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NONLINEAR LANGEVIN FRACTIONAL DIFFERENTIAL EQUATION

WITH NONLOCAL MIXED BOUNDARY CONDITIONS INVOLVING A

CAPUTO-EXPONENTIAL

N. DERDAR1∗, §

Abstract. In this paper, the existence and uniqueness results for a nonlinear Langevin
fractional differential equation with nonlocal mixed (multipoint, fractional integral and
fractional derivative) boundary conditions involving a Caputo-exponential is studied.
The uniqueness result is discussed via Banach’s contraction mapping principle, and the
existence of solutions is proved by using Schaefer’s fixed point theorem. Finally, an
example is also constructed to demonstrate the application of the main results.
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tional differential, nonlocal mixed boundary conditions, fixed point theorems.
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1. Introduction

Fractional calculus has been utilized to represent physical and engineering phenomena,
often best captured by fractional differential equations. It’s important to highlight that
traditional mathematical models using integer-order derivatives, even nonlinear ones, of-
ten fall short in various situations. This is due to the fact that fractional differential
equations have various applications in engineering and scientific disciplines, for example,
fluid dynamics, fractal theory, diffusion in porous media, fractional biological neurons,
traffic flow, polymer rheology, neural network modeling, viscoelastic panel in supersonic
gas flow, real system characterized by power laws, electrodynamics of complex medium,
sandwich system identification, nonlinear oscillation of earthquake, models of population
growth, mathematical modeling of the diffusion of discrete particles in a turbulent fluid,
nuclear reactors and theory of population dynamics. For more details about the theory of
fractional calculus, fractional differential equations and their applications, we refer to the
reader the monographs of Abbas et al. [1, 2], B. Ahmad et al. [3, 4], Agarwal et al. [5],
Baleanu et al. [7], Benchohra et al. [9, 10], Fečkan et al. [15], Hilfer [19, 20], Kilbas et al.
[23], Oldham et al. [32], Podlubny [33], Zhou et al. [44] and the reference therein.
Although the definition of the Riemann–Liouville type played an important role in the
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development of the theory of fractional calculus, real-world problems require fractional
derivatives that contain physically interpretable initial conditions [1]-[5]. To overcome such
problems, Caputo proposed a definition of the fractional derivative, the Caputo fractional
derivative offers a significant advantage by enabling the integration of traditional initial
and boundary conditions into problem formulation. Notably, conventional mathematical
models employing integer-order derivatives often prove inadequate in diverse scenarios.
However, some researchers have found it necessary to define new fractional derivatives
with different singular or nonsingular kernels in order to provide more sufficient area to
model more real-world problems in different fields of science and engineering [6, 12].
The question is whether there is a Caputo-exponential derivative in Fractional calcu-
lus?. The answer to this question is positive. There is indeed a fractional derivative,
namely the Caputo/Riemann-Liouville fractional derivative with an exponential kernel
(we call it the Caputo/Riemann-Liouville fractional exponential derivative for short), see
[8, 14, 26]. The difference between the Caputo-exponential fractional derivative and the
Caputo/Riemann-Liouville fractional derivative is that the solutions of classical differential
equations or fractional differential equations with the Caputo/Riemann-Liouville deriva-
tive have “algebraic” asymptotics [22, 28] while the solutions of fractional equations with
the Caputo-Hadamard derivative have ”logarithmic” asymptotics [26] and the solutions
of fractional differential equations with the Caputo exponential derivative have ”exponen-
tial” asymptotics [27].
Langevin equation was introduced by Paul Langevin in 1908 [25], a brilliant French physi-
cist in the early twentieth century, he proposed the nonlinear Langevin equation and
created an accurate description of Brownian motion using his Langevin equation. The
Langevin differential equation was used to explain the physical processes in oscillating
domains. Analyzing the stock market [11], modelling evacuation processes [24], studying
fluid suspensions [21], self organization in complex systems [16], photo-electron counting
[42] and protein dynamics [36] are just some applications of this equation.
The virtually simultaneous development of fractional derivatives, various generalizations
of the Langevin equation have been proposed and studied by various researchers during
recent years. Despite the widespread use these applications, the fractional Langevin equa-
tion is extensively studied in the literature in both froms: theoretical and numerical points
of view.
In 2020, Salem [34] have discussed existence and uniqueness results of solutions for anti-
periodic fractional Langevin equation given by

cDβ(cDα
0 + λ)x(t) = f(t, x(t), cDαx(t)), t ∈ [0, 1],

x(0) + x(1) = 0, x′(0) = 0, cDαx(1) =
µ

Γ(γ)

∫ η

0
(η − s)γ−1x(s)ds,

where cDβ, cDα are fractional derivatives in the Caputo sense with values of β ∈ (1, 2],
α ∈ (0, 1), 0 < η < 1, γ > 0, µ ∈ R and f : [0, 1] × R × R −→ R is a given continuous
function.
In 2021, A. Seemab et al. [37] investigated the existence, uniqueness and stability in
the sense Ulam Hyers Rassias of solutions for Langevin equation with nonlocal boundary
conditions involving a ψ-Caputo fractional operators of different orders given by

c
a+,tD

α(ca+,tD
α + λ)[x] = f(t, x(t), ca+,tD

γ [x]), t ̸= (a, T ),

x(a) = 0, x(η) = 0, x(T ) = µ(ca+,ξJ
γ,ψ)[x], µ > 0,
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where µ(ca+,ξJ
γ,ψ), ca+,tD

θ are Ψ-fractional integral of order γ, Ψ-Caputo fractional deriva-

tive of order θ ∈ {α, β, γ} respectively, 0 ≤ a < η < ξ < T <∞, 1 < α ≤ 2, 0 < β < γ ≤ 1,
λ is a real number and f : [a, T ]× R× R −→ R+ is a continuous function.
In 2022, Hamdy and Ahmed [18] investigated the existence and uniqueness results for a
nonlinear coupled system of nonlinear fractional Langevin equations with a new kind of
boundary conditions of the form

cDκ1
0+(

cDν1
0+ + χ1)x1(t) = Ψ1(t, x1(t), x2(t)), t ∈ J := [0, T ], 1 < ν1 ≤ 2, 1 < κ1 ≤ 2,

cDκ2
0+(

cDν2
0+ + χ2)x2(t) = Ψ2(t, x1(t), x2(t)), t ∈ J := [0, T ], 1 < ν2 ≤ 2, 1 < κ2 ≤ 2,

subject to the following coupled boundary conditions{
x1(0) = 0, x1(T ) = δ1x1(η1), x

′
1(T ) = ϵ1x1(ξ1)

x2(0) = 0, x2(T ) = δ2x1(η2), x
′
2(T ) = ϵ2x1(ξ2)

where cDκ1
0+,

cDκ2
0+,

cDν1
0+,

cDν2
0+ denote the Caputo fractional derivative of order κ1, κ2,

ν1 and ν2 respectively, Ψ1, Ψ2 : [0, T ]× R× R −→ R are continuous functions, χ1, χ2 are
the dissipative parameters and δi, ϵi and 0 < ηi, ξi < 1 for i = 1, 2.
In 2023, Salem [35] studied to solve the following linear non-homogeneous fractional dif-
ferential delay equations of the Hilfer type.

