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COMPLETE SOFT SEMIGRAPHS: COMPREHENSIVE ANALYSIS OF

Km1−1,m2−1,...,mr−1
m1,m2,...,mr STRUCTURES

B. GEORGE1∗, J. JOSE2, R. K. THUMBAKARA3, §

Abstract. Soft set theory provides a systematic approach for handling imprecision and
uncertainty by categorizing elements of a set based on specific parameters. In semigraph
theory, soft semigraphs utilize this approach, offering a parameterized perspective that
has significantly advanced the field through effective parameter management. In this pa-
per, we introduce and define complete and strongly complete soft semigraphs, focusing
on their unique properties and structures. We then delve into an in-depth analysis of
strongly complete soft semigraphs in the form Km1−1,m2−1,...,mr−1

m1,m2,...,mr
. Key properties such

as the total number of f -edges, and various vertex degrees are examined through a series
of theorems, providing valuable insights into the complex relationships and characteris-
tics of these soft semigraphs.
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1. Introduction

Conventional methods in formal modelling, reasoning, and computation typically ex-
hibit determinism, clarity, and precision. However, the complexities encountered in diverse
fields like engineering, medicine, economics, and social sciences often involve data that
lacks a clear definition. Various uncertainties present in these problem areas pose chal-
lenges for traditional methods. The fuzzy set theory addresses one form of uncertainty,
termed ”Fuzziness,” arising from elements partially belonging to a set. While it effectively
handles uncertainties related to vague or partially belonging elements, it doesn’t encom-
pass all uncertainties found in real-world problems. The emergence of soft set theory
in 1999 by mathematician Molodtsov [31] offers a more practical approach compared to
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established theories like probability or fuzzy set theory, owing to its versatility. For exam-
ple, fuzzy set theory lacks sufficient parameterization tools. Authors such as Maji, Biswas,
and Roy [29, 30] have expanded on soft set theory, employing it to resolve decision-making
problems.

The notion of soft graphs was introduced by Thumbakara and George [38]. In 2015,
Akram and Nawas [1, 2] modified the definition of soft graphs. Further advancements in
the field were made by Akram and Nawas [3, 4], who introduced fuzzy soft graphs, strong
fuzzy soft graphs, complete fuzzy soft graphs, and regular fuzzy soft graphs, exploring their
properties and potential applications. Akram and Zafar [6, 7] pioneered the concepts of soft
trees and fuzzy soft trees. Fuzzy soft theory enables the handling of problems containing
uncertain data by combining the characteristics of fuzzy sets and soft sets. Nawaz and
Akram [32] explored the applications of fuzzy soft graphs, such as analyzing oligopolistic
competition among wireless internet service providers in Malaysia. Additionally, Akram
and Shahzadi [5] proposed a decision-making approach utilizing Pythagorean Dombi fuzzy
soft graphs.

Contributions to the study of soft graphs have been made by Thenge, Jain, and Reddy
[35, 36, 37]. Soft graphs, owing to their utility in handling parameterization, represent a
growing domain within graph theory. George, Thumbakara, and Jose [28, 39, 40, 41] stud-
ied various concepts in soft graphs and introduced soft hypergraphs [8, 14], soft directed
graphs [22, 24], soft directed hypergraphs [20] and soft disemigraphs [21], studying their
properties. The operation of graph products, a method of combining two graphs, can be
extended to soft graphs. They also explored various product operations in soft graphs
[10, 11] and soft directed graphs [9, 23, 25, 26, 27] and investigated their properties. The
concept of semigraphs, a broader version of graphs, was first introduced by Sampathku-
mar [33, 34]. Unlike hypergraphs, semigraphs maintain a specific order of vertices within
their edges. When represented on a plane, semigraphs resemble conventional graphs. In
2022, George, Thumbakara, and Jose [12, 13] introduced soft semigraphs by applying soft
set principles to semigraphs and defined some soft semigraph operations. Moreover, they
introduced some product operations [17], connectedness [15] and various degrees, graphs,
and matrices associated with soft semigraphs [13, 16]. George, Jose, and Thumbakara [19]
also presented Eulerian and Hamiltonian soft semigraphs and the closure of a soft semi-
graph. In this paper, we introduce the complete and strongly complete soft semigraphs.
We study in detail the strongly complete soft semigraphs in the form Km1−1,m2−1,...,mr−1

m1,m2,...,mr .

2. Preliminaries

In this preliminary section, we lay the foundation for comprehending soft sets, semi-
graphs, and soft semigraphs. We define fundamental concepts such as partial edges and
p-part, which are crucial to the structure of soft semigraphs. Finally, we provide a brief
overview of topics including degrees and graphs associated with soft semigraphs.

2.1. Semigraph. The notion of semigraph was introduced by Sampathkumar [33, 34] as
follows. “A semigraph G is a pair (V,X) where V is a nonempty set whose elements are
called vertices of G, and X is a set of n-tuples, called edges of G, of distinct vertices, for
various n ≥ 2, satisfying the following conditions.

(1) Any two edges have at most one vertex in common
(2) Two edges (u1, u2, . . . , un) and (v1, v2, . . . , vm) are considered to be equal if and

only if
(a) m = n and
(b) either ui = vi for 1 ≤ i ≤ n, or ui = vn−i+1 for 1 ≤ i ≤ n.
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Figure 1 shows an example for a semigraph G∗ = (V,X). The vertex set of this semigraph
G∗ is V = {v1, v2, v3, v4, v5, v6, v7, v8} and the edge set isX = {(v1, v2, v3), (v3, v4, v5, v6), (v6,
v7, v8), (v5, v8)}.

