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SOME PROPERTIES OF ZERO-DIVISOR GRAPHS OF DIRECT

PRODUCTS OF FINITE FIELDS

SUBHASH MALLINATH GADED1∗, NITHYA SAI NARAYANA2, §

Abstract. This study investigates the zero-divisor graphs of the direct products of
finite fields with vertex set consisting of non-zero zero divisors of the direct products
of finite fields, and two distinct non-zero zero divisors are adjacent in the zero divisor
graph if the product of the two distinct non-zero zero divisors is the additive identity of
the direct products of finite fields. We prove that the metric chromatic number, clique
number, vertex chromatic number are all equal to n, for the zero divisor graph of direct
products of n finite fields, and also find the metric chromatic number, clique number,
and vertex chromatic number of the complement graph of the zero-divisor graph of the
direct product of n fields. The independence number, edge chromatic number, Eulerian
and Hamiltonian properties of the zero-divisor graph and the complement graph are also
determined.
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1. Introduction

In 1988, I. Beck [1] defined a graph on a commutative ring R, by considering all the
elements of the ring R as the vertices of the graph and two distinct vertices x and y are
adjacent if and only if x · y = 0. In 1999, this definition of the graph given by Beck was
modified by Anderson and Livingston [2] in which they considered only the non-zero zero
divisors of R to be the vertex set of the zero divisor graph of R denoted by Γ(R) and two
distinct vertices x and y are adjacent in Γ(R) if and only if x · y = 0. In this paper we
consider the zero divisor graph of the ring, F1 × · · · × Fn, (n ⩾ 2), where F1, · · · , Fn are
finite fields.

Let Z∗(F1×· · ·×Fn) be the set of non-zero zero-divisors of the ring F1×· · ·×Fn, (n ⩾ 2)
and Γ(F1×· · ·×Fn) (defined by Anderson and Livingston [2]) denote the graph with ver-
tex set Z∗(F1× · · ·×Fn). Let x = (x1, · · · , xn), y = (y1, · · · , yn) ∈ V (Γ(F1× · · ·×Fn)) =
Z∗(F1 × · · · ×Fn). Note that at least one coordinate of x and at least one coordinate of y
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contains 0 and at least one coordinate of x and at least one coordinate of y contains non-
zero entry. Therefore, the product x ·y = (x1, · · · , xn) · (y1, · · · , yn) = (x1 ·y1, · · · , xn ·yn),
which is coordinate wise multiplication, is either equal to (0, · · · , 0) or the product x · y
contains 0 in at least one coordinate and non-zero entry in at least one coordinate. In
other words, x · y = (0, · · · , 0) or x · y ∈ Z∗(F1 × · · · × Fn). Therefore, the edge set of
Γ(F1 × · · · × Fn) is {

xy | x · y = (0, · · · , 0), x, y ∈ Z∗(F1 × · · · × Fn)
}

and the edge set of Γ(F1 × · · · × Fn) is{
xy | x · y ̸= (0, · · · , 0), x, y ∈ Z∗(F1 × · · · × Fn)

}
.

The complement graph [5] G of a simple graph G is defined by taking V (G) = V (G)
and making two vertices u and v adjacent in G if and only if they are nonadjacent in G.
Thus, if x · y = (0, · · · , 0), then xy ∈ E

(
Γ(F1 × · · · × Fn)

)
, and if x · y ̸= (0, · · · , 0), then

xy ∈ E
(
Γ(F1 × · · · × Fn)

)
which implies x · y ∈ Z∗(F1 × · · · × Fn).

1.1. Prerequisites. For basic algebraic terminologies we refer to [3, 4]. For basic graph
theoretical terminologies we adopt the definitions of [5, 6, 7].

(i) The degree of a vertex v in a graph G is the number of edges incident with v and
is denoted by degG(v) or simply by deg v. Also, deg v is the number of vertices
adjacent to v. Two adjacent vertices are referred to as neighbors of each other.
The set N(v) of neighbors of a vertex v is called the neighborhood of v. Thus
deg v = |N(v)|.[6] The minimum degree of G is the minimum degree among the
vertices of G and is denoted by δ(G), the maximum degree of G is the maximum
degree among the vertices of G and is denoted by ∆(G).[6]

(ii) If every two distinct vertices in a subset C ⊆ V (G) are adjacent in a graph G,
the subset is said to be a clique in G. If there isn’t another clique in the graph G
with more vertices, then a clique C is said to be the maximum clique. The size of
the maximal clique in a graph G is its clique number, which is represented by the
symbol ω(G).[6] A set of vertices S in a graph G that has no two adjacent vertices
is said to be an independent set. The highest possible size of an independent set
in a graph is known as its independence number and is denoted by α(G).[6] A
vertex cover of a graph is a collection of vertices such that each edge of the graph
is incident to at least one vertex of the set. The cardinality of the smallest such
set is known as the minimal vertex cover number and is represented by τ(G).[6, 7]

(iii) A graph’s k−vertex(edge) coloring is the process of applying k different colors to its
vertices(edges) while ensuring that no two adjacent vertices(edges) receive the same
color. The least number of colors needed to color a graph’s vertices(edges) so that
no two adjacent vertices(edges) have the same color is the graph’s vertex chromatic
number(edge chromatic number), indicated by the symbol χ(G)(χ1(G)).[6, 9] A
simple graph G is Class-1, if χ1(G) = ∆(G) and Class-2, if χ1(G) = ∆(G) + 1.
[8]

(iv) An Eulerian trail is a path through a graph that includes every edge exactly once.
It could be open or closed. If a graph has a closed Eulerian trail, it is referred to
as an Eulerian graph.[9] A Hamiltonian cycle is a graph cycle that contains every
vertex of the graph. A graph is referred to as a Hamiltonian graph if a Hamiltonian
cycle exists in it.[9]
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1.2. Commonly used results. The following results from graph theory are used to
determine the properties of zero divisor graphs of direct product of finite fields.

(i) For every graph G,χ(G) ≥ ω(G). [7]
(ii) For any graph G, |V (G)| = α(G) + τ(G). [5, 7]
(iii) If graph G is bipartite, then χ1(G) = ∆(G). [7]
(iv) If G is simple graph, then ∆(G) ⩽ χ1(G) ⩽ ∆(G) + 1. [7]
(v) If G has a Hamiltonian cycle, then for each non-empty subset S ⊂ V , the sub

graph G− S has at most |S| components. [7, 9]

(vi) If G is a simple graph with at least three vertices and δ(G) ≥ n(G)
2 , then G is

Hamiltonian.[7]
(vii) A connected graph G is Eulerian if and only if every vertex of G has even degree.