Dα,β−τ+(D
α,β
−τ+y)(x) = −B2y(x− τ) + h(x), B ∈ Rn×n, x ∈ [0, T ], τ > 0

y(x) = ϕ(x), ϕ(x) ∈ Rn, −r < x ≤ 0

lim
x−→τ+

(I1−γ−τ+y)(x) = b1, b1 ∈ Rn

lim
x−→τ+

I1−γ−τ (Dα,β−τ+y)(x) = Bb2, b2 ∈ Rn

where h(x) ∈ C([0, T ],Rn), Dα,β−τ+y denotes the Hilfer fractional derivative with type β ∈
[0, 1] and of order 0 < α < 1, Iγ−τ+ denotes γ-order of R− L fractional integral, Dγ+α−τ+ϕ is
the γ + α-order of R − L fractional derivative to the initial function ϕ(x), b1, b2 ∈ Rn are
constants vectors, B is nonsingular matrix, and T = jτ, j ∈ N and τ is a fixed moment.
That much is clear to observe 0 < γ = α+ β − αβ < 1, γ ≥ α and γ ≥ β.
Similarly in 2024, Cheng et al., [13] investigated the existence and uniqueness of solutions
for the Langevin (k, φ)-Hilfer fractional Langevin differential equation having multipoint
boundary conditions given by

k,HDα1,µ1;φ(k,HDα2,µ2;φ + λ)x(t) = g(t, x(t)), t ∈ (a, b],

x(a) = 0, x(b) =

q∑
i=1

∫ vi

a
φ′(s)x(s)ds+

p∑
j=1

ζkj I
ϕj ,φx(xj),

where k,HDαi,µi;φ, i = 1, 2 is the (k, φ)-Hilfer fractional of order αi, 0 < αi < 1 and µi,
0 ≤ µi ≤ 1, 1 < α1 + α2 ≤ 2, λ ∈ R respectively, g : (a, b] × R −→ R is a continuous
function, k,HIαi;φ are the (k, φ)-Riemann–Liouville fractional integrals of order ϕj > 0,
respectively, ξi, ζj ∈ R and a < vi, ζj < b, i = 1, 2, . . . , q, j = 1, 2, . . . , p.
So, there are many studies by some researchers, including those mentioned above, on frac-
tional an Langevin differential equations using different forms of the Hilfer derivative and
Caputo-type derivative, such as Caputo, Caputo-Hadamard, Caputo-Katugampola and
ψ-Cabuto. Unfortunately, there are few studies that have used in it Caputo-exponential
derivatives of other equations this prompted us to study the previous type of equations in
the framework of Caputo-exponential derivative. The second motivation is to prove the
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existence and uniqueness results of the following nonlinear fractional Langevin differential
equation with mixed nonlocal boundary conditions (multipoint, fractional integral and
fractional derivative) involving the Caputo-exponential derivative:

e
cD

α
0 (
e
cD

β
0 + λ)x(t) = f(t, x(t), ecD

γ
0x(t)), t ∈ J = [0, T ], T > 0, (1)

x(0) = 0, ecD
β
0x(0) = 0, aeIq1x(η) + becD

q2
0 x(T ) = c, (2)

where e
cD

θ are fractional derivatives in the sence of Caputo-exponential of order θ ∈
{α, β, γ, q2} and eIq1 is the exponential fractional integral of order q1 such that 1 < α ≤ 2,
0 < q1, q2 < γ < β ≤ 1, f : J × R × R −→ R is a given function, a, b, c and λ are real
constants, η ∈ (0, T ).
The present paper is organized as follows. In Section 2, some notations are introduced
and we recall some preliminary concepts about Caputo-exponential fractional derivatives
and some auxiliary results. In Section 3, two results on the nonlinear langevin fractional
differential equation with nonlocal mixed (multi-point, fractional integral and fractional
derivative) boundary conditions (1)-(2) are presented, the first one is based on the Banach
contraction principle and the second one on Schaefer’s fixed point theorem. In the last
section, two examples are given to illustrate the applicability of our main results.

2. Preliminaries

In this section, we introduce some notations and defenitions of Caputo-exponential type
fractional calculus.
Let [a, b], (−∞ < a < b < +∞) be interval. By C([a, b],R) be the Banach space of all
continuous functions from [a, b] into R with the norm

∥g(t)∥[a,b] = sup{|g(t)| : a ≤ t ≤ b}.

First, let AC([a, b],R) be the space of functions g : [a, b] −→ R that are absolutely contin-
uous. We denote by ACne the space

ACne ([a, b],R) =
{
g : [a, b] −→ R, cDn−1g(t) ∈ AC([a, b],R), eD = e−t

d

dt

}
.

where n = [α] + 1 with [α] is the integer part of α.

Definition 2.1 (See [31], [39]). The exponential fractional integral of order α > 0 of a
function h ∈ L1([a, b], E) is defined by

eIαa h(t) =
1

Γ(α)

∫ t

a
(et − es)α−1h(s)esds, for each t ∈ [a, b].

where Γ(.) is the Euler’s Gamma function defined by

Γ(ξ) =

∫ ∞

0
tξ−1e−tdt, ξ > 0.

Definition 2.2 (See [31], [39]). Let α > 0 and h ∈ ACne ([a, b],R). The exponential
fractional derivatives of Caputo type of order α is defined by

(ecD
α
a )h(t) =

1

Γ(n− α)

∫ t

a
(et − es)n−α+1h(s)(e−s

d

ds
)nh(s)

ds

e−s
, for each t ∈ [a, b].

where n = [α] + 1, In particular, if α = 0 then (ecD
α
a )h(t) = h(t).
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Lemma 2.1 ( See [31], [39]). Let α > 0, n = [α] + 1 and h ∈ ACne ([a, b],R). Then we
have the formula

eIα(ecD
α
a )h(t) = h(t)−

n−1∑
k=0

(et − ea)k

k!
eDkh(a).

Lemma 2.2 (See [39]). Let α > 0 and h ∈ ACne ([a, b],R). Then the differential equation
(ecD

α
a )h(t) = 0 has the solution

h(t) = η0 + η1(e
t − ea) + η2(e

t − ea)2 + . . .+ ηn−1(e
t − ea)n−1,

where ηi ∈ R, i = 0, 1, . . . , n− 1 and n = [α] + 1.

