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PRACTICALLY STABILITY AND ULAM-HYERS STABILITY OF

FUZZY CONTROL VOLTERRA INTEGRO DIFERENTIAL SYSTEM

UNDER GRANULAR DIFFERENTIABILITY: A STABILITY

COMPARISON

B. Ö. ELİBÜYÜK1∗, C. YAKAR2, §

Abstract. In this study, the stability analysis of the solutions of a fuzzy control Volterra
Integro differential system under granular differentiability has been examined for the first
time in literature. Mainly, practical stability and Ulam-Hyers-Rassias stability have been
investigated, and classical Lyapunov and Ulam-Hyers-Rassias stability have been com-
pared. The comparison and stability aspects of the study are further illustrated by an
example of a fuzzy differential equation solved using fuzzy granular Laplace transforma-
tion.

Keywords: Granular Differentiability, Controllability, Initial Time Difference, Perturbed
Systems
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1. Introduction

Fuzzy differential systems (FDS) is an intriguing and captivating method of pure and
applied sciences for modeling dynamic systems [1] subject to uncertainty and for processing
uncertain or candidate data in mathematical models. They have been used in a vast range
of applied areas, including quantum optics [2], gravity, population models, engineering
applications [3], and population models.

While Chang and Zadeh [4], initially proposed the concept of fuzzy derivatives, the
term ”fuzzy differential equation” was first used in 1978 [5]. FDEs, as we know them
today, are based on a concept of fuzzy derivative put forth by Dubois-Prade in 1982 [6].
The Hukuhara derivative (the Puri Ralescu derivative) [7] was proposed in 1983 and is
one of the most popular derivative definitions. The Hukuhara derivative-based FDE was
processed with care by Kaleva [8],[9] and it served as the basis for several studies looking
at the behavior of FDEs.
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Numerous drawbacks of the Hukuhara derivative have come to light over time, includ-
ing always not existence of the H-difference of two type-1 fuzzy numbers (T1FNs), the
diameter of the fuzzy function necessarily monotonically non-decrease or non-increase as
time increases, the multiplicity of solution and unnatural behavior in modeling (UBM
phenomenon), etc [10], [11]. Granular differentiability was implemented in 2018 [12] to
address these drawbacks. As a result, study into it is growing daily [13], [14].

The concept that the control function can be fuzzy has been developed in dynamic
control systems [15] much earlier than these advancements in FDEs. Mamdani and Assilian
[16] developed the fundamental architecture of the fuzzy controller, which was first used
to manage a steam engine in 1973. Takagi and Sugeno wrote an essay in 1985 [17] that
claimed their fuzzy models could accurately and highly represent practically all nonlinear
dynamical systems. Therefore, it has been demonstrated by this research that the fuzzy
controller is simple to develop and performs very well [18], [19], [20] and [21].

FDEs have been studied with the idea that in addition to the control function, the
entire differential system, from the derivative to the initial state, may have a fuzzy struc-
ture. With this viewpoint, studies have focused on the fuzzy control differential equation
(FCDE) [22]; the existence and uniqueness of the solution involving fuzzy control, the
accessibility, stability, and controllability of fuzzy control systems have emerged as the
primary issues for fuzzy control problems [23], [24]. It has been studied about the sta-
bility of the fuzzy control and fuzzy differential equation in [25], [26], [27], [28] and the
stability and controllability of the fuzzy control system have been examined together in
[15].

Like FDS, another essential technique to represent dynamical systems subject to un-
certainties is fuzzy integro-differential equations (FIDE). The existence and uniqueness
problem of nonlinear set, fuzzy and fuzzy control Volterra integro-differential equations
are studied in [29], [30], [31].

Using the second Lyapunov method [32]-[37], which is a critical tool for stability analysis,
one may predict the qualitative behavior and examine the stability of differential equations
in nonlinear systems. It is sufficient to comprehend how the comparison system’s solution
behaves without knowing the exact solution. This method successfully demonstrates the
system’s stability by identifying the proper Lyapunov function.

Ulam-Hyers-Rassias stability remains another sensitive stability analysis that has also
been used to study the behavior of fuzzy differential equations in [13], [38], [34], [30], [39].
For the first time, Obloza compared Ulam-Hyers stability with classical Lyapunov stability
in the ordinary differential equation [40]. This comparison subsequently sparked a lot of
research.

