z +

(
c2 −

c21
2

)
z2 + · · ·

)
(10)

and

v(w) =
p2(w)− 1

p2(w) + 1

=
1

2

(
b1w +

(
b2 −

b21
2

)
w2 + · · ·

)
. (11)

Then p1 and p2 are analytic in ∆ with p1(0) = 1 = p2(0). Since u, v : ∆ → ∆, the
functions p1 and p2 have positive real part in ∆, and |bi| ≤ 2 and |ci| ≤ 2. In view of (8),
(10) clearly

2

1 + e−u(z)
= 1 +

1

4
c1z +

(
1

4
c2 −

1

8
c21

)
z2

+

(
11

192
c31 −

1

4
c2c1 +

1

4
c3

)
z3 + · · · (12)

and from (9), (11), we have

2

1 + e−v(w)
= 1 +

1

4
b1w +

(
1

4
b2 −

1

8
b21

)
w2

+

(
11

192
b31 −

1

4
b2b1 +

1

4
b3

)
w3 + · · · , (13)

while

2zf ′(z)

f(z)− f(−z)
= 1 + 2a2z + 2a3z

2

+ 2z3(2a4 − a2a3) + · · · (14)

2wg′(w)

g(w)− g(−w)
= 1− 2a2w + 2(2a22 − a3)w

2

+ 2a2(2a
2
2 − a3)w

3 + · · · (15)

From (12), (13), (14) and (15), we have

a2 =
c1
8
, (16)

a3 =
1

8
c2 −

1

16
c21, (17)

a2 = −b1
8
, (18)

2a22 − a3 =
b2
8

− b21
16

. (19)
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From (16) and (18), we have c1 = −b1 and

2a22 =
1

64
(c21 + b21). (20)

Using (17), (19) and (20) we obtain

2a22 =
1

8
(b2 + c2)−

1

16
(b21 + c21)

=
1

8
(b2 + c2)− 8a22

a22 =
b2 + c2
80

, (21)

Using (4) together with triangle inequality, it follows that

|a2| ≤
1

2
√
5
.

This inequality is best possible for the function given by (8) and (9) with u(z) = z2 and
v(w) = w2.
By subtracting (19) from (17), and using further computations leads to

a3 =
c2 − b2
16

+ a22 (22)

from (20), we get

a3 =
c21 + b21
128

+
c2 − b2
16

,

Using triangle inequality and (4), we obtain

|a3| ≤
5

16
.

The inequality is best possible for the function given by (8) and (9) with u(z) = z and
v(w) = w.

Theorem 3.2. If f ∈ Cσ(S) is given by (1), then

|a2| ≤
1

2
√
19

,

|a3| ≤
19

192
.

The inequalities are sharp.

Proof: Let f ∈ Cσ(S) and g = f−1.
Then there are analytic functions u, v : ∆ → ∆,
with u(0) = v(0) = 0, satisfying

(2zf ′(z))′

(f(z)− f(−z))′
= ϕ(u(z)) (23)

and
(2wg′(w))′

(g(w)− g(−w))′
= ϕ(v(w)) (24)

where

ϕ(u(z)) =
2

1 + e−u(z)
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and

ϕ(v(w)) =
2

1 + e−v(w)

Simple computation yields,

(2zf ′(z))′

(f(z)− f(−z))′
= 1 + 4a2z + 6a3z

2

+ 4z3(4a4 − 3a2a3) + · · · (25)

(2wg′(w))′

(g(w)− g(−w))′
= 1− 4a2w + 6(2a22 − a3)w

2

+ 28(7a32 − 6a2a3 + a4)w
3 + · · · . (26)

From (12), (13), (25) and (26), we have

a2 =
c1
16

, (27)

a3 =
1

24
c2 −

1

48
c21, (28)

a2 = − b1
16

, (29)

2a22 − a3 =
b2
24

− b21
48

. (30)

From (27) and (29), we have c1 = −b1 and

2a22 =
1

256
(c21 + b21). (31)

Using (28), (30) and (31) we obtain

2a22 =
1

24
(b2 + c2)−

1

48
(b21 + c21)

a22 =
b2 + c2
304

, (32)

Using (4) together with triangle inequality, it follows that

|a2| ≤
1

2
√
19

.