Lemma 2.3 (See [31]). Let α > 0, n = [α] + 1 and h ∈ ACne ([a, b],R). Then

eIαa (
e
cD

α
a )h(t) = h(t) + η0 + η1(e

t − ea) + η2(e
t − ea)2 + . . .+ ηn−1(e

t − ea)n−1,

for some ηi ∈ R, i = 0, 1, . . . , n− 1 and n = [α] + 1.

Proposition 2.1 ( See [31]). Let α, β > 0, then following relations hold for

eIαa (e
t − ea)β =

Γ(β + 1)

Γ(α+ β + 1)
(et − ea)α+β

and
e
cD

α
a (e

t − ea)β =
Γ(β + 1)

Γ(β − α+ 1)
(et − ea)β−α, t ∈ [a, b].

Remark 2.1. By Proposition 2.1, when β = 0 we have

eIαa [1] =
1

Γ(α+ 1)
(et − ea)α

and
e
cD

α
a [1] =

1

Γ(1− α)
(et − ea)−α, α > 0, t ∈ [a, b].

Theorem 2.1 ( See [31]). (Semigroup property). If α, β > 0, then the equation

eIαa (
eIβa f)(t) =

eIβa (
eIαa f)(t) =

eIα+βa f(t),

are satisfied for all t ∈ [a, b].

Note that the relation between the exponential fractional derivatives of Riemann-Liouville
and Caputo types is given by

e
cD

α
a f(t) =

eDα
a

[
f(t)−

n−1∑
k=0

eDk

k!
(et − ea)k

]
where eD = e−t ddt .

Theorem 2.2 (See [31]). If 0 < β < α and 1 ≤ p <∞, then for f ∈ Lp(a, b),

eDβ(eIαa f)(t) =
eIα−βa f(t) and e

cD
β(eIαa f)(t) =

eIα−βa f(t),

In addition, we have eDα(eIαa f)(t) = f(t) and e
cD

α(eIαa f)(t) = f(t),

Theorem 2.3 (See [31]). Let α > 0 and n = [α]+1, then the following formulas are true:

• eIαa (
eDβf)(t) = f(t)−

∑n
j=0

(ex − ea)α−j

Γ(α− j + 1)
eDn−j(eIn−αa f)(a),

• eIαa (
e
cD

βf)(t) = f(t)−
∑n−1

j=0

(ex − ea)j

j!
e
cD

jf(a).
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Theorem 2.4 (Banach’s fixed point theorem, see [17]). . Let D be a nonempty closed
subset of a Banach space X. Then any contraction mapping T from D into itself has a
unique fixed point.

Theorem 2.5 (Schaefer’s fixed point theorem, see [17]). . Let X be a Banach space, let
T : X −→ X be a completely continuous operator, and let the set D = {x ∈ X : x =
δTx, 0 < δ ≤ 1} be bounded. Then T has a fixed point in X.

3. Main results

This section is devoted to the existence and uniqueness results for problem (1)-(2).

Definition 3.1. A function x ∈ C2
e (J,R) is said to be a solution of the problem (1)-(2)

if x satisfies the equation e
cD

α
0 (
e
cD

β
0 + λ)x(t) = f(t, x(t), ecD

γ
0 ) and satisfies the conditions

x(0) = 0, e
cD

β
0x(0) = 0, aeIq1x(η) + becD

q2
0 x(T ) = c on J .

To prove the existence of solutions to the problem (1)-(2), we need the following auxiliary
lemma.

Lemma 3.1. Let 1 < α ≤ 2, be a continuous function. Then the linear problem
e
cD

α
0 (
e
cD

β
0 + λ)x(t) = h(t), t ∈ J = [0, T ],

x(0) = 0, e
cD

β
0x(0) = 0, aeIq1x(η) + becD

q2
0 x(T ) = c,

has a unique solution given by

x(t) = (eIα+β0 )h(t)− λ(eIβ0 )x(t) +
Ω(t)

Λ

[
c− a(eIα+β+q10 )h(η)− b(eIα+β−q20 )h(T )+

+ aλ(eIβ+q10 )x(η) + bλ(eIβ−q20 )x(T )
]
, (3)

where Λ =
a

Γ(β + q1 + 2)
(eη − 1)β+q1+1 +

b

Γ(β − q2 + 2)
(eT − 1)β−q2+1 ̸= 0

and Ω(t) =
(et − 1)β+1

Γ(β + 2)
.

Proof. Assume that x satisfies (3.1) and (3.1). Applying the operator eIα0 to both sides of
(3.1), and then using Lemma 2.1, we have

(ecD
β
0 + λ)x(t) = eIα0 h(t) + c0 + c1(e

t − e0), (4)

or
e
cD

β
0x(t) =

eIα0 h(t)− λx(t) + c0 + c1(e
t − 1). (5)

Again, taking the integral operator eIβ0 to both sides of (5), and then using Lemma 2.1,
we get

x(t) = (eIα+β0 )h(t)− λ(eIβ0 )x(t) +
c0

Γ(β + 1)
(et − 1)β +

c1
Γ(β + 2)

(et − 1)β+1 + c2, (6)

where c0, c1 and c2 are arbitrary constants.

Using the first condition (x(0) = 0) gives c2 = 0, the second condition (ecD
β
0x(0) = 0) gives

c0 = 0 and third conditions gives

c1 =
1

Λ

[
c− aeIα+β+q10 h(η)− beIα+β−q20 h(T ) + aλeIβ+q10 x(η) + bλeIβ−q20 x(T )

]
,
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where Λ =
a

Γ(β + q1 + 2)
(eη − 1)β+q1+1 +

b

Γ(β − q2 + 2)
(eT − 1)β−q2+1 ̸= 0.

Finally, substituting the values of c0, c1 and c2 in (6), we obtain (3).
Conversely, assume that x satisfies the fractional integral equation (3). In fact, using the

operators ecD
β
0 and e

cD
α
0 , gives we obtain

e
cD

α
0 (
e
cD

β
0 + λ)x(t) = h(t), t ∈ J.

□

Let us now consider the space defined by:

X = {x : x ∈ C2
e (J,R), ecD

γ
0x ∈ Ce(J,R)},

equipped with the norm

∥x∥X = ∥x∥∞ + ∥ecD
γ
0x∥∞ = sup

t∈J
|x(t)|+ sup

t∈J
|ecD

γ
0x(t)|.