This study applied Lyapunov’s second method to fuzzy control integro-differential sys-
tem under granular differentiability via a Lyapunov-like function and comparison method
and studied the practical stability of the system. It investigated the Ulam-Hyers-Rassias
stability of a fuzzy control Volterra Integro differential system and compared it with clas-
sical Lyapunov stability. An illustration of a fuzzy differential equation solved using fuzzy
granular Laplace transformation further illustrates the comparison and stability aspect
under study.

2. Preliminaries

Definition 2.1. Define En = {x : Rn → [0, 1] | x(t) is onto, fuzzy convex, [x]α is compact
subset and, [x]0 is bounded subset} where α−level set xα = [x]α = {z ∈ Rn | x(z) ≥ α}.
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Definition 2.2. [12] Let x : [a, b] ⊆ R → [0, 1] be a fuzzy number and [x]α = [xα, xα]. The
horizontal membership function (HMF) xgr : [0, 1]×[0, 1] → [a, b] is defined as xgr(α, µx) =
xα+(xα−xα)µx where µx ∈ [0, 1] is called relative-distance-measure (RDM) variable. The

horizontal membership function of x(t) ∈ E1, i.e. xgr(α, µx) is also represented by Ĥ(x).
Moreover, α−level set of x can be given by

Ĥ−1(xgr(α, µx)) = [x]α =

[
inf
γ≥α

min
µx

xgr(γ, µx), sup
γ≥α

max
µx

xgr(γ, µx)

]
.

Definition 2.3. [12] Let x, y ∈ E1. The relations x = y and x ≥ y hold, respectively,

whenever Ĥ(x) = Ĥ(y) and Ĥ(x) ≥ Ĥ(y) for all µx = µy ∈ [0, 1].

Definition 2.4. [12] Let x, y ∈ E1 and ⊙ denote one of the addition, subtraction, division

and, multiplication operations. Therefore x ⊙ y is equal to z ∈ E1 if and only if Ĥ(z) =

Ĥ(x)⊙ Ĥ(y).

Remark 2.1. [12] Let x, y, z ∈ E1, the we have x− y = −(y − x), x− x = 0 , x÷ x = 1
and, (x+ y)z = xz + yz.

Definition 2.5. [12] Let f : En → E1 and xi : [a, b] ⊆ R → E1 for all i = 1, 2, .., n. The
HMF of f(x1(t), x2(t), ..., xn(t))is given by

Ĥ
(
f(Ĥ (x1(t)) , Ĥ (x2(t)) , ..., Ĥ (xn(t)))

)
.

Definition 2.6. [12] Let x, y ∈ E1. The granular metric Dgr : E1 × E1 → R+ ∪ {0} is
defined as Dgr(x, y) = sup

α
max
µx,µy

|xgr(α, µx)− ygr(α, µy)|.

Definition 2.7. [12] Let f : [a, b] ⊆ R → E1. If a fuzzy number Ďgr exist such that

Ďgrf(t) = lim
h→0

f(t+h)−f(t)
h . Then f is called granular differentiable (gr-diffentiable) at

t ∈ [a, b].

Theorem 2.1. [12] The fuzzy function f(t) is gr-diffentiable if and only if the horizontal

membership function of f(t) i.e. Ĥ(f(t)) is differentiable with respect to t. Futhermore,

Ĥ
(
Ďgrf(t)

)
= ∂

∂tĤ (f(t)).

Definition 2.8. [12] Let f : [a, b] ⊆ R → E1be continuous fuzzy function whose horizontal

membership function fgr(t, α, µx) is integrable on [a, b]. Let
b∫
a
f(t)dt denote the integral

of f(t) on [a, b]. Then the fuzzy function f(t) is said to be granular integrable on [a, b] if

there exists a fuzzy number m =
b∫
a
f(t)dt such that Ĥ (m) = Ĥ

(
b∫
a
f(t)dt

)
.

Definition 2.9. [13] Let f(t) be continuous fuzzy function and f(t)e−st be improper fuzzy
integrable function on [0,+∞). Thus the fuzzy Laplace transform of f(t) denoted by

L [f(t)] =
+∞∫
0

f(t)e−stdt (s > 0 and integer).