[9]

1.3. Known results of zero divisor graphs of direct product of finite fields.

(i)
∣∣Z∗(F1 × · · · × Fn)

∣∣ = ∣∣V (
Γ(F1 × · · · × Fn)

)∣∣
=

∏n
i=1 |Fi| −

∏n
i=1(|Fi| − 1)− 1. [10, Theorem 2.1]

(ii) If |F1| = · · · = |Fn| = p, then the number of vertices of degree pr−1, (1 ⩽ r ⩽ n−1)
in Γ(F1 × · · · × Fn) is C(n, r)(p− 1)n−r.[10, Theorem 2.2]

(iii) If |F1| = · · · = |Fn| = p, then the number of vertices of degree

pn − (p− 1)n − pr − 1, (1 ⩽ r ⩽ n− 1) in Γ(F1 × · · · × Fn) is C(n, r)(p− 1)r.[10,
Corollary 2.3]

(iv) Γ(F1 × F2) is a complete bipartite graph, and hence Γ(F1 × F2) is disconnected.
[10, Corollary 2.5]

1.4. Observation.

Observation 1. The number of vertices in Γ(F1 × · · · × Fn) with degree∏r
ik=1 |Fik | − 1 is

∏n
i=1(|Fi|−1)∏r

ik=1(|Fik
|−1)

where 1 ⩽ i1 < i2 < · · · < ir ⩽ n.

Observation 2. Let S = {vi = (0, · · · , 0, 1, 0, · · · , 0) : 1 ≤ i ≤ n}. In other words, if
vi ∈ S, then vi contains 1 in ith coordinate and 0s in remaining coordinates. Clearly,
vi · vj = (0, · · · , 0) if i ̸= j, (1 ≤ i ̸= j ≤ n). Therefore, the sub-graph spanned by S is
complete graph Kn in Γ(F1 × · · · × Fn).

1.5. Main Results. Let F1, · · · , Fn (n ⩾ 2) be finite fields. In this paper, we consider the
zero-divisor graph Γ(F1 × · · · × Fn) defined by Anderson and Livingston [2], with vertex
set Z∗(F1 × · · · × Fn), and two distinct vertices x = (x1, · · · , xn), y = (y1, · · · , yn) ∈
Z∗(F1×· · ·×Fn) are adjacent in Γ(F1×· · ·×Fn) if and only if x ·y = (0, · · · , 0). We prove
that the vertex chromatic number χ

(
Γ(F1×· · ·×Fn)

)
, clique number ω

(
Γ(F1×· · ·×Fn)

)
,

metric chromatic number µ
(
Γ(F1×· · ·×Fn)

)
of the zero divisor graph Γ(F1×· · ·×Fn) is n

and also determine the vertex chromatic number, clique number, metric chromatic number
of Γ(F1 × · · · × Fn). We determine the Edge chromatic number of Γ(F1 × · · · × Fn), and
also determine the independence number, Eulerian and Hamiltonian properties of the zero
divisor graph Γ(F1 × · · · × Fn) and the complement graph Γ(F1 × · · · × Fn).

2. Graph parameters of zero divisor graph

Example 2.1. Consider the zero divisor graph Γ(Z2 × Z2 × Z3) (as defined in [2]).

V
(
Γ(Z2 × Z2 × Z3)

)
=

{
v1 = (1, 0, 0), v2 = (0, 1, 0), v3(0, 0, 1), v4 = (0, 0, 2), v5 = (1, 1, 0),

v6 = (1, 0, 1), v7 = (1, 0, 2), v8 = (0, 1, 1), v9 = (0, 1, 2)
}
.
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(1,0,0) (0,1,0)

(0,0,1) (0,0,2)

(1,1,0)

(0,1,1)

(0,1,2)

(1,0,1)

(1,0,2)

Figure 1. Γ(Z2 × Z2 × Z3)

(i) Consider the subset S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} ⊂ V
(
Γ(Z2 × Z2 × Z3)

)
. The

subgraph induced by S is complete graph K3.

(ii) Consider the sub-partition V1 =
{
(1, 0, 0), (1, 0, 1), (1, 0, 2), (1, 1, 0)}, V2 = {(0, 1, 0),

(0, 1, 1), (0, 1, 2)
}
, V3 = {(0, 0, 1), (0, 0, 2)} of V

(
Γ(Z2 × Z2 × Z3)

)
. V1, V2, V3 are

independent subsets and V1 ∪ V2 ∪ V3 = V
(
Γ(Z2 × Z2 × Z3)

)
. We color the

vertices in Vi with color i (i = 1, 2, 3). Therefore, the vertex chromatic number
χ
(
Γ(Z2×Z2×Z3)

)
⩽ 3. Since K3 is subgraph, therefore, χ

(
Γ(Z2×Z2×Z3)

)
⩾ 3.

Hence, χ
(
Γ(Z2 × Z2 × Z3)

)
= 3.

(iii) Since K3 is subgraph, therefore, the clique number ω
(
Γ(Z2 × Z2 × Z3)

)
⩾ 3. Ac-

cording to [6, Theorem 10.5], ω(Γ(Z2×Z2×Z3)) ⩽ χ(Γ(Z2×Z2×Z3)) = 3. Hence,
ω(Γ(Z2 × Z2 × Z3)) = 3.

(iv) Let Sj ⊂ V (Γ(Z2 ×Z2 ×Z3)) be the set of elements with non-zero entry in jth co-
ordinate (1 ⩽ j ⩽ 3) and 0 or non-zero entries in the remaining coordinates. Then,
S1 =

{
(1, 0, 0), (1, 1, 0), (1, 0, 1), (1, 0, 2)

}
, S2 =

{
(0, 1, 0), (1, 1, 0), (0, 1, 1), (0, 1, 2)

}
,

S3 =
{
(0, 0, 1), (1, 0, 1), (1, 0, 2), (0, 1, 1), (0, 1, 2)

}
and |S1| = 4, |S2| = 4, |S3| = 6.

Therefore, S3 is maximal independent subset and thus, the independence number,

α
(
Γ(Z2 × Z2 × Z3)

)
= 6 = max

{
(|Fj |−1)

∏n
i=1 |Fi|

|Fj | −
∏n

i=1(|Fi| − 1) | 1 ⩽ j ⩽ 3
}
.

(v) Since, χ
(
Γ(Z2 × Z2 × Z3)

)
= 3, therefore, according to [11, Corollary 2.2], the

metric chromatic number, µ
(
Γ(Z2 × Z2 × Z3)

)
= 3.

(vi) Except the vertex (1, 1, 0) which is of degree 2, all the other remaining vertices in
Γ(Z2 ×Z2 ×Z3) are odd degree vertices. Therefore, according to [9, Theorem 5.1],
Γ(Z2 × Z2 × Z3) is not Eulerian.
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(vii) Γ(Z2 ×Z2 ×Z3) contains four vertices of degree 1. Therefore, there does not exist
any cycle in Γ(Z2 × Z2 × Z3) which contains all the vertices in Γ(Z2 × Z2 × Z3),
since the degree 1 vertices can not belong to any cycle. In other words, Γ(Z2 ×
Z2 ×Z3) does not contain a Hamiltonian cycle. Therefore, Γ(Z2 ×Z2 ×Z3) is not
Hamiltonian.

Now, consider the complement graph Γ(Z2 × Z2 × Z3).