Clearly, (X, ∥.∥X) is a Banach space, see [10].
We assume the following conditions to prove the existence of a solution of problem (1)-(2)

(H1): The function f : J × R× R −→ R is continuous.
(H2): There exists constants L ∈ R+ such that

|f(t, u, v)− f(t, u, v)| ≤ L(|u− u|+ |v − v|),
for any u, v, u and v ∈ R, for a.e., t ∈ J .

We adopt the following notation.

Ω∗ = Ω∗
0 +Ω∗

1, (7)

κ1 = κ01 + κ11, κ2 = κ02 + κ12, (8)

ρ0 = ρ00 + ρ10, ρ1 = ρ01 + ρ11, (9)

where
Ω∗
0 = sup

t∈J
|Ω(t)|, Ω∗

1 = sup
t∈J

|ecD
γ
0Ω(t)|, (10)

κ01 = Lρ01, κ02 = κ01 + |λ|ρ00, κ11 = Lρ11, κ12 = κ11 + |λ|ρ10, (11)

with
ρ00 = sup

t∈J
|ω0

0(t)|, ρ01 = sup
t∈J

|ω0
1(t)|, ρ10 = sup

t∈J
|ω1

0(t)|, ρ11 = sup
t∈J

|ω1
1(t)|, (12)

ω0
0(t) = (eIβ0,t)[1] +

|a|
|Λ|

Ω(t)(eIβ+q10,η )[1] +
|b|
|Λ|

Ω(t)(eIβ−q20,T )[1], (13)

ω0
1(t) = (eIα+β0,t )[1] +

|a|
|Λ|

Ω(t)(eIα+β+q10,η )[1] +
|b|
|Λ|

Ω(t)(eIα+β−q20,T )[1], (14)

ω1
0(t) = (eIβ−γ0,t )[1] +

|a|ecD
γ
0 (Ω(t))

|Λ|
(eIβ+q10,η )[1] +

|b|ecD
γ
0 (Ω(t))

|Λ|
(eIβ−q20,T )[1], (15)

and

ω1
1(t) = (eIα+β−γ0,t )[1] +

|a|ecD
γ
0 (Ω(t))

|Λ|
(eIα+β+q10,η )[1] +

|b|ecD
γ
0 (Ω(t))

|Λ|
(eIα+β−q20,T )[1]. (16)

Our first result is based on the following Banach contraction mapping principle.

Theorem 3.1. If the hypotheses (H1)-(H2) are satisfied and if

κ = max(κ1, κ2) < 1, (17)

then the problem (1)-(2) has a unique solution in the space X.
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Proof. Transform the problem (1)-(2) into a fixed point problem. Consider the operator
F : X −→ X defined by

(Fx)(t) = (eIα+β0 )σx(t)− λ(eIβ0 )x(t) +
Ω(t)

Λ

[
c− a(eIα+β+q10 )σx(η)− b(eIα+β−q20 )σx(T )

+ aλ(eIβ+q10 )x(η) + bλ(eIβ−q20 )x(T )
]
, (18)

where σx(t) = f(t, x(t), ecD
γ
0x(t)),

Λ =
a

Γ(β + q1 + 2)
(eη−1)β+q1+1+

b

Γ(β − q2 + 2)
(eT−1)β−q2+1 ̸= 0 and Ω(t) =

(et − 1)β+1

Γ(β + 2)
.

Clearly, the fixed points of F are solutions of problem (1)-(2).
Setting M1 = supt∈J |f(t, 0, 0)| and choosing

r1 ≥
M1ρ1 +

|c|
|Λ|Ω

∗

1− κ
.

Note that Br1 = {x ∈ X : ∥x∥ ≤ r1} is a subest of X which Br1 bounded, closed and
convex. The proof is divided into two steps as follows.
Step I: We show that FBr1 ⊂ Br1 . For x ∈ Br1 , by (H2), we have for each t ∈ J

|σx(t)| = |f(t, x(t), ecD
γ
0x(t)) + f(t, 0, 0)− f(t, 0, 0)|

≤ |f(t, x(t), ecD
γ
0 )− f(t, 0, 0)|+ |f(t, 0, 0)|

≤ L(|x(t) + |ecD
γ
0x(t)|) +M1

≤ L∥x∥∞ + L∥ecD
γ
0x∥∞ +M1 (19)

Substituting (19) into (18), by using (10), (11), (12), (13) and (14) we have the follwing
inequalities

|(Fx)(t)|

≤ (eIα+β0 )|σx(t)|+ |λ|(eIβ0 )|x(t)|+
Ω(t)

|Λ|

[
|a|(eIα+β+q10 )|σx(η)|+ |b|(eIα+β−q20 )|σx(T )|

+ |aλ|(eIβ+q10 )|x(η)|+ |bλ|(eIβ−q20 )|x(T )|+ |c|
]
,

≤ (eIα+β0,t )(L∥x∥∞ + L∥ecD
γ
0x∥∞ +M1) + |λ|(eIβ0,t)∥x∥+

Ω(t)

|Λ|

[
|a|(eIα+β+q10,η )

× (L∥x∥∞ + L∥ecD
γ
0x∥∞ +M1) + |b|(eIα+β−q20,T )(L∥x∥∞ + L∥ecD

γ
0x∥∞ +M1)

+ |aλ|(eIβ+q10,η )∥x∥+ |bλ|(eIβ−q20,T )∥x∥+ |c|
]
,
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≤

{
L
(
(eIα+β0,t )[1] +

|a|Ω(t)
|Λ|

(eIα+β+q10,η )[1] +
|b|Ω(t)
|Λ|

(eIα+β−q20,T )[1]
)
+ |λ|

(
(eIβ0,t)[1]

+
|a|Ω(t)
|Λ|

(eIβ+q10,η )[1] +
|b|Ω(t)
|Λ|

(eIβ−q20,T )[1]
)}

∥x∥∞ +

{
L
(
(eIα+β0,t )[1]

+
|a|Ω(t)
|Λ|

(eIα+β+q10,η )[1] +
|b|Ω(t)
|Λ|

(eIα+β−q20,T )[1]
)}

∥ecD
γ
0x∥∞ +M1

(
(eIα+β0,t )[1]

+
|a|Ω(t)
|Λ|

(eIα+β+q10,η )[1] +
|b|Ω(t)
|Λ|

(eIα+β−q20,T )[1]
)
+

|c|Ω(t)
|Λ|

,

=
(
Lω0

1(t) + |λ|ω0
0(t)

)
∥x∥∞ +

(
Lω0

1(t)
)
∥ecD

γ
0x∥∞ +M1ω

0
1(t) +

|c|Ω(t)
|Λ|

.