Remark 2.2. It should be note that [L [f(t)]]α =
[
L
[
fα(t)

]
,L
[
fα(t)

]]
, where L

[
fα(t)

]
and L

[
fα(t)

]
are classical Laplace transform of fα(t) and fα(t) respectively.
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Definition 2.10. [13] Let f : [a,∞) → E1. For any fixed α, µx ∈ [0, 1] assume Ĥ (f(t)) =
fgr(t, α, µx) is integrable on [a, b] for every b ≥ a. Moreover, suppose there is a posi-

tive constant M(α, µM ) such that
b∫
a
|fgr(t, α, µx)| dt ≤ M(α, µM ). Then f(t) is called

granular improper fuzzy integrable on [a,∞) and it is denoted by
∞∫
a
f(t)dt. Moreover,

Ĥ

(∞∫
a
f(t)dt

)
=

∞∫
a
Ĥ (f(t)) dt.

Definition 2.11. [13] Let f(t) be continuous fuzzy function. Suppose that f(t)e−st granu-

lar improper fuzzy integrable on [0,∞). Then
∞∫
0

f(t)e−stdt is called granular fuzzy Laplace

transform of f(t) and it is denoted by Lgr [f(t)].

Remark 2.3. It is clear that Ĥ (Lgr [f(t)]) = L
[
Ĥ (f(t))

]
. Also, the granular fuzzy

Laplace transform is a linear operator.

Remark 2.4. Suppose that f(t) is a granular continuous fuzzy function on [a,∞) and
a ≥ 0.Then Lgr

[
Ďgrf(t)

]
= sLgr [f(t)]− f(a).

3. Initial Value Problem for Fuzzy Control Volterra
Integro-Differential Systems

Let’s take a look at the initial valued problems for fuzzy control Volterra integro-
diffrerential equations (IVP for FCVIDEs) in fuzzy metric space En:

Ďgrx(t) = f(t, x(t), u(t)) +

t∫
t0

g(t, s, x(s), u(s))ds x(t0) = x0 ∈ En, (1)

u(t0) = u0 ∈ Ep and t ∈ [t0, T ] t0 ≥ 0,

where x(t) ∈ En, f : [t0,T ] × En × Ep → En and g : [t0,T ] × [t0,T ] × En × Ep → En the
admissible control [29] u(t) ∈ Ω where Ω = {u(t) ∈ Ep;U(t, u(t)) ≤ v(t) for t ≥ t0 and
U(t, u) ∈ C[[t0, T ]× Ep,R+], v(t) ∈ R+}.

A fuzzy mapping x : [t0,T ] → En is a solution of IVP for FCVIDEs (1) on [t0,T ] if
f : [t0,T ]×En×Ep → En and g : [t0,T ]× [t0,T ]×En×Ep → En are integrable on [t0,T ],
moreover satisfying the subsequent fuzzy integral equations [29] :

x(t) = x0 +

t∫
t0

f(s, x(s), u(s))ds+

t∫
t0

s∫
t0

g(s, r, x(r), u(r))drds,

Ĥ (x(t)) = Ĥ

x0 + t∫
t0

f(s, x(s), u(s))ds+

t∫
t0

s∫
t0

g(s, r, x(r), u(r))drds

 t ∈ [t0,T ] .

4. Stability of Fuzzy Control Volterra Integro-Differential Systems

Definition 4.1. [34] We suppose that trivial solution exists for FCVIDE in equation (1),
where f(t, θn, u(t)) = θn and g(t, s, θn, u(t)) = θn and any solution x(t) = x(t, t0, x0, u(t))
of equation (1) through (t0, x0).
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i) If for each ε > 0 and t0 > 0 there exist a δ = δ(t0, ε) such that Dgr(x0, θ
n) <

δ implies Dgr(x(t), θ
n) < ε for t ≥ t0, then the trivial solution x = θn is stable by

Lyapunov’s mean,
ii) If δ in i) is independent of t0 ∈ R+, then the trivial solution is uniformly stable.
iii) If given scalar numbers (λ,A) with 0 < λ < A there exists a (λ,A) ≥ 0 such that

Dgr(x0, θ
n) < λ implies Dgr(x(t), θ

n) < A , t ≥ t0 for some t0 ∈ R+, then the trivial
solution is practical stable.

iv) If iii) holds for every t0 ∈ R+, then the trivial solution is uniformly practical stable.