(1,0,0) (0,1,0)

(0,0,1) (0,0,2)

(1,1,0)

(0,1,1)

(0,1,2)

(1,0,1)

(1,0,2)

Figure 2. Γ(Z2 × Z2 × Z3)

(i) The clique number of Γ(Z2 × Z2 × Z3) is independence number of Γ(Z2×Z2×Z3)

and independence number of Γ(Z2 × Z2 × Z3) is clique number of Γ(Z2×Z2×Z3),

therefore, ω
(
Γ(Z2 × Z2 × Z3)

)
= 6 = max

{
(|Fj |−1)

∏n
i=1 |Fi|

|Fj | −
∏n

i=1(|Fi| − 1) | 1 ⩽

j ⩽ 3
}

and α
(
Γ(Z2 × Z2 × Z3)

)
= 3.

(ii) Consider the partition V1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, V2 = {(0, 0, 2), (1, 1, 0)},
V3 = {(0, 1, 1)}, V4 = {(0, 1, 2)}, V5 = {(1, 0, 1)}, V6 = {(0, 1, 2)}. Then V1, V2, V3,
V4, V5, V6 are independent subsets and V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 =
V
(
Γ(Z2 × Z2 × Z3)

)
. We color vertices in Vi with color i (1 ⩽ i ⩽ 6). Therefore,

χ
(
Γ(Z2 × Z2 × Z3)

)
⩽ 6. Also, χ

(
Γ(Z2 × Z2 × Z3)

)
⩾ ω

(
Γ(Z2 × Z2 × Z3)

)
= 6.

Hence, χ
(
Γ(Z2 × Z2 × Z3)

)
= 6.

(iii) In [13, Remark 1], Akbari and Mohammadian proved that if G is a graph such
that for every vertex u of maximum degree there exists an edge uv such that
∆(G) − d(v) + 2 is more than the number of vertices with maximum degree in

G, then χ1(G) = ∆(G). In Γ(Z2 × Z2 × Z3), there are four vertices of maximum
degree, namely, (0, 1, 1), (0, 1, 2), (1, 0, 1), (1, 0, 2). Consider (0, 1, 1). We have
deg(0, 1, 1) = 7. The vertex (0, 1, 0) is adjacent to (0, 1, 1) and deg(0, 1, 0) = 3.

Therefore, if u = (0, 1, 1), v = (0, 1, 0), then ∆
(
Γ(Z2 × Z2 × Z3)

)
− d(v) + 2 =

7 − 3 + 2 = 6. Similarly for u = (0, 1, 2) take v = (0, 1, 0), for u = (1, 0, 1)
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take v = (1, 0, 0), for u = (1, 0, 2) take v = (1, 0, 0). Thus, according to [13,

Remark 1], χ1

(
Γ(Z2 × Z2 × Z3)

)
= ∆

(
Γ(Z2 × Z2 × Z3)

)
= 7. In other words,

Γ(Z2 × Z2 × Z3) is Class-1.

(iv) Γ(Z2 × Z2 × Z3) contains exactly one even degree vertex and all other vertices are

odd degree vertices. Therefore, according to [7, Theorem 1.2.26], Γ(Z2 × Z2 × Z3)
is not Eulerian. The cycle (1, 0, 1), (1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 1, 1), (0, 1, 2), (1, 0, 2),

(0, 0, 1), (0, 0, 2), (1, 0, 1) is a Hamiltonian cycle in Γ(Z2 × Z2 × Z3). Therefore,

Γ(Z2 × Z2 × Z3) is Hamiltonian.

2.1. Independence number, Clique number, Vertex Chromatic number. In Propo-
sition 2.1, we find an upper bound for the independence number of Γ(F1×· · ·×Fn). Note
that if n = 2, then the independence number α

(
Γ(F1 × F2)

)
= max{|F1| − 1, |F2| − 1}.

Proposition 2.1. If n ⩾ 3, then the independence number α
(
Γ(F1 × · · · × Fn)

)
⩾ max

{(
|Fj |−1

)∏n
i=1 |Fi|

|Fj | −
∏n

i=1

(
|Fi| − 1

) ∣∣∣ 1 ⩽ j ⩽ n
}
.

Proof. First we observe that if two vertices are not adjacent in Γ(F1×· · ·×Fn) they should
have atleast one non-zero entry in the same coordinate, say jth coordinate. Let Sj be the

set of elements with non-zero entry in the jth coordinate. Let v = (a1, · · · an) ∈ Sj . The
choices for aj is

(
|Fj |−1

)
as aj ̸= 0 and choices for ai is |Fi| for i ∈ {1, · · · , n}\{j} and Sj

should contain elements of V
(
Γ(F1×· · ·×Fn)

)
. Note that all coordinates having non-zero

entries is not an element of V
(
Γ(F1 × · · · × Fn)

)
and we should remove the elements with

each coordinate entry non-zero. The total number of choices of ai with each of ai ̸= 0 is(
|Fi| − 1

)
and total such possible vertices not in V

(
Γ(F1 × · · · × Fn)

)
are

∏n
i=1

(
|Fi| − 1

)
and hence |Sj | =

(
|Fj |−1

)∏n
i=1 |Fi|

|Fj | −
∏n

i=1

(
|Fi| − 1

)
. Let |S∆| = max{|Sj |

∣∣ 1 ⩽ j ⩽ n}
be set with largest cardinality. Hence, α

(
Γ(F1 × · · · × Fn)

)
⩾ |S∆| = max

{
|Sj |

∣∣ 1 ⩽ j ⩽

n
}
= max

{(
|Fj |−1

)∏n
i=1 |Fi|

|Fj | −
∏n

i=1

(
|Fi| − 1

) ∣∣ 1 ⩽ j ⩽ n
}
. □

Note that if we consider
(
Γ(Z2 × Z2 × Z3)

)
, then

α
(
Γ(Z2 × Z2 × Z3)

)
= 6 = max

{(
|Fj |−1

)∏n
i=1 |Fi|

|Fj | −
∏n

i=1

(
|Fi| − 1

)
| 1 ⩽ j ⩽ 3

}
,

and if we consider
(
Γ(Z5 × Z5 × Z5)

)
, then

α
(
Γ(Z5 × Z5 × Z5)

)
= 48 > 36 = max

{(
|Fj |−1

)∏n
i=1 |Fi|

|Fj | −
∏n

i=1

(
|Fi| − 1

)
| 1 ⩽ j ⩽ 3

}
.

In [1], Beck conjectured that the vertex chromatic number χ(R) is equal to clique num-
ber Ω(R) for a commutative ring R. Beck proved this conjecture in case of reduced ring
[1, Theorem 3.8]. Beck proved that if R is a reduced ring ̸= (0) and if χ(R) < ∞,
then R has only a finite number of minimal prime ideals. And if n is this number then
χ(R) = Ω(R) = n+ 1. The result was proved using algebraic properties. Beck’s result [1,
Theorem 3.8] implies that chromatic number of the analogous zero divisor graph Γ(R), as
defined by Anderson and Livingston [2], is n.

In this paper, we provide graph theoretic approach for known results. We give the
combinatorial proof for vertex chromatic number, clique number of Γ(F1 × · · · × Fn) in
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Proposition 2.2. Since the vertex set of Γ(F1 × · · · × Fn) does not contain identity ele-
ment (0, · · · , 0) and units of F1 × · · · × Fn, we use graph theoretical properties to prove
χ
(
Γ(F1 × · · · × Fn)

)
= ω

(
Γ(F1 × · · · × Fn)

)
= n.