Consequently,

∥(Fx)∥∞ ≤ κ02∥x∥∞ + κ01∥ecD
γ
0x∥∞ +M1ρ

0
1 +

|c|
|Λ|

Ω∗
0. (20)

On the other hand, by using (10), (11), (12), (15) and (16), we can find that

|ecD
γ
0 (Fx)(t)|

≤ (eIα+β−γ0 )|σx(t)|+ |λ|(eIβ−γ0 )|x(t)|+
e
cD

γ
0 (Ω(t))

|Λ|

[
|a|(eIα+β+q10 )|σx(η)|

+ |b|(eIα+β−q20 )|σx(T )|+ |aλ|(eIβ+q10 )|x(η)|+ |bλ|(eIβ−q20 )|x(T )|+ |c|
]
,

≤ (eIα+β−γ0,t )(L∥x∥∞ + L∥ecD
γ
0x∥∞ +M1) + |λ|(eIβ−γ0,t )∥x∥+

e
cD

γ
0 (Ω(t))

|Λ|

×
[
|a|(eIα+β+q10,η )(L∥x∥∞ + L∥ecD

γ
0x∥∞ +M1) + |b|(eIα+β−q20,T )(L∥x∥∞

+ L∥ecD
γ
0x∥∞ +M1) + |aλ|(eIβ+q10,η )∥x∥+ |bλ|(eIβ−q20,T )∥x∥+ |c|

]
,

≤

{
L
(
(eIα+β−γ0,t )[1] +

|a|ecD
γ
0 (Ω(t))

|Λ|
(eIα+β+q10,η )[1] +

|b|ecD
γ
0 (Ω(t))

|Λ|

× (eIα+β−q20,T )[1]
)
+ |λ|

(
(eIβ−γ0,t )[1] +

|a|ecD
γ
0 (Ω(t))

|Λ|
(eIβ+q10,η )[1] +

|b|ecD
γ
0 (Ω(t))

|Λ|

× (eIβ−q20,T )[1]
)}

∥x∥∞ +

{
L
(
(eIα+β−γ0,t )[1] +

|a|ecD
γ
0 (Ω(t))

|Λ|
(eIα+β+q10,η )[1]

+
|b|ecD

γ
0 (Ω(t))

|Λ|
(eIα+β−q20,T )[1]

)
+ |λ|

(
(eIβ−γ0,t )[1] +

|a|ecD
γ
0 (Ω(t))

|Λ|
(eIβ+q10,η )[1]

+
|b|ecD

γ
0 (Ω(t))

|Λ|
(eIβ−q20,T )[1]

)}
∥ecD

γ
0x∥∞ +M1

(
(eIα+β−γ0,t )[1] +

|a|ecD
γ
0 (Ω(t))

|Λ|

× (eIα+β+q10,η )[1] +
|b|ecD

γ
0 (Ω(t))

|Λ|
(eIα+β−q20,T )[1]

)
+

|c|ecD
γ
0 (Ω(t))

|Λ|

=
(
Lω1

1(t) + |λ|ω1
0(t)

)
∥x∥∞ +

(
Lω1

1(t)
)
∥ecD

γ
0x∥∞ +M1ω

1
1(t) +

|c|ecD
γ
0 (Ω(t))

|Λ|
.
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Consequently,

∥ecD
γ
0 (Fx)∥∞ ≤ κ12∥x∥∞ + κ11∥ecD

γ
0x∥∞ +M1ρ

1
1 +

|c|
|Λ|

Ω∗
1. (21)

Combining (20) and (21) by using (7), (8) and (9), we obtain

∥(Fx)∥X ≤ κ2∥x∥∞ + κ1∥ecD
γ
0x∥∞ +M1ρ1 +

|c|
|Λ|

Ω∗

≤ κ∥x∥X +M1ρ1 +
|c|
|Λ|

Ω∗

≤ κr1 + (1− κ)r1, 0 < κ < 1

≤ r1. (22)

Hence, the operator F maps bounded sets into bounded sets in X.
Step II: To show that an operator F : X −→ X is contraction. Let x, y ∈ X and t ∈ J ,
we have

(Fx)(t)− (Fy)(t)

= (eIα+β0 )(σx(t)− σy(t))− λ(eIβ0 )(x(t)− y(t)) +
Ω(t)

Λ

[
− a(eIα+β+q10 )

× (σx(η)− σy(η))− b(eIα+β−q20 )(σx(T )− σy(T )) + aλ(eIβ+q10 )(x(η)− y(η))

+ bλ(eIβ−q20 )(x(T )− y(T ))
]
. (23)

By (H2), (11), (13) and (14), we can find that

|(Fx)(t)− (Fy)(t)|

≤ (eIα+β0,t )(L∥x− y∥∞ + L∥ecD
γ
0x− e

cD
γ
0y∥∞) + |λ|(eIβ0,t)∥x− y∥

+
Ω(t)

|Λ|

[
|a|(eIα+β+q10,η )(L∥x− y∥∞ + L∥ecDα

0 x− e
cD

γ
0y∥∞)

+ |b|(eIα+β−q20,T )(L∥x− y∥∞ + L∥ecD
γ
0x− e

cD
γ
0y∥∞)

+ |aλ|(eIβ+q10,η )∥x− y∥+ |bλ|(eIβ−q20,T )∥x− y∥
]
,

≤

{
L
(
(eIα+β0,t )[1] +

|a|Ω(t)
|Λ|

(eIα+β+q10,η )[1] +
|b|Ω(t)
|Λ|

(eIα+β−q20,T )[1]
)

+ |λ|
(
(eIβ0,t)[1] +

|a|Ω(t)
|Λ|

(eIβ+q10,η )[1] +
|b|Ω(t)
|Λ|

(eIβ−q20,T )[1]
)}

∥x− y∥∞

+

{
L
(
(eIα+β0,t )[1] +

|a|Ω(t)
|Λ|

(eIα+β+q10,η )[1] +
|b|Ω(t)
|Λ|

(eIα+β−q20,T )[1]
)}

∥ecD
γ
0x− e

cD
γ
0y∥∞

≤

{
Lω0

1(t) + |λ|ω0
0(t)

}
∥x− y∥∞ +

{
Lω0

1(t)

}
∥ecD

γ
0x− e

cD
γ
0y∥∞.