It is easy to see that the solution x(t) = x(t, t0, x0, u(t)) is trivial solution of equation

(1) through (t0, x0), if and only if Ĥ(x(t)) is trivial solution of following dynamical system

∂
∂tĤ(x(t)) = Ĥ(f(t, x(t), u(t))) + Ĥ(

t∫
t0

g(t, s, x(s), u(s))ds), Ĥ(x(t0)) = Ĥ(x0).

Definition 4.2. The Dini derivatives for FCVIDE in equation (1) is defined as follows
for a real-valued function V (t, x(t)) ∈ C[R+ × En,R+]

D+V (t, x)

≡ lim
h→0+

sup
1

h

V
t+ h, x+ h

(f(t, x, u) + t∫
t0

g(t, s, x(s), u(s))ds)

− V (t, x)

 ,
for (t, x) ∈ R+ × En.
We take the comparison theorem into consideration to forecast the stability character-

istics of the solution x(t, t0, x0, u(t)) of the system (1).

Theorem 4.1. i)Let Lyapunov-like function V (t, x(t)) ∈ C(R+ × En,R+),

| V (t, x) − V (t, y) |≤ LDgr(x, y) L > 0 bounded Lipschitz constant and for (t, x) ∈
R+ × Sρwhere Sρ = [x ∈ En : Dgr(x, θ

n) < ρ] such that

D+V (t, x) ≤ F (t,Dgr(x, θ
n), Dgr(u, θ

n)) +

t∫
t0

G(t, s,Dgr(x, θ
n), Dgr(u, θ

n))ds,

where F ∈ C([t0,t0 + p]× [0, b1]×R+,R+) and G ∈ C([t0,t0 + p]× [t0,t0 + p]× [0, b1]×
R+,R+).

ii) r(t) = r(t, t0, w0, v) is maximal solution of the scalar integro-differential equation
exists on [t0, T ] ,

dw

dt
= F (t, w(t), v(t)) +

t∫
t0

G(t, s, w(s), v(t))ds, w(t0) = w0 = 0 for t ≥ t0.

Then if x(t) is solution of (1) through (t0, x0) on [t0, T ] . We have

V (t, x) ≤ r(t, t0, w0, v) provided that V (t0, x0) ≤ r0.

Proof. We can prove with similar methods as in [41]. □

The function F (t, w, v) ≡ 0 and G(t, s, w, v) ≡ 0 is admissible in Theorem 7 to yield
the estimate V (t, x) ≤ V (t0, x0).
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5. Practical Stability of Fuzzy Control Volterra Integro-Differential
Equations

Theorem 5.1. Assume that admissible control u(t) ∈ Ω and the following hold,

i) Let Lyapunov-like function V (t, x(t)) ∈ C(R+ × En,R+),
| V (t, x) − V (t, y) |≤ LDgr(x, y) L > 0 bounded Lipschitz constant and for (t, x ∈

R+ × Sρwhere Sρ = [x ∈ En : Dgr(x, θ
n) < ρ] such that

D+V (t, x) ≤ 0. (2)

ii)Let V (t, x(t)) ∈ C(R+ × En,R+) and a, b belong to the class K,

b(Dgr(x(t, x, u(t)), θ
n)) ≤ V (t, x(t)) ≤ a(t,Dgr(x(t, x, u(t)), θ

n)). (3)

Then trivial solution x(t, t0, x0, u(t)) of FCVIDE (1) is practically stable for t ≥ t0.

Proof. We can prove with similar methods as in [42]. □

For the practical stability of fuzzy control integro-differential systems via scalar integro-
differential equation, we employ the comprasion theorem in this section.