Proposition 2.2. (i) The vertex chromatic number χ
(
Γ(F1 × · · · × Fn)

)
= n.

(ii) The clique number ω
(
Γ(F1 × · · · × Fn)

)
= n.

Proof. (i) According to observation 2, Γ(F1 × · · · ×Fn) contains complete graph Kn as its
subgraph. The vertex chromatic number χ(Kn) of the complete graph Kn is n. There-
fore, the vertex chromatic number, χ

(
Γ(F1 × · · · × Fn)

)
⩾ χ(Kn) = n. Now we partition

V
(
Γ(F1 × · · · × Fn)

)
into n independent subsets. Let

X1 =
{
v = (a1, · · · , an) ∈ V (Γ(F1 × · · · × Fn)) | a1 ∈ F1 \ {0}, aj ∈ Fj , 2 ⩽ j ⩽ n

}
.

Then |X1| = (|F1|−1)
∏n

i=2 |Fi|−
∏n

i=1(|Fi|−1), since there are (|F1|−1)
∏n

i=2 |Fi| number
of possible choices for the n-tuple and among these n-tuple,

∏n
i=1(|Fi|−1) are having non

zero entries in each of n coordinate which are not elements of V
(
Γ(F1 × · · · × Fn)

)
. Also

the vertices in X1 are not mutually adjacent to each other in Γ(F1 × · · · × Fn).
Let X2 =

{
v = (0, a2, · · · , an) ∈ V

(
Γ(F1 × · · · × Fn)

)
| a2 ∈ F2 \ {0}, aj ∈ Fj , 3 ⩽ j ⩽ n

}
.

Then |X2| =
(
|F2|−1

)∏n
i=3 |Fi|. Also, the vertices inX2 are not mutually adjacent to each

other in Γ(F1×· · ·×Fn) andX1∩X2 = ϕ. Similarly, letXk =
{
v = (0, · · · , 0, ak, · · · , an) ∈

V
(
Γ(F1 × · · · × Fn)

)
| ak ∈ Fk \ {0}, aj ∈ Fj , k + 1 ⩽ j ⩽ n

}
.

Then |Xk| =
(
|Fk| − 1

)∏n
i=K+1 |Fi| and the vertices in Xk are not mutually adjacent to

each other in Γ(F1 × · · · × Fn). Also, Xi ∩Xj = ϕ for 1 ≤ i ̸= j ≤ k. Therefore,
|X1| + |X2| + · · · + |Xk|+ · · ·+ |Xn−1|+ |Xn|

=
[
(|F1|−1)

∏n
i=2 |Fi|−

∏n
i=1(|Fi|−1)

]
+(|F2|−1)

∏n
i=3 |Fi| + · · · + (|Fk|−1)

∏n
i=k+1 |Fi| +

· · ·+ (|Fn−1| − 1)|Fn|+ (|Fn| − 1)

=
[∏n

i=1 |Fi|−
∏n

i=2 |Fi|
]
+
[∏n

i=2 |Fi|−
∏n

i=3 |Fi|
]
+ · · ·+

[∏n
i=k |Fi|−

∏n
i=k+1 |Fi|

]
+ · · ·+[

|Fn−1||Fn| − |Fn|
]
+ (|Fn| − 1)−

∏n
i=1(|Fi| − 1)

=
∏n

i=1 |Fi| −
∏n

i=1(|Fi| − 1)− 1

=
∣∣V (

Γ(F1 × F2 × · · · × Fn)
)∣∣. [10, Theorem 2.1]

Thus, Xi, (1 ⩽ i ⩽ n) is a partition of V
(
Γ(F1 × · · · × Fn)

)
such that,

∪n
i=1Xi = V

(
Γ(F1 × · · · × Fn)

)
and moreover each Xi, (1 ⩽ i ⩽ n) is an independent

set. If we color the vertices in set Xi, (1 ⩽ i ⩽ n) with color i, (1 ⩽ i ⩽ n), we get a
n−coloring of Γ(F1 × · · · × Fn). Therefore, χ

(
Γ(F1 × · · · × Fn)

)
⩽ n. Since, we have

already proved that χ(Γ(F1 × · · · ×Fn)) ⩾ χ(Kn) = n, we have that the vertex chromatic
number χ

(
Γ(F1 × · · · × Fn)

)
= n.

(ii) Since, Kn is a subgraph of Γ(F1 × · · · × Fn)), therefore, ω
(
Γ(F1 × · · · × Fn)

)
≥ n.

According to [6, Theorem 10.5], ω
(
Γ(F1 × · · · × Fn)

)
⩽ χ

(
Γ(F1 × · · · × Fn)

)
= n. Hence,

ω
(
Γ(F1 × · · · × Fn)

)
= n. □

Corollary 2.1. (i) The vertex cover number, τ
(
Γ(F1 × · · · × Fn)

)
⩽

[∏n
i=1 |Fi| −

∏n
i=1

(
|Fi| − 1

)
− 1

]
−max

{ (|Fj |−1)
∏n

i=1 |Fi|
|Fj | −

∏n
i=1

(
|Fi| − 1

) ∣∣
1 ⩽ j ⩽ n

}
.

(ii) The clique number of complement graph,

ω
(
Γ(F1 × · · · × Fn)

)
⩾ max

{
(|Fj |−1)

∏n
i=1 |Fi|

|Fj | −
∏n

i=1(|Fi| − 1)
∣∣ 1 ⩽ j ⩽ n

}
.
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(iii) The independence number of Γ(F1 × · · · × Fn) is α(Γ(F1 × · · · × Fn)) = n.

(iv) The vertex cover number of Γ(F1 × · · · × Fn) is

τ(Γ(F1 × · · · × Fn)) =
[∏n

i=1 |Fi| −
∏n

i=1(|Fi| − 1)− 1
]
− n.

(v) The vertex chromatic number of complement graph,

χ
(
Γ(F1 × · · · × Fn)

)
⩾ max

{
(|Fj | − 1)

∏n
i=1 |Fi|
|Fj | −

∏n
i=1

(
|Fi| − 1

) ∣∣ 1 ⩽ j ⩽ n
}
.

Proof. Using the fact, |V (Γ(F1×· · ·×Fn))| = α(Γ(F1×· · ·×Fn))+τ(Γ(F1×· · ·×Fn))[7],

result (i) follows. Since the clique number of Γ(F1 × · · · × Fn) is independence number

of Γ(F1 × · · · × Fn) and independence number of Γ(F1 × · · · × Fn) is clique number of

Γ(F1 × · · · × Fn), and using the fact, |V (Γ(F1 × · · · × Fn))| = α((Γ(F1 × · · · × Fn)) +

τ(Γ(F1 × · · · × Fn))[7], the result (ii), (iii), (iv) follows.