Therefore,

∥(Fx)− (Fy)∥∞ ≤ κ02∥x− y∥∞ + κ01∥ecD
γ
0x− e

cD
γ
0y∥∞. (24)

On the other hand by (H2), (11), (15) and (16), we can find that

|ecD
γ
0 [(Fx)(t)− (Fy)(t)]|
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≤

{
L
(
(eIα+β−γ0,t )[1] +

|a|ecD
γ
0 (Ω(t))

|Λ|
(eIα+β+q10,η )[1] +

|b|ecD
γ
0 (Ω(t))

|Λ|
(eIα+β−q20,T )[1]

)
+ |λ|

(
(eIβ−γ0,t )[1] +

|a|ecD
γ
0 (Ω(t))

|Λ|
(eIβ+q10,η )[1] +

|b|ecD
γ
0 (Ω(t))

|Λ|
(eIβ−q20,T )[1]

)}
∥x− y∥∞

+

{
L
(
(eIα+β−γ0,t )[1] +

|a|ecD
γ
0 (Ω(t))

|Λ|
(eIα+β+q10,η )[1] +

|b|ecD
γ
0 (Ω(t))

|Λ|
(eIα+β−q20,T )[1]

)
+ |λ|

(
(eIβ−γ0,t )[1] +

|a|ecD
γ
0 (Ω(t))

|Λ|
(eIβ+q10,η )[1] +

|b|ecD
γ
0 (Ω(t))

|Λ|
(eIβ−q20,T )[1]

)}
∥ecD

γ
0x− e

cD
γ
0y∥∞,

≤

{
Lω1

1(t) + |λ|ω1
0(t)

}
∥x− y∥∞ +

{
Lω1

1(t)

}
∥ecD

γ
0x− e

cD
γ
0y∥∞.

Hence,

∥|ecD
γ
0 [(Fx)− (Fy)]∥∞ ≤ κ12∥x− y∥∞ + κ11∥ecD

γ
0x− e

cD
γ
0y∥∞. (25)

Combining (24) and (25) by using (8), we can write

∥(Fx)− (Fy)∥X = ∥(Fx)− (Fy)∥∞ + ∥|ecD
γ
0 [(Fx)− (Fy)]∥∞

≤ (κ02 + κ12)∥x− y∥∞ + (κ01 + κ11)∥ecD
γ
0x− e

cD
γ
0y∥∞

≤ κ2∥x− y∥∞ + κ1∥ecD
γ
0x− e

cD
γ
0y∥∞

≤ κ∥x− y∥X . (26)

Consequently by (17), F is a contraction. As a consequence of Banach fixed point theorem,
we deduce that F has a fixed point which is a solution of the problem (1)-(2). □

The second result is based on Schaefer’s fixed point theorem. Let us introduce the
following condition

(H3): There exists a constant M2 > 0 such that |f(t, u, v)| ≤ M2, for any u, v ∈ R
for a.e., t ∈ J .

Theorem 3.2. Assume that conditions (H1), (H3) hold. Then the problem (1)-(2) has at
least one solution on J .

Proof. We shall use Schaefer’s fixed point theorem to prove that operator F , defined in
(18) has at least one fixed point in X. The proof is divided into four steps:
Step 1: The operator F is continuous.
Let {xn} be a sequence such that xn −→ x in X, then for each t ∈ J , and by (12), (13),
and (14), we can find that

|(Fxn)(t)− (Fx)(t)|
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≤ (eIα+β0 )|σxn(t)− σx(t)|+ |λ|(eIβ0 )|xn(t)− x(t)|+ Ω(t)

|Λ|

[
|a|(eIα+β+q10 )

× |σxn(η)− σx(η)|+ |b|(eIα+β−q20 )|(σxn(T )− σx(T )|+ |aλ|(eIβ+q10 )|xn(η)− x(η)|

+ |bλ|(eIβ−q20 )|xn(T )− x(T )|
]

≤

{
(eIα+β0,t )[1] +

Ω(t)

|Λ|

[
|a|(eIα+β+q10 )[1] + |b|(eIα+β−q20 )[1]

]}
∥σxn − σx∥∞

+

{
|λ|(eIβ−γ0,t )[1] +

Ω(t)

|Λ|

[
|a|(eIβ+q10 )[1] + |b|(eIβ−q20 )[1]

]}
∥xn − x∥∞

≤ ω0
1(t)∥σxn − σx∥∞ + |λ|ω0

0(t)∥xn − x∥∞.

Therefore,

∥(Fxn)(t)− (Fx)(t)∥∞ ≤ ρ01∥σxn − σx∥∞ + |λ|ρ00∥xn − x∥∞. (27)

On the other hand by using (12), (15) and (16), we obtain

|ecD
γ
0 [(Fxn)(t)− (Fx)(t)]|

≤ (eIα+β−γ0 )|σxn(t)− σx(t)|+ |λ|(eIβ−γ0 )|xn(t)− x(t)|+
e
cD

γ
0 (Ω(t))

|Λ|

×
[
|a|(eIα+β+q10 )|σxn(η)− σx(η)|+ |b|(eIα+β−q20 )|(σxn(T )− σx(T )|

+ |aλ|(eIβ+q10 )|xn(η)− x(η)|+ |bλ|(eIβ−q20 )|xn(T )− x(T )|
]

≤

{
(eIα+β−γ0,t )[1] +

e
cD

γ
0 (Ω(t))

|Λ|

[
|a|(eIα+β+q10 )[1] + |b|(eIα+β+q20 )[1]

]}
∥σxn − σx∥∞

+

{
|λ|(eIβ−γ0,t )[1] +

e
cD

γ
0 (Ω(t))

|Λ|

[
|a|(eIβ+q10 )[1] + |b|(eIβ−q20 )[1]

]}
∥xn − x∥∞

≤ ω1
1(t)∥σxn − σx∥∞ + |λ|ω1

0(t)∥xn − x∥∞.

Therefore,

∥ecD
γ
0 [(Fxn)(t)− (Fx)(t)]∥∞ ≤ ρ11∥σxn − σx∥∞ + |λ|ρ10∥xn − x∥∞. (28)

We remark that the continuity of the functional σ (i.e f is continuous), confirms the
continuity of ecD

γ
0 (F) and F , for each t ∈ J . Then

∥(Fxn)(t)− (Fx)(t)∥X −→ 0 as n −→ ∞.

Hence, the operator F is continuous on X.
Step 2: The operator F maps bounded sets into bounded sets in X.
For r2 > 0, there exists constants l > 0, for each x ∈ {x ∈ X : ∥x∥X = ∥x∥∞ + ∥ecD

γ
0∥∞}.