Theorem 5.2. Assume that admissible control u(t) ∈ Ω and the following hold,

i) Let V (t, x(t)) ∈ C(R+ × En,R+) | V (t, x)− V (t, y) |≤ LDgr(x, y)
L > 0 and

b(Dgr(x(t), θ
n)) ≤ V (t, x(t)) ≤ a(t,Dgr(x(t), θ

n)) a, b ∈ κ. (4)

Dini derivatives of Lyapunov functions and comprasion of the scalar integro-differential
equation

D+V (t, x) ≤ F (t, V (t, x(t), U(t, u(t))) +

t∫
t0

G(t, s, V (t, x(t), U(t, u(t)))ds. (5)

F (t, V (t, x(t), U(t, u(t))) ∈ C[R2
+ ,R] and G(t, s, V (t, x(t), U(t, u(t))) ∈ C[R2

+,R2
+ ,R],

ii) Let r(t) = r(t, t0, w0, v) be the maximal solution of the scalar integro-differential equa-
tion

dw

dt
= F (t, w(t), v(t)) +

t∫
t0

G(t, s, w(s), v(t))ds w(t0) = w0 = 0 for t ≥ t0. (6)

Then the practical stability properties of the comparison differential equation imply the
corresponding practical stability properties of x(t, t0, x0, u(t)) solution of the system (1)
for t ≥ t0.

Proof. Suppose that comparison equation is practically stable, then for given any scalar
numbers (λ,A) with 0 < λ < A and there exists b = b(A) and b ∈ κ such that

w(t, t0, w0, v) < b(A) provided that ds[w0, 0] < λ, t ≥ t0. (7)

We claim that with this λ, practical stability holds such that

Dgr(x(t, t0, x0, u(t)), θ
n) < A provided that Dgr(x0, θ

n) < λ for t ≥ t0. (8)

If the solution is not practically stable and then there would exist solution of fuzzy control
integro-differential equation; for t ≥ t0 exist a t1 > t0 and with Dgr(x0, θ

n) < λ for
t ≥ t0 satisfying

Dgr(x(t1, t0, x0, u(t)), θ
n) = A, (9)
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for t ∈ [t0, t1]. Choose w0 = a(t0, Dgr(x0, θ
n)), we get the inequality

V (t, x(t)) ≤ r(t, t0, w0, v) t ∈ [t0, t1]. (10)

So that we have, because of (4) and (9)

b(A) ≤ V (t1, x(t1, t0, x0, u(t))) t1 > t0. (11)

This means that Dgr(x(t), θ
n) < ρ for t ∈ [t0, t1] and hence we have the inequality

V (t1, x(t1, t0, x0, u(t))) ≤ r(t1, t0, w0, v) t ≥ t0. (12)

By using (7) , (8), (9) and (10), we get

b(A) = b(Dgr(x(t1, t0, x0, u(t)), θ
n))

≤ V (t1, x(t1, t0, x0, u(t)))

≤ r(t1, t0, w0, v)

≤ r(t1, t0, a(t0, Dgr(x0, θ
n)), v)

≤ r(t1, t0, a(t0, λ1), v)

< b(A).

This contradiction gives us practical stability properties of x(t, t0, x0, u(t)) solution of the
system (1 ) for t ≥ t0. □

6. Ulam-Hyers Stability of Fuzzy Control Volterra Integro-Differential
Systems

Definition 6.1. We say that problem (1) is Ulam-Hyers stable if there exists a real
number Kf such that for ε > 0 and for each ν ∈ C([t0,T ]× En × Ep, En) to the problem

Dgr(Ďgrν(t), f(t, ν(t), u(t)) +

t∫
t0

g(t, s, ν(s), u(s))ds) ≤ ε. (13)

There exist a solution to problem (1) with Dgr(ν(t), x(t)) ≤ Kfε for all t ∈ [t0,T ]. We
call a Kf a Ulam-Hyers stability constant of (1).

Definition 6.2. We say that problem (1) is Ulam-Hyers-Rassias stable if there exists
a real number Cf such that for ε > 0 and for each ν ∈ C([t0,T ] × En × Ep, En) to the
problem

Dgr(Ďgrν(t), f(t, ν(t), u(t)) +

t∫
t0

g(t, s, ν(s), u(s))ds) ≤ φ(t).

There exist a solution to problem (1) with Dgr(ν(t), x(t)) ≤ Cfφ(t) for all t ∈ [t0,T ].
We call a Cf a Ulam-Hyers-Rassias stability constant of (1).