(v) Follows from [6, Theorem 10.5] and (ii), χ
(
Γ(F1 × · · · × Fn)

)
⩾ ω

(
Γ(F1 × · · · × Fn)

)
⩾ max

{
(|Fj |−1)

∏n
i=1 |Fi|

|Fj | −
∏n

i=1(|Fi| − 1)
∣∣∣ 1 ⩽ j ⩽ n

}
. □

2.2. Metric Chromatic number.

Definition 2.1. For a set S ⊆ V (G) and a vertex v of G, the distance d(v, S) between
v and S is defined as d(v, S) = min{d(v, x) | x ∈ S}. [6, 9] Suppose that c : V (G) →
{1, 2, · · · , k} is a k−coloring of G for some positive integer k where adjacent vertices may
be colored the same and let V1, V2, · · · , Vk be the resulting color classes. With each vertex
v, we can associate a k−vector

code(v) = (a1, a2, · · · , ak) = a1a2 · · · ak
called the metric color code of v, where for each i with 1 ⩽ i ⩽ k, ai = d(v, Vi). If code(u) ̸=
code(v) for every two adjacent vertices u and v of G, then c is called a metric coloring of
G. The minimum k for which G has a metric k−coloring is called the metric chromatic
number of G and is denoted by µ(G). Clearly, µ(G) is defined for every connected graph
G and µ(G) ⩾ 2 for every nontrivial connected graph G. [11]

Let c be a proper k−coloring of a nontrivial connected graph G with resulting color
classes V1, V2, · · · , Vk and let u and v be two adjacent vertices of G. Then u ∈ Vi and
v ∈ Vj for some i, j ∈ {1, 2, · · · , k} with i ̸= j. Suppose that code(u) = (a1, a2, · · · , ak)
and code(v) = (b1, b2, · · · , bk). Then ai = bj = 0 and aj = bi = 1. Thus code(u) ̸= code(v)
and c is also a metric coloring of G. Thus µ(G) ⩽ χ(G). [11]

Lemma 2.1. If G be a connected graph on n ⩾ 2 vertices which contains complete graph
Kp; (2 ⩽ p ⩽ n) as an induced subgraph, then the metric chromatic number µ(G) ⩾ p.

Proof. Suppose µ(G) = t, 2 ⩽ t ⩽ p−1. Then there exists a metric t−coloring c : V (G) →
{1, 2, · · · , t}, such that, code(u) ̸= code(v) for every two adjacent vertices u and v of G.
Then, c|V (Kp) : V (Kp) → {1, 2, · · · , t} is also a t−metric coloring of induced subgraph
Kp. But this is a contradiction, as a connected graph G of order n has metric chromatic
number n if and only if G = Kn [11]. Hence, µ(G) ⩾ p. □

Theorem 2.1. The metric chromatic number of Γ(F1×· · ·×Fn) is µ
(
Γ(F1×· · ·×Fn)

)
= n.

Proof. According to [11, Proposition 2.1], if n = 2, then µ
(
Γ(F1 × F2)

)
= 2, and if n = 3,

then according to Proposition 2.2, χ
(
Γ(F1 × F2 × F3)

)
= 3, therefore, according to [11,

Corollary 2.2], µ
(
Γ(F1 × F2 × F3)

)
= 3. Let n ⩾ 4. Claim: µ

(
Γ(F1 × · · · × Fn)

)
= n.

Suppose µ(Γ(F1 × · · · × Fn)) = t, (4 ⩽ t ⩽ n − 1). Then there exists a metric t−coloring
c : V

(
Γ(F1×· · ·×Fn)

)
→ {1, 2, · · · , t} where adjacent vertices may be colored the same and
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code(u) ̸= code(v) for every two adjacent vertices u and v of Γ(F1 × · · · × Fn). According
to observation 2, Kn is a subgraph of Γ(F1 × · · · × Fn). Therefore, according to 2.1,
c|V (Kn) : V (Kn) → {1, 2, · · · , t} is a metric t−coloring of the subgraph Kn, such that
for every pair x, y of adjacent vertices in subgraph Kn, code(x) ̸= code(y). This is a
contradiction to the fact that a connected graph G of order n has metric chromatic number
n if and only if G = Kn [11]. Thus, µ

(
Γ(F1 × · · · × Fn)

)
⩾ n. According to [11], since

metric chromatic number ⩽ vertex chromatic number, we have, µ
(
Γ(F1 × · · · × Fn)

)
⩽

χ
(
Γ(F1 × · · · × Fn)

)
= n. Hence, µ

(
Γ(F1 × · · · × Fn)

)
= χ

(
Γ(F1 × · · · × Fn)

)
= n. □

Corollary 2.2. The metric chromatic number of Γ(F1 × · · · × Fn) is µ(Γ(F1 × · · · × Fn))

⩾ max
{
(|Fk| − 1)

∏n
i=1 |Fi|
|Fk| −

∏n
i=1(|Fi| − 1) | 1 ⩽ k ⩽ n

}
.

Proof. Let ω
(
Γ(F1 × · · · × Fn)

)
= t. According to 2.1, µ

(
Γ(F1 × · · · × Fn)

)
⩾ t. There-

fore, according to Corollary 2.1 (ii), µ
(
Γ(F1 × · · · × Fn)

)
⩾ t

⩾ max
{(

|Fk| − 1
)∏n

i=1 |Fi|
|Fk| −

∏n
i=1

(
|Fi| − 1

) ∣∣∣ 1 ⩽ k ⩽ n
}
. □

2.3. Edge Chromatic number. In [12], Akbari and Mohammadian, have shown that
for any finite commutative ring R, the edge chromatic number of Γ(R) is equal to the
maximum degree of Γ(R), unless Γ(R) is a complete graph of odd order. They have also
proved in [12, Remark 1], that if G is a graph such that for every vertex u of maximum
degree there exists an edge uv such that ∆(G) − d(v) + 2 is more than the number of
vertices with maximum degree in G, then χ1(G) = ∆(G). We use this remark to determine

the edge chromatic number of Γ(F1 × · · · × Fn). Note that if n = 2, then Γ(F1 × F2) is

disjoint union of two complete graphs K|F1|−1 and K|F2|−1. Thus, Γ(F1 × F2) is Class-1 if
max{|F1| − 1, |F2| − 1} is even, and Class-2 if max{|F1| − 1, |F2| − 1} is an odd number
greater than or equal to 3. [6, Theorem 10.15]

Theorem 2.2. Γ(F1 × · · · × Fn) belongs to Class-1

(i) if n ⩾ 3 and all the fields are of order two
(ii) if there are at least two fields of order two and at least one field of order greater

than two.