Figure 1. Semigraph G∗ = (V,X)

Let G = (V,X) be a semigraph and E = (v1, v2, . . . , vn) be an edge of G. Then v1 and vn
are the end vertices of E and vi, 2 ≤ i ≤ n−1 are the middle vertices(or m-vertices) of E.
If a vertex v of a semigraph G appears only as an end vertex then it is called an end vertex.
If a vertex v is only a middle vertex then it is a middle vertex or m-vertex while a vertex v
is called middle-cum-end vertex or (m, e)-vertex if it is a middle vertex of some edge and
an end vertex of some other edge. A subedge of an edge E = (v1, v2, . . . , vn) is a k-tuple
E′ = (vi1 , vi2 , . . . , vik), where 1 ≤ i1<i2< · · ·<ik ≤ n or 1 ≤ ik<ik−1< · · ·<i1 ≤ n. We
say that the subedge E′ is induced by the set of vertices {vi1 , vi2 , . . . vik}. A partial edge of
E = (v1, v2, . . . , vn) is a (j − i+ 1)-tuple E(vi, vj) = (vi, vi+1, . . . , vj), where 1 ≤ i<j ≤ n.
G′ = (V ′, X ′) is a partial semigraph of a semigraph G if the edges of G′ are partial edges
of G. Two vertices u and v in a semigraph G are said to be adjacent if they belong to
the same edge. If u and v are adjacent and consecutive in order then they are said to be
consecutively adjacent. u and v are said to be e-adjacent if they are the end vertices of
an edge and 1e-adjacent if both the vertices u and v belong to the same edge and at least
one of them, is an end vertex of that edge”.

2.2. Soft Set. In 1999 Molodtsov [31] initiated the concept of soft sets. “Let U be an
initial universe set and let A be a set of parameters. A pair (F,A) is called a soft set (over
U) if and only if F is a mapping of A into the set of all subsets of the set U . That is,
F : A → P(U)”.

2.3. Soft Semigraph. George, Thumbakara and Jose [12, 13] introduced soft semigraph
by applying the concept of soft set in semigraph as follows: “Let G∗ = (V,X) be a
semigraph having vertex set V and edge set X. Consider a subset V1 of V . Then a partial
edge formed by some or all vertices of V1 is said to be a maximum partial edge or mp edge
if it is not a partial edge of any other partial edge formed by some or all vertices of V1.
Let Xp be the collection of all partial edges of the semigraph G and A be a nonempty set.
Let a subset R of A × V be an arbitrary relation from A to V . We define a mapping Q
from A to P(V ) by Q(x) = {y ∈ V |xRy}, ∀x ∈ A, where P(V ) denotes the power set of
V . Then the pair (Q,A) is a soft set over V . Also define a mapping W from A to P(Xp)
by W (x) = {mp edges< Q(x) >}, where {mp edges< Q(x) >} denotes the set of all mp
edges that can be formed by some or all vertices of Q(x) and P(Xp) denotes the power
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set of Xp. The pair (W,A) is a soft set over Xp. Then we can define a soft semigraph as
follows: The 4-tuple G = (G∗, Q,W,A) is called a soft semigraph of G∗ if the following
conditions are satisfied:

(1) G∗ = (V,X) is a semigraph having vertex set V and edge set X,
(2) A is the nonempty set of parameters,
(3) (Q,A) is a soft set over V ,
(4) (W,A) is a soft set over Xp,
(5) H(a) = (Q(a),W (a)) is a partial semigraph of G∗, ∀a ∈ A.

Let G∗ = (V,X) be a semigraph and G = (G∗, Q,W,A) be a soft semigraph of G∗ which
is also given by {H(x) : x ∈ A}. Then the partial semigraph H(x) corresponding to any
parameter x in A is called a p-part of the soft semigraph G. An edge present in a soft semi-
graph G of G∗ is called an f -edge. It may be a partial edge of some edge in G∗ or an edge in
G∗. A partial edge of any f -edge of a soft semigraph G is called a p-edge of G. An f -edge is
a p-edge of itself. An f -edge or a p-edge of a soft semigraph G is called an fp-edge of G.”An
example of a soft semigraph is given below. LetG∗ = (V,X) be a semigraph as given in Fig-
ure 2 having the vertex set {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14} and the edge
set {(v1, v2, v3), (v5, v6, v7), (v12, v13, v14), (v4, v8, v10, v13), (v9, v11, v14), (v2, v10), (v5, v11)}.

Figure 2. Semigraph G∗ = (V,X)

Let A = {v13, v6} ⊆ V be a set of parameters. Define Q from A to P(V ) by Q(x) =
{y ∈ V |xRy ⇔ x = y or x and y are adjacent}, ∀x ∈ A and W from A to P(Xp) by
W (x) = {mp edges < Q(x) >}, ∀x ∈ A. That is, Q(v13) = {v4, v8, v10, v12, v13, v14}
and Q(v6) = {v5, v6, v7}. Also W (v13) = {(v12, v13, v14), (v4, v8, v10, v13)} and W (v6) =
{(v5, v6, v7)}. Then H(v13) = (Q(v13),W (v13)) and H(v6) = (Q(v6),W (v6)) are partial
semigraphs of G