Definition 6.3. We say that a function ν ∈ C([t0,T ]×En ×Ep, En) is soluntion of (13)
if and only if there exists a function,

i) Dgr(δ(t), θ
n) ≤ ε for any t ∈ [t0,T ].

ii) Ďgrν(t) = f(t, ν(t), u(t)) +
t∫
t0

g(t, s, ν(s), u(s))ds+ δ(t) for t ∈ [t0,T ] .

Theorem 6.1. i) f ∈ C(Q,En) is levelwise continuous, there exists Lf ≻ 0 such that
Dgr(f(t, x, u), f(t, y, v)) ≤ Lf (Dgr(x, y) + Dgr(u, v)) for all x, y ∈ En, u, v ∈ Ep and
t ∈ [t0,T ].
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ii) g ∈ C(Q1, E
n) is levelwise continuous, there exists Lg ≻ 0 such that

Dgr(g(t, s, x, u), g(t, s, y, v)) ≤ Lg(Dgr(x, y) +Dgr(u, v)) for all x, y ∈ En, u, v ∈ Ep and
t ∈ [t0,T ].

iii) Lfg =Max{Lf , Lg} > 0.
iv) There is a function ν ∈ C([t0,T ] × En × Ep, En) is soluntion of (13) then there

exists a solution to problem (1) with Dgr(ν(t), x(t)) ≤ Kfε and x0 = ν0 where

Kf = (T − t0)
[
1 +

Lfg

Lfg+1(e
(Lfg+1)(T−t0) − 1)

]
.

That is the solution of problem (1) is Ulam-Hyers stable.

Proof. It can be proved in a similar way as in [45]. □

7. Comparing Lyapunov Stability and Ulam-Hyers Stability of Fuzzy
Control Volterra Integro-Differential Systems

In chapter 4, we gave our definitions of stability over null solution. Because Lyapunov
second method works on null solution. But we will rearrange the concept of Lyapunov
stability so that it is easier to compare the concepts of Ulam-Hyper stability and Lyapunov
stability.

Definition 7.1. [44] We have any solution x(t) = x(t, t0, x0, u(t)) of equation (1)
through (t0, x0) is said to be stable by Lyapunov’s mean if: for each ε > 0 and t0 > 0 there
exist a δ = δ(t0, ε) such that Dgr(x0, x1) < δ implies Dgr(x(t, t0, x0, u(t)), x(t, t0, x1, u(t))) <
ε for t ≥ t0.

If each solution is stable by Lyapunov’s mean, then the equation (1) is stable by Lya-
punov’s mean.

Theorem 7.1. i) f ∈ C(Q,En) is levelwise continuous, there exists Lf ≻ 0 such that
Dgr(f(t, x, u), f(t, y, v)) ≤ Lf (Dgr(x, y) +Dgr(u, v)) for all x, y ∈ En , u, v ∈ Ep and
t ∈ [t0,T ].

ii) x0(t) = x0(t, t0, x0, u(t)) and x1(t) = x1(t, t0, x1, u(t)) solution of problem (1) with
x0 = x0(t0) and x1 = x1(t0) such that Dgr(x0, x1) < δ.

Then for all t ∈ [t0,T ] ; Dgr(x
0, x1) ≤ 3δ

(
1 + 3Lfge

3Lfg+1(eT−t0 − 1)
)
.

Proof. It can be proved in a similar way as in [40]. □

Theorem 7.2. i) f ∈ C(Q,En) is levelwise continuous, there exists Lf ≻ 0 such that
Dgr(f(t, x, u), f(t, y, v)) ≤ Lf (Dgr(x, y) +Dgr(u, v)) for all x, y ∈ En , u, v ∈ Ep and
t ∈ [t0,T ] .

ii) x0(t) = x0(t, t0, x0, u(t)) and x1(t) = x1(t, t0, x1, u(t)) solution of problem (1) with
x0 = x0(t0) and x1 = x1(t0) such that Dgr(x0, x1) < δ.

Then there exist d > 0 such that Dgr(x
0, x1) < 2δ holds for all t ∈ [t0 − d, t0 + d].

Proof. It can be proved in a similar way as in [40]. □

Theorem 7.3. The problem (1) is Ulam-Hyers stable, then it is stable by Lyapunov’s
mean.