Proof. (i) If all the fields are of order two, then δ
(
Γ(F1 × · · · × Fn)

)
= 1, therefore,

∆
(
Γ(F1 × · · · × Fn)

)
=

∣∣V (
Γ(F1×· · ·×Fn)

)∣∣−1−1 = (2n−2)−2 = 2n−4. If u is a vertex

with exactly one 0 in ith (1 ⩽ i ⩽ n) coordinate and 1s in the remaining coordinates, then

degΓ(F1×···×Fn)(u) = 1 and thus, deg
Γ(F1×···×Fn)

(u) = 2n − 4 = ∆
(
Γ(F1 × · · · × Fn)

)
. It

follows that if order of each field is two, then there are exactly n maximum degree vertices
in Γ(F1 × · · · × Fn). Let v be a vertex with exactly one 1 in jth (1 ⩽ j ̸= i ⩽ n) coor-
dinate and 0s in the remaining coordinates, then degΓ(F1×···×Fn)(v) = 2n−1 − 1 and thus,

deg
Γ(F1×···×Fn)

(v) = (2n−2)−(2n−1−1)−1 = 2n−1−2. Therefore, ∆
(
Γ(F1 × · · · × Fn)

)
−

deg(v)+ 2 = (2n− 4)− (2n−1− 2)+ 2 = 2n−1 > n if n ⩾ 3. Thus, it follows that, if all the

fields are of order two, then Γ(F1 × · · · × Fn) belongs to Class-1.

(ii) Suppose there are at least two fields of order two and at least one field of order
greater than two. Suppose there are t (2 ⩽ t ⩽ n − 1) fields of order two. Let
Fj1 , · · · , Fjt (1 ⩽ t ⩽ n − 1) be the t fields of order two. Let u be a vertex with 0
in exactly one coordinate js (1 ⩽ s ⩽ t) and non-zero entries in the remaining coordi-
nates. Then degΓ(F1×···×Fn)(u) = |Fjs | − 1 = 2 − 1 = 1. Therefore, deg

Γ(F1×···×Fn)
(u) =



SUBHASH M. GADED, NITHYA S. N.: ZERO-DIVISOR GRAPHS OF DIRECT PRODUCTS ... 1943∣∣V (
Γ(F1 × · · · × Fn)

)∣∣− degΓ(F1×···×Fn)(u)− 1

=
[∏n

i=1 |Fi| −
∏n

i=1(|Fi| − 1)− 1
]
− 1− 1

=
∏n

i=1 |Fi| −
∏n

i=1(|Fi| − 1)− 3 = ∆
(
Γ(F1 × · · · × Fn)

)
.

Let Hjs (1 ⩽ s ⩽ t) be the set of vertices with exactly one 0 in the js coordinate and
non-zero entries in the remaining (n−1) coordinates. Then Hjs contains maximum degree
vertices and |Hjs | =

∏n
i=1, i̸=js

(
|Fi| − 1

)
. Note that Hj1 ∪ · · · ∪Hjt is the set containing

maximum degree vertices and |Hj1 ∪ · · · ∪Hjt |
=

∏n
i=1, i̸=j1

(
|Fi| − 1

)
+ · · ·+

∏n
i=1, i̸=jt

(
|Fi| − 1

)
=

∏n
i=1, i̸=j1,··· ,jt

(
|Fi| − 1

)
+ · · ·+

∏n
i=1, i̸=j1,···jt

(
|Fi| − 1

)
= t ·

∏n
i=1, i̸=j1,···jt

(
|Fi| − 1

)
.

Consider the set Hjs . Let k be such that |Fk| = 2, k ̸= js. Let v be a vertex with exactly

one non-zero entry in the kth coordinate and 0s in the remaining coordinates. Since, the
kth coordinate of v and u ∈ Hjs is non-zero entry, therefore, uv ∈ E

(
Γ(F1 × · · · × Fn)

)
and, degΓ(F1×···×Fn)(v) =

∏n
i=1, i̸=k |Fi| − 1, therefore, deg

Γ(F1×···×Fn)
(v)

=
∣∣V (

Γ(F1 × · · · × Fn)
)∣∣− degΓ(F1×···×Fn)(v)− 1

=
[∏n

i=1 |Fi| −
∏n

i=1(|Fi| − 1)− 1
]
−
[∏n

i=1, i̸=k |Fi| − 1
]
− 1

=
∏n

i=1 |Fi| −
∏n

i=1(|Fi| − 1)−
∏n

i=1, i̸=k |Fi| − 1.

Therefore, ∆
(
Γ(F1 × · · · × Fn)

)
− deg

Γ(F1×···×Fn)
(v) + 2

=
[∏n

i=1 |Fi| −
∏n

i=1(|Fi| − 1)− 3
]
−
[∏n

i=1 |Fi| −
∏n

i=1(|Fi| − 1)−
∏n

i=1, i̸=k |Fi| − 1
]
+ 2

=
∏n

i=1, i̸=k |Fi|
= 2t−1

∏n
i=1, i̸=j1,··· ,jt |Fi|

(
since k ∈ {j1 · · · , jt} \ js

)
> t

∏n
i=1, i̸=j1,··· ,jt

(
|Fi| − 1

)(
since 2t−1 > t if t ⩾ 3 and for t = 2, |Hj1 ∪ Hj2 | = 2

∏n
i=1, i̸=j1,j2

(
|Fi| − 1

)
and there

exists at least one field of order greater than two.
)

Thus, according to [12, Remark 1], Γ(F1 × · · · × Fn) belongs to Class-1, if there are at
least two fields of order two and at least one field of order greater than two. □

Remark 2.1. (i) The technique mentioned in the above proof ([12, Remark 1]) holds for

Γ(Z2 × Z3 × Z3) but does not hold for Γ(Z2 × Z5 × Z5), Γ(Z2 × Z7 × Z7), Γ(Z2 × Z11 × Z11),
and so on.
(ii) Suppose each field is of order p, where p is an odd prime number. Consider Γ(F1 × · · · × Fn).

Then δ
(
Γ(F1×· · ·×Fn)

)
= p−1, therefore, ∆

(
Γ(F1 × · · · × Fn)

)
=

∣∣V (
Γ(F1×· · ·×Fn)

)∣∣−
(p− 1)− 1 = (pn − (p− 1)n − 1)− (p− 1)− 1 = pn − (p− 1)n − p− 1. Let Hj (1 ⩽ j ⩽ n)

be the set of vertices with exactly one 0 in the jth coordinate and non-zero entries in the
remaining (n− 1) coordinates. Then H1 ∪ · · · ∪Hn is the set containing maximum degree

vertices in Γ(F1 × · · · × Fn) and |H1 ∪ · · · ∪Hn| = n · (p− 1)n−1. Consider the set Hj. Let

v be a vertex with exactly one non-zero entry in kth (1 ⩽ k ̸= j ⩽ n) coordinate and 0s in
the remaining coordinates, then degΓ(F1×···×Fn)(v) = pn−1 − 1 and thus, deg

Γ(F1×···×Fn)
(v)

= (pn − (p− 1)n − 1)− (pn−1 − 1)− 1 = pn − (p− 1)n − pn−1 − 1. Therefore,

∆
(
Γ(F1 × · · · × Fn)

)
− deg(v) + 2

= (pn − (p− 1)n − p− 1)− (pn − (p− 1)n − pn−1 − 1) + 2 = pn−1 − p+ 2.

Thus, it follows that Γ(F1 × · · · × Fn) belongs to Class-1 if

pn−1 − p+ 2 > n · (p− 1)n−1.