Then, for any t ∈ J and x ∈ Br2 , and by using (H3), (10), (12), (13), and (14), we have

|(Fx)(t)|
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≤ (eIα+β0 )|σx(t)|+ |λ|(eIβ0 )|x(t)|+
Ω(t)

|Λ|

[
|a|(eIα+β+q10 )|σx(η)|+ |b|(eIα+β+q20 )|σx(T )|

+ |aλ|(eIβ+q10 )|x(η)|+ |bλ|(eIβ−q20 )|x(T )|+ |c|
]
,

≤M2(
eIα+β0,t )[1] + |λ|r2(eIβ0,t)[1] +

Ω(t)

|Λ|

[
|a|M2(

eIα+β+q10,η )[1] + |b|M2(
eIα+β−q20,T )[1]

+ |aλ|r2(eIβ+q10 ) + |bλ|r2(eIβ−q20 ) + |c|
]
,

≤M2

[
(eIα+β0,t )[1] +

Ω(t)

|Λ|

[
|a|(eIα+β+q10,η )[1] + |b|(eIα+β−q20,T )[1]

]]

+ |λ|r2

[
Ω(t)

|Λ|

[
+ (eIβ0,t)[1] + |a|(eIβ+q10,η ) + |b|(eIβ−q20,T )

]]
+

|c|Ω(t)
|Λ|

,

≤M2ω
0
1(t) + |λ|r2ω0

0(t) +
|c|
|Λ|

Ω∗
0.

Therefore,

∥(Fx)∥∞ ≤M2ρ
0
1 + |λ|r2ρ00 +

|c|
|Λ|

Ω∗
0. (29)

On the other hand by using (H3), (10), (12), (15) and (16), we obtain

|ecD
γ
0 (Fx)(t)|

≤ (eIα+β−γ0 )|σx(t)|+ |λ|(eIβ−γ0 )|x(t)|+ |ecD
γ
0 (Ω(t))

|Λ|

[
|a|(eIα+β+q10 )|σx(η)|

+ |b|(eIα+β+q20 )|σx(T )|+ |aλ|(eIβ+q10 )|x(η)|+ |bλ|(eIβ−q20 )|x(T )|+ |c|
]
,

≤M2(
eIα+β−γ0,t )[1] + |λ|r2(eIβ−γ0,t )[1] +

|ecD
γ
0 (Ω(t))

|Λ|

[
|a|M2(

eIα+β+q10,η )[1]

+ |b|M2(
eIα+β+q20,T )[1] + |aλ|r2(eIβ+q10 ) + |bλ|r2(eIβ−q20 ) + |c|

]
,

≤M2

[
(eIα+β−γ0,t )[1] +

|ecD
γ
0 (Ω(t))

|Λ|

[
|a|(eIα+β+q10,η )[1] + |b|(eIα+β+q20,T )[1]

]]

+ |λ|r2

[
|ecD

γ
0 (Ω(t))

|Λ|

[
+ (eIβ−γ0,t )[1] + |a|(eIβ+q10,η ) + |b|(eIβ−q20,T )

]]
+

|c|ecD
γ
0Ω(t)

|Λ|
,

≤M2ω
1
1(t) + |λ|r2ω1

0(t) +
|c|
|Λ|

Ω∗
1.

Therefore,

∥ecD
γ
0 (Fx)∥∞ ≤M2ρ

1
1 + |λ|r2ρ10 +

|c|
|Λ|

Ω∗
1. (30)

Combining (29) and (30), by using (7), (9), we can write

∥(Fx)∥X ≤M2ρ1 + |λ|r2ρ0 +
|c|
|Λ|

Ω∗ := l. (31)

Step 3: The operator F maps bounded sets into equicontinuous sets of X.
As in step 2, let t1, t2 ∈ J , t1 < t2 and let Br2 be a bounded set of X and let x ∈ Br2 .
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Then

|(Fx)(t2)− (Fx)(t1)|

=

∣∣∣∣∣(eIα+β0 )(σx(t2)− σx(t1)) + λ(eIβ0 )(x(t2)− x(t1)) +
Ω(t2)− Ω(t1)

Λ

×
[
a(eIα+β+q10 )σx(η) + b(eIα+β−q20 )σx(T ) + aλ(eIβ+q10 )x(η) + bλ(eIβ−q20 )x(T ) + c

]∣∣∣∣∣,
≤ 1

Γ(α+ β)

∣∣∣ ∫ t1

0
[(et2 − es)α+β−1 − (et1 − es)α+β−1]esσx(s)ds

+

∫ t2

t1

(et2 − es)α+β−1esσx(s)ds
∣∣∣+ 1

Γ(β)

∣∣∣ ∫ t1

0
[(et2 − es)β−1 − (et1 − es)β−1]esx(s)ds

+

∫ t2

t1

(et2 − es)β−1esx(s)ds
∣∣∣+ |Ω(t2)− Ω(t1)|

|Λ|

∣∣∣∣∣[a(eIα+β+q10 )σx(η) + b(eIα+β−q20 )σx(T )

+ aλ(eIβ+q10 )x(η) + bλ(eIβ−q20 )x(T ) + c
]∣∣∣∣∣,

≤ 1

Γ(α+ β)

∫ t1

0
[(et2 − es)α+β−1 − (et1 − es)α+β−1]es|σx(s)|ds

+

∫ t2

t1

(et2 − es)α+β−1es|σx(s)|ds
∣∣∣+ 1

Γ(β)

∫ t1

0
[(et2 − es)β−1 − (et1 − es)β−1]es∥x∥∞ds

+

∫ t2

t1

(et2 − es)β−1es∥x∥∞ds+
|Ω(t2)− Ω(t1)|

|Λ|

[
a(eIα+β+q10 )|σx(η)|

+ b(eIα+β−q20 )|σx(T )|+ ak(eIβ+q10 )∥x∥∞ + bk(eIβ−q20 )∥x∥∞ + c
]
,

≤ M2

Γ(α+ β + 1)

[
(et1 − 1)α+β − (et2 − 1)α+β + 2(et2 − et1)α+β

]
+

r2
Γ(β + 1)

×

[
(et1 − 1)β − (et2 − 1)β + 2(et2 − et1)β

]
+
[M2

|Λ|

(
|a|(eIα+β+q10,η )[1] + |b|(eIα+β−q20,T )[1]

)]
+

|λ|r2
|Λ|

(
|a|(eIβ+q10,η )[1] + |b|(eIβ−q20,T )[1]

)
+ |c|

]
|Ω(t1)− Ω(t2)|.