Proof. If the problem (1) is Ulam-Hyers stable, then assumption of Theorem 14 is valid.
□

Let us denote x0(t) = x0(t, t0, x0, u(t)) and x
1(t) = x1(t, t0, x1, u(t)) solution of problem

(1) with Dgr(x0, x1) < δ.
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Since f satisfies Dgr(f(t, x, u), f(t, y, v)) ≤ Lf (Dgr(x, y)+Dgr(u, v)), by Teorem 18 we
have Dgr(x

0, x1) < 12δ for t ∈ [t0 − d, t0 + d].
We take the function p : R → [0, 1] satisfying following conditions;
i) p ∈ C1(R).
ii) p(t) = 0 for t ≤ t0

p(t) = 1 for t ≥ t0 + d d > 0.
iii) p′(t) ≥ 0 for ∀ t ∈ R.
We define the function ν ∈ C([t0,T ]× En × Ep, En)

ν(t) = x0(t) + p(t)[x1 − x0] t ∈ R

where x1 − x0 is Hukuhara distance and exist. Note that ν(t) = x0(t) for t ≤ t0 and
ν(t) = x1(t) for t ≥ t0 + d.We want to find that for t ∈ [t0, t0 + d],

Iv = Dgr(Dgrv(t), f(t, ν(t), u(t)) +

t∫
t0

g(t, s, ν(s), u(s))ds).

If we look at each term one by one,

Dgrν(t) = Dgrx
0(t) + p

′
(t)[x1 − x0] + p(t)Dgr

(
[x1 − x0]

)
.

f(t, ν(t), u(t)) +

t∫
t0

g(t, s, ν(s), u(s))ds

= f(t, x0(t) + p(t)[x1 − x0], u(t)) +

t∫
t0

g(t, s, x0(t) + p(t)[x1 − x0], u(s))ds.

We need the following for Dgrν(t),

Dgrx
0(t) = Dgr((f(t, x

0(t), u(t)) +

t∫
t0

g(t, s, x0(s), u(s))ds),

Dgr

(
[x1 − x0]

)
= f(t, x1(t), u(t)) +

t∫
t0

g(t, s, x1(s), u(s))

−f(t, x0(t), u(t)) +
t∫
t0

g(t, s, x0(s), u(s))ds.

With some calculation by Lemma 3.1 in [29] and definition as sup
t∈[t0,t0+d]

p(t) = P and

sup
t∈[t0,t0+d]

p
′
(t) = P ′,
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Iv ≤ LfDgr(x
0(t), x0(t) + p(t)(x1 − x0))

+Lg

t∫
t0

Dgr(x
0(s), x0(s) + p(s)[x1 − x0])ds

+P
′
Dgr(x

1, x0) + PDgr(Ďgrx
1(t)− Ďgrx

0(t), θn),

where
Dgr(Ďgrx

1(t)− Ďgrx
0(t), θn) = Dgr(Dx1−x0 , θn).

Dx1−x0 = f(t, x1(t), u(t))+

t∫
t0

g(t, s, x1(s), u(s))ds−f(t, x0(t), u(t))+
t∫
t0

g(t, s, x0(s), u(s))ds.

With some calculation on last Hukuhara distance;

Iv ≤ 4PLfg(δ + δ′) + 2P
′
δ = ε.

Consequently, ν(t) is ε -approximate solution of (1) and there exists a solution to
problem (1) with Dgr(ν(t), x(t)) ≤ Kfε and x0 = ν0.That is the solution of problem (1)
is Ulam-Hyers stable.

We have ν(t0) = x0(t0) and ν(t0 + d) = x1(t0 + d) So, Dgr(ν(t), x
0(t)) ≤ Kfε0 and

Dgr(ν(t), x
1(t)) ≤ Kfε1.

Dgr(x
0(t), x1(t)) ≤ Dgr(ν(t), x

0(t)) + Dgr(ν(t), x
1(t)) ≤ Kfε0 + Kfε1 = ε∗. Conse-

quently solution of (1) is said to be stable by Lyapunov’s mean.

8. Application

Example 8.1. We consider the initial valued problems of fuzzy control Volterra integro-
diffrerential equations (IVP for FCVIDEs) like as equation (1).