We observe that for a fixed prime p, the above inequality holds for large n. (For example,
if p = 3 and n ⩾ 6, if p = 5 and n ⩾ 13, if p = 7 and n ⩾ 21, if p = 11 and n ⩾ 40,
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and so on.) For a fixed prime p, the term pn−1 in pn−1 − p+ 2 grows exponentially much
faster than both the linear and exponential factors in n(p− 1)n−1, as n → ∞. This means
that for large n, the left-hand side of the inequality becomes larger than the right-hand
side. Therefore, for each prime p, there exists a natural number n0(p), such that, for all
n ⩾ n0(p), the inequality pn−1 − p + 2 > n · (p − 1)n−1 is always true for all n ⩾ n0(p).
In other words, if all the fields are of order p, where p ⩾ 3 is a prime number, then there
exists a natural number n0(p), such that, for all n ⩾ n0(p), Γ(F1 × · · · × Fn) belongs to
Class-1. If |F1| ⩽ |F2| ⩽ · · · ⩽ |Fn| and |F1| = p1 is an odd prime, then there exists a

natural number n0(p1), such that, for all n ⩾ n0(p1), Γ(F1 × · · · × Fn) belongs to Class-1.

2.4. Eulerian and Hamiltonian. In [13], S. Akbari, A. Mohammadian, defined the
zero-divisor graph of a ring R as the directed graph Γ(R), such that its vertices are all
non-zero zero-divisors of R in which for any two distinct vertices x and y, x → y is an
edge if and only if xy = 0. They proved that [13, Proposition 1], if n ⩾ 2 and R1, · · · , Rn

are finite rings and R = R1 × · · · × Rn, then Γ(R) is an Eulerian graph if and only if
for i = 1, · · · , n, either Ri is a field or Γ(Ri) is an Eulerian graph. In this study, the
zero divisor graph (defined by Anderson and Livingston [2]) we are considering is a simple
undirected graph. In Proposition 2.3, we determine the conditions for which the zero
divisor graph Γ(F1× · · ·×Fn) is Eulerian or not Eulerian. The conditions are determined
in terms of the order of the fields. Since the order of a finite field is a prime power,
the following proposition fully characterizes the Eulerian property for the graphs under
consideration in this study.

Proposition 2.3. If n ⩾ 2 then Γ(F1 × · · · × Fn) is

(i) not Eulerian if |Fi| = 2r, for some i, (1 ⩽ i ⩽ n), r ∈ N.
(ii) Eulerian if |Fi| ̸= 2r for all i, (1 ⩽ i ⩽ n).

Proof. Let v ∈ V (Γ(F1×· · ·×Fn)). Suppose v contains 0s in coordinate i1, i2, · · · , ir with
1 ⩽ i1 < i2 < · · · < ir ⩽ n. Then deg(v) =

∏r
k=1 |Fik | − 1.

(i) If |Fi| = 2r, for some i, (1 ⩽ i ⩽ n), r ∈ N, then clearly the degree of a vertex with 0 in
ith coordinate and non-zero entries in remaining coordinate is odd and thus Γ(F1×· · ·×Fn)
is not Eulerian.[9]
(ii) If |Fi| ̸= 2r for all i, (1 ⩽ i ⩽ n) then every vertex in Γ(F1×· · ·×Fn) is of even degree.
Hence according to [7, Theorem 1.2.26], Γ(F1 × · · · × Fn) is Eulerian in this case. □

In Proposition 2.4, we determine the conditions for Γ(F1 × · · · ×Fn) to be Hamiltonian
or non-Hamiltonian. We make use of the result [7, Proposition 7.2.3], “If a graph G has a
Hamiltonian cycle then for each non-empty subset S ⊆ V (G) the graph G−S has atmost
|S| components. ”

Proposition 2.4. (i) Γ(F1 × F2) is Hamiltonian if |F1| = |F2| ⩾ 3, and Γ(F1 × F2)
is not Hamiltonian if |F2| > |F1| or |F1| > |F2|.

(ii) Γ(F1 × · · · × Fn) is not Hamiltonian, if n ⩾ 3.

Proof. (i) Γ(F1×F2) is complete bipartite graphK|F1|−1,|F2|−1. A complete bipartite graph
is hamiltonian if and only if the parts are of equal size and have 2 or more vertices[7].
Therefore, K|F1|−1,|F2|−1 is Hamiltonian if and only if |F1| − 1 = |F2| − 1 ⩾ 2. Hence, the
result follows.
(ii) Let n ⩾ 3. Without loss of generality, let |F1| = min

{
|F1|, · · · , |Fn|

}
.

Consider the set S =
{
(t, 0, · · · , 0)

∣∣ t ∈ F1 \ {0}
}
. We have |S| = |F1| − 1.

Let T =
{
(0, a2, · · · , an) : aj ∈ {1, 2, · · · , |Fj | − 1}, (2 ⩽ j ⩽ n)

}
.
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Then, |T | =
∏n

j=2

(
|Fj | − 1

)
. Each vertex in S is adjacent with each and every vertex in

T and the only vertices adjacent to a vertex of T are in S. That is, the vertices in T are
not adjacent with any vertex in Γ(F1 × · · · × Fn) − S =⇒ deg(x) = |F1| − 1 for x ∈ T .
The number of components in Γ(F1 × · · · × Fn) − S ⩾

∏n
j=2

(
|Fj | − 1

)
> |F1| − 1 = |S|,

as |F1| = min
{
|F1|, · · · , |Fn|

}
. Hence, if n ⩾ 3, then according to [7, Proposition 7.2.3],

Γ(F1 × · · · × Fn) is not Hamiltonian. □

In Proposition 2.5, we determine the conditions for Γ(F1 × · · · × Fn) to be Eulerian,
Hamiltonian. In [14, Corollary 3.5 ], Devhare, Joshi, Lagrange gave the conditions for

Γ(F1 × · · · × Fn) to be Eulerian. We prove the same result using graph theoretic approach.

Proposition 2.5. (i) Γ(F1 × F2) is neither Eulerian nor Hamiltonian.

(ii) Γ(F1 × · · · × Fn) is Hamiltonian if n ⩾ 3.

(iii) Γ(F1 × · · · × Fn) is Eulerian if and only if |Fi| = 2si , si ⩾ 1, ∀ 1 ≤ i ≤ n, n ⩾ 3.

Proof. (i) Γ(F1 × F2) is disconnected.

(ii) Let n ⩾ 3. We prove that Γ(F1 × · · · × Fn) is Hamiltonian. We demonstrate a Hamil-

tonian cycle in Γ(F1 × · · · × Fn). First we partition V
(
Γ(F1 × · · · × Fn)

)
into n subsets

such that each subset is a clique in Γ(F1 × · · · × Fn).

Let X1 =
{
(a1, a2, · · · , an) ∈ V (Γ(F1 × · · · × Fn))

∣∣ a1 ∈ F1 \ {0}, aj ∈ Fj , 2 ⩽ j ⩽ n
}
.

Then |X1| =
(
|F1|−1

)∏n
i=2 |Fi|−

∏n
i=1

(
|Fi|−1

)
, since there are (|F1|−1)

∏n
i=2 |Fi| num-

ber of possible choices for the n-tuple and among these n-tuple,
∏n

i=1

(
|Fi|−1

)
are having

non zero entries in each of n coordinate which are not elements of V
(
Γ(F1 × · · · × Fn)

)
.