This inequality is independent on x and tends to zero as t2 −→ t1, which implies that

∥(Fx)(t2)− (Fx)(t1)∥∞ −→ 0, t2 −→ t1. (32)

On the other hand,

|(ecD
γ
0Fx)(t2)− (ecD

γ
0Fx)(t1)|
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=

∣∣∣∣∣(eIα+β−γ0 )(σx(t2)− σx(t1)) + λ(eIβ−γ0 )(x(t2)− x(t1))

+
e
cD

γ
0 (Ω(t2))− e

cD
γ
0Ω((t1))

Λ

[
a(eIα+β+q10 )σx(η) + b(eIα+β−q20 )σx(T )

+ aλ(eIβ+q10 )x(η) + bλ(eIβ−q20 )x(T ) + c
]∣∣∣∣∣,

≤ 1

Γ(α+ β − γ)

∣∣∣ ∫ t1

0
[(et2 − es)α+β−γ−1 − (et1 − es)α+β−γ−1]esσx(s)ds

+

∫ t2

t1

(et2 − es)α+β−γ−1esσx(s)ds
∣∣∣+ |λ|

Γ(β − γ)

×
∣∣∣ ∫ t1

0
[(et2 − es)β−γ−1 − (et1 − es)β−γ−1]esx(s)ds

+

∫ t2

t1

(et2 − es)β−γ−1esx(s)ds
∣∣∣+ |ecD

γ
0 (Ω(t2))− e

cD
γ
0 (Ω(t1))|

|Λ|

∣∣∣∣∣
×
[
a(eIα+β+q10 )σx(η) + b(eIα+β−q20 )σx(T ) + aλ(eIβ+q10 )x(η)

+ bλ(eIβ−q20 )x(T ) + c
]∣∣∣∣∣,

≤ 1

Γ(α+ β − γ)

∫ t1

0
[(et2 − es)α+β−γ−1 − (et1 − es)α+β−γ−1]es|σx(s)|ds

+

∫ t2

t1

(et2 − es)α+β−γ−1es|σx(s)|ds
∣∣∣

+
|λ|

Γ(β − γ)

∫ t1

0
[(et2 − es)β−γ−1 − (et1 − es)β−γ−1]es∥x∥∞ds

+

∫ t2

t1

(et2 − es)β−γ−1es∥x∥∞ds+
|ecD

γ
0 (Ω(t2))− e

cD
γ
0 (Ω(t1))|

|Λ|

[
a(eIα+β+q10 )

× |σx(η)|+ b(eIα+β−q20 )|σx(T )|+ aλ(eIβ+q10 )∥x∥∞ + bλ(eIβ−q20 )∥x∥∞ + c
]
,

≤ M2

Γ(α+ β − γ + 1)

[
(et1 − 1)α+β−γ − (et2 − 1)α+β−γ + 2(et2 − et1)α+β−γ

]

+
r2

Γ(β − γ + 1)

[
(et1 − 1)β−γ − (et2 − 1)β−γ + 2(et2 − et1)β−γ

]

+

[
M2

|Λ|

(
|a|(eIα+β+q10,η )[1] + |b|(eIα+β−q20,T )[1]

)
+

|λ|r2
|Λ|

(
|a|(eIβ+q10,η )[1]

+ |b|(eIβ−q20,T )[1]
)
+ |c|

]
|Ω(t1)− Ω(t2)|.

This inequality is independent of x and tends to zero as t2 −→ t1, which implies that

∥(ecD
γ
0Fx)(t2)− (ecD

γ
0Fx)(t1)∥∞ −→ 0, t2 −→ t1. (33)
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Thus, it follows from (32) and (33) that

∥(Fx)(t2)− (Fx)(t1)∥X −→ 0, t2 −→ t1. (34)

This steps 1 to 3, together with the Arzela–Ascoli Theorem, we conclude the operator F
is compltely continuous.
Step 4: Now, it remains to show that the set χ = {x ∈ X : x = δFx, for some δ ∈ (0, 1)}
is bounded.
Let x ∈ χ, then x = δFx for some 0 < δ < 1. Thus for each t ∈ J , we have

x(t) = δ

[
(eIα+β0 )σx(t)− k(eIβ0 )x(t) +

Ω(t)

Λ

[
c− a(eIα+β+q10 )σx(η)− b(eIα+β+q20 )σx(T )

+ aλ(eIβ+q10 )x(η) + bλ(eIβ−q20 )x(T )
]]
,

It follows from (31) that for each t ∈ J ,

∥(Fx)∥X ≤ δ

(
M2ρ1 + |λ|r2ρ0 +

|c|
|Λ|

Ω∗

)
,

Thus ∥x∥X <∞. Then χ is bounded.
As a consequence of Schaefer’s fixed point theorem. F has a fixed point which is a solution
of problem (1)-(2). □

4. Example

Consider the following nonlinear problem
e
cD

3
2
0 (

e
cD

4
5
0 +

1

9
)x(t) =

|x(t)|
(t2 + 9)(1 + |x(t)|)

+
1

10(2− t)
(|ecD

1
2
0 x(t)|) +

1

5
, t ∈ [0, 1], (35)

x(0) = 0, ecD
4
5
0 x(0) = 0,

3

4
(eI

1
3x(

1

2
)) +

4

7
(ecD

1
4
0 x(1)) = 1, (36)

We see that, α = 3
2 , β = 4

5 , γ = 1
2 , q1 = 1

3 , q2 = 1
4 , λ =

1

25
, a = 3

4 , b =
4
7 , c = 1, T = 1,

η = 1
2 and

f(t, u, v) =
|u|

(t2 + 19)(1 + |u|)
+

|v|
20(2− t)

+
1

5
,

Clearly, the function f is continuous and for u, u, v, v ∈ R and t ∈ [0, 1], we have

|f(t, u, v)− f(t, u, v)| ≤ 1

t2 + 19
|u− u|+ 1

20
|v − v|,

≤ 1

20
(|u− u|+ |v − v|).

Hence, condition (H2) is satisfied with L = 1
20 .

A simple computation shows that Λ = 1.0911 ̸= 0. By using (9) and (12), we get

ρ00 = 4.7955, ρ01 = 3.6629, ρ10 = 4.4868, ρ11 = 4.2682, ρ0 = 9.2824, ρ1 = 7.9311,

by using (8) and (11), we get

κ01 = 0.1831, κ02 = 0.3750, κ11 = 0.2134, κ12 = 0.3929, κ1 = 0.3966, κ2 = 0.7679.

Thus,
κ = max(κ1, κ2) = 0, 7679 < 1.
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Hence, all conditions of Theorem 3.1 are satisfied, from which it follows that the problem
(35)-(36) has a unique solution. So, all the assumptions of Theorem 3.2 are satisfied, then
the problem (35)-(36) has at least one solution on [0, 1].

5. Conclusions

In the present work, we consider a nonlinear Langevin fractional differential equation
with nonlocal mixed (multi-point, fractional integral and fractional derivative) boundary
conditions involving a Caputo-exponential. We have proved two theorems with an example
to illustrate the following results:

i) The existence and uniqueness of solutions: A technique of fixed point theorem
is used to prove the results. Prior to the main theorem, the form of solution is
derived for nonlinear problem.

ii) The existence of at least one solution: A technique of Schaefer’s theorem is used
to prove the results.

iii) Applications: A particular example is addressed at the end of the paper to show
the consistency of the theoretical results.

Acknowledgement. The author are thankful to the referees for their helpful comments
and suggestions.
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