Ďgrx(t) = −3x+

t∫
0

es−tx(s)ds , x(t0) = x0, (14)

[x0]
α = φ(α, t) = [α− 1, 1− α] t ∈ [0, 3]. (15)

The α-level set of equation (14) as following;

sLgr [x
α(t)]− xα0 = −3Lgr [x

α(t)] +
Lgr [x

α(t)]

s
,

sLgr [x
α(t)]− xα0 = −3Lgr [x

α(t)] +
Lgr [x

α(t)]

s
.

By granular fuzzy laplace transform [45], we can find α-level set of solution of (14)

xα(t) = (α− 1)φ(t),

xα(t) = (1− α)φ(t),

where φ(t) =
[
(
√
13+3
2
√
13

)e−(3/2+
√
13/2)t + (

√
13−3
2
√
13

)e(
√
13/2−3/2)t

]
.

For Ulam-Hyers stability, we can easily find that Lf = 3 and Lg = 1, so Lfg = 3.

Dgr(Ďgrν(t),−3ν(t)) +

t∫
t0

es−tν(s) ds) ≤ ε and Dgr(ν(t), x(t)) ≤ Kfε,
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for x0 = ν0 where Kf = 3[1 + 3(e10 − e4)].
For Lyapunov stability, We can take x1 = ψ(α, t) = 6 [α− 1, 1− α] while x0 =

φ(α, t) = [α− 1, 1− α] and such that Dgr(x0, x1) < δ then we show Dgr(x
0, x1) <

ε provided δ = δ(ε) where x0 = x(t, t0, x0), x1 = x(t, t0, x1),

Dgr(x0, x1) = sup
α∈[0,1]

max {|5(α− 1)| , |5(1− α)|} < δ,

and for Dgr(x
0, x1),

Dgr(x
0, x1) = sup

α∈[0,1]
max {|6(α− 1)φ(t)− (α− 1)φ(t)| , |6(1− α)φ(t)− (1− α)φ(t)|}

≤ sup
α∈[0,1]

max {k |5(α− 1)| , k |5(1− α)|}

= kDgr(x0, x1) = kδ = ε.

So we find that the equation is Ulam-Hyers stable and stable by Lyapunov’s mean too.

Example 8.2. We want to show that Example 1 is practically stable with help of Theorem
10. We can choose V (t, x(t)) = Dgr(x(t), θ

n) and U(t, u(t)) = Dgr(u(t), θ
n) calculate

D+V (t, x) ≤ 4V (t, x) + U(t, u(t)). After this inequality, the scalar differential equation
can be chosen as follows,

dw

dt
= F (t, w(t), v(t)) = 4w(t) + v(t) w(t0) = w0 for t ≥ t0, (16)

v(t) ∈ R+ is control function. Suppose that Y (t) = w0e
4(t−t0) is the fundemental solution

of w′ = 4w. We shall show that we can find suitable admissble controls v(t)to assure
practically stable of the system (16). The transformation w = Y (t)z reduces (16) to

z′ = 4 (w0)
−1 e−4(t−t0)v(t) z(t0) = w0. (17)

Then with necessary processes and assumptions, we can find easily that |z(t)| < A
t ≥ t0, provided |w0| < λ.

But |w| = |Y (t)| |z(t)| and therefore, if |Y (t)| ≤ 1 t ≥ t0 and there exists a T >

0 such that |Y (t)| ≤ β
A < 1, then we have |w(t)| < A which shows that the system

(16) is practically stable. Let b(.), a(t, .) ∈ κ and be chosen so that a(t, λ) < b(A) and
b(Dgr(x(t), θ

n)) ≤ V (t, x) ≤ a(t,Dgr(x(t), θ
n)).

We can choose, a(t, V (t, x)) = 2V (t, x) and b(V (t, x)) = 1
2V (t, x) is satisfied that

2λ < 1
2A .

Consequently, all assumption of Theorem 10 hold and IVP for NLFCDEs ( 14) is said
to be practically stable like linear control differential equation (16).

9. Conclusions

This paper gave the necessary conditions for the solution of fuzzy control Volterra
Integro differential system under granular differentiability to be practically stable for the
first time in literature. This given method used especially Lyapunov-like function and
comparison system. The paper investigated Ulam-Hyers-Rassias’ stability and gave the
relation between them by comparing it with classical Lyapunov stability. It supported
this comparison and practical stability property with a numerical examples solved by
fuzzy granular Laplace transform.
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