Also the vertices in X1 are all mutually adjacent to each other in Γ(F1 × · · · × Fn).

Let X2 =
{
(0, a2, · · · , an) ∈ V (Γ(F1 × · · · × Fn))

∣∣ a2 ∈ F2 \ {0}, aj ∈ Fj , 3 ⩽ j ⩽ n
}
.

Then |X2| = (|F2| − 1)
∏n

i=3 |Fi|. And the vertices in X2 are all mutually adjacent to each

other in Γ(F1 × · · · × Fn). Also, X1∩X2 = ϕ. Similarly, let Xk =
{
(0, · · · , 0, ak, · · · , an) ∈

V
(
Γ(F1 × · · · × Fn)

) ∣∣ ak ∈ Fk \ {0}, aj ∈ Fj , k + 1 ⩽ j ⩽ n
}
.

Then |Xk| = (|Fk| − 1)
∏n

i=K+1 |Fi|. And the vertices in Xk are all mutually adjacent to

each other in Γ(F1 × · · · × Fn). Also, Xi ∩Xj = ϕ for 1 ≤ i ̸= j ≤ k. Therefore,
|X1| + |X2| + · · · + |Xk|+ · · ·+ |Xn−1|+ |Xn|

=
[
(|F1|−1)

∏n
i=2 |Fi|−

∏n
i=1(|Fi|−1)

]
+(|F2|−1)

∏n
i=3 |Fi| + · · · + (|Fk|−1)

∏n
i=k+1 |Fi|

+ · · · + (|Fn−1| − 1)|Fn|+ (|Fn| − 1)

=
[∏n

i=1 |Fi| −
∏n

i=2 |Fi|
]
+
[∏n

i=2 |Fi| −
∏n

i=3 |Fi|
]
+ · · ·+

[∏n
i=k |Fi| −

∏n
i=k+1 |Fi|

]
+ · · ·

+
[
|Fn−1||Fn| − |Fn|

]
+ (|Fn| − 1)−

∏n
i=1(|Fi| − 1)

=
∏n

i=1 |Fi| −
∏n

i=1(|Fi| − 1)− 1

= |V (Γ(F1 × · · · × Fn))|.
Thus, Xi, (1 ⩽ i ⩽ n) is a partition of V

(
Γ(F1 × · · · × Fn)

)
such that,

∪n
i=1Xi = V

(
Γ(F1 × · · · × Fn)

)
and moreover each Xi, (1 ⩽ i ⩽ n) is a clique set in

Γ(F1 × · · · × Fn).
Let P1 be a Hamiltonian path of vertices in X1 such that the starting vertex of path
P1 contains 1 in the first coordinate and last nth coordinate and the last vertex of path
P1 contains 1 in the second coordinate. Let P2 be a Hamiltonian path of vertices in X2
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such that the last vertex of path P2 contains 1 in the third coordinate. Clearly, the last
vertex of path P1 is adjacent to first vertex of path P2. Therefore, P1 ∪ P2 is a Hamil-
tonian path of vertices in X1 ∪ X2. Similarly, let Pk be a Hamiltonian path of vertices
in Xk (3 ⩽ k ⩽ n − 1) such that the last vertex of path Pk contains 1 in the k + 1 co-
ordinate. Clearly, the last vertex of path Pk is adjacent to first vertex of path Pk+1 and
P1 ∪ P2 ∪ · · · ∪ Pk is a Hamiltonian path of vertices in X1 ∪X2 ∪ · · · ∪Xk. Let Pn be a
Hamiltonian path of vertices in Xn. The vertices of Xn contain non-zero entry in the last
nth coordinate. Therefore, the last vertex of path Pn is adjacent to the first vertex of path
P1. Therefore, P1 ∪P2 ∪ · · · ∪Pn is a Hamiltonian path of vertices in V

(
Γ(F1 × · · · × Fn)

)
such that the last vertex of path Pn is adjacent to first vertex of path P1. Thus, we get a
Hamiltonian cycle in Γ(F1 × · · · × Fn). Hence, Γ(F1 × · · · × Fn) is Hamiltonian.

(iii) Let n ⩾ 3. Let x ∈ V
(
Γ(F1×· · ·×Fn)

)
contains 0s in the coordinates i1 · · · , ir. Then

degΓ(F1×···×Fn)(x) =
∏r

ik=1 |Fik | − 1 and
∣∣V (

Γ(F1× · · ·×Fn)
)∣∣ = ∣∣V (

Γ(F1 × · · · × Fn)
)∣∣ =∏n

i=1 |Fi| −
∏n

i=1

(
|Fi| − 1

)
− 1. Hence deg

Γ(F1×···×Fn)
(x) =

∏n
i=1 |Fi| −

∏n
i=1

(
|Fi| − 1

)
−∏r

k=1 |Fik | − 1 where 1 ⩽ i1 < i2 < · · · < ir ⩽ n, (1 ⩽ r ⩽ n − 1). If |Fi| = 2si , si ⩾ 1
for all 1 ≤ i ≤ n, then,

∏n
i=1 |Fi| −

∏n
i=1

(
|Fi| − 1

)
−

∏r
k=1 |Fik | − 1 is even, that is, the

degree of every vertex is even and hence Γ(F1 × · · · × Fn) is Eulerian in this case.

Suppose at least one field is of odd order. There are two possibilities:
(a) All the fields are of odd order.
(b) At least one field is of odd order and at least one field of even order.

(a) If all the fields are of odd order, that is, |Fj | = p
sj
j , pj − prime, pj ̸= 2, sj ⩾ 1

for all 1 ⩽ j ⩽ n, then for x ∈ V
(
Γ(F1 × · · · × Fn)

)
containing 0s in the coordinates

i1 · · · , ir, degΓ(F1×···×Fn)
(x) =

∏n
i=1 |Fi| −

∏n
i=1

(
|Fi| − 1

)
−
∏r

k=1 |Fik | − 1 is odd.

(b) If |Fj | = p
sj
j , pj − prime, pj ̸= 2, sj ⩾ 1 for some 1 ⩽ j ⩽ n and |Fk| = 2sk , sk ⩾ 1 for

some 1 ⩽ k ̸= j ⩽ n, then let y be a vertex with 0 in kth coordinate and non-zero entries in
the remaining coordinates. Then deg

Γ(F1×···×Fn)
(y) =

∏n
i=1 |Fi|−

∏n
i=1

(
|Fi|−1

)
−|Fk|−1

is odd. Thus, it follows that, Γ(F1 × · · · × Fn) is not Eulerian if at least one field is of odd
order. □

Conclusion

We obtained an upper bound for the independence number and determined the Eulerian
and Hamiltonian properties of the zero-divisor graph Γ(F1×· · ·×Fn) and the complement

graph Γ(F1 × · · · × Fn). We determined the Edge chromatic number of Γ(F1 × · · · × Fn)
and proved that the metric chromatic number clique number and vertex chromatic number
of Γ(F1 × · · · × Fn) is n and also determined clique number, vertex chromatic number,

metric chromatic number of Γ(F1 × · · · × Fn).
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