The inequality is best possible for the function given by (23) and (24) with u(z) = z2 and
v(w) = w2. By subtracting (30) from (28), and using further computations leads to

a3 =
c2 − b2
48

+ a22 (33)

Using triangle inequality and (4), we get

|a3| ≤
19

192
.

The inequality is best possible for the function given by (23) and (24) with u(z) = z and
v(w) = w.

Remark 3.1. Brannan and Clunie’s conjecture [4] are verified for the subclasses S∗
σ(S)

and Cσ(S).
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4. Fekete Szegö inequality

The Fekete Szegö inequality for the subclasses S∗
σ(S) and Cσ(S) will be determined in

this section.

Theorem 4.1. Let the function f(z) given by (1) be in the class S∗
σ(S). Then

|a3 − λa22| ≤

{
1
4 , if |g(λ)| < 1

8

4|g(λ)|, if|g(λ)| ≥ 1
8

(34)

where λ ∈ R and g(λ) = 1−λ
40 .

Proof: From (22) for λ ∈ R, we have

a3 − λa22 =
c2 − b2
16

+ (1− λ)a22. (35)

By substituting (21) in (35), we get

a3 − λa22 =
c2 − b2
16

+ (1− λ)
b2 + c2
80

(36)

=

(
g1(λ) +

1

16

)
c2 (37)

+

(
g1(λ)−

1

16

)
b2, (38)

where g1(λ) =
1−λ
80 .

Taking modulus,

|a3 − λa22| ≤
∣∣∣∣(g(λ) + 1

8

)∣∣∣∣+ ∣∣∣∣(g(λ)− 1

8

)∣∣∣∣ , (39)

where g(λ) = 1−λ
40 . Thus we conclude that,

|a3 − λa22| ≤

{
1
4 , if |g(λ)| < 1

8

4|g(λ)|, if|g(λ)| ≥ 1
8 .

In similar lines, we can state the theorem for the class Cσ(S) as follows:

Theorem 4.2. Let the function f(z) given by (1) be in the class Cσ(S). Then

|a3 − λa22| ≤

{
1
12 , if |h(λ)| < 1

24

4|h(λ)|, if|h(λ)| ≥ 1
24

where λ ∈ R and h(λ) = 1−λ
152 .

5. Second and Third order Toeplitz Determinants

In this section we find the second and third order Toeplitz determinants for the classes
S∗
σ(S) and Cσ(S).

Theorem 5.1. Let the function f(z) given by (1) be in the class S∗
σ(S). Then

|T2(2)| ≤ 0.1476,

|T3(1)| ≤ 1.1781.
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Proof:
If f ∈ S is of the form (1) then

|T3(1)| = |1− 2a22 + 2a22a3 − a23|

Applying triangle inequality, we get

≤ 1 + 2|a22|+ |a3||a3 − 2a22|

Using (6) , (7) and (34), we have

|T3(1)| ≤ 1 +
1

10
+

5

64
≤ 1.1781.

and

|T2(2)| = |a22 − a23|
≤ |a22|+ |a23|
≤ 0.1476.

In similar lines we can state the next theorem as follows:

Theorem 5.2. Let the function f(z) given by (1) be in the class Cσ(S). Then

|T2(2)| ≤ 0.0229

|T3(1)| ≤ 1.0345.

Remark 5.1. The determination of the sharp estimates for the second and third order
Toeplitz determinants for the subclasses S∗

σ(S) and Cσ(S) remain to be explored.

6. Conclusions

Artificial neurons have been activated using a broad range of sigmoid functions, such
as the logistic and hyperbolic tangent functions. In statistics, sigmoid curves are also
frequently used as cumulative distribution functions (that is, functions that range from 0
to 1), such as the logistic density integral, normal density integral, Student’s t probability
density functions and in this paper we made a connections with some subclasses of ana-
lytic functions. The current study dealt with the upper bounds of Toeplitz determinants
of symmetric functions and we obtained the Sharp coefficient estimates, Fekete-Szegö in-
equality, second and third order Toeplitz determinants, for the subclasses S∗

σ(S), Cσ(S) of
bi-univalent functions associated with the modified sigmoid function. We anticipate great
applications of these findings in the domains of mathematics, engineering, science, and
technology, we also motivate further research into the determination of sharp estimates of
second and third-order Toeplitz determinants for these subclasses.

Acknowledgement. The authors wish to express their sincere appreciation to the review-
ers for their invaluable and insightful feedback, which significantly enhanced the quality
of the manuscript’s presentation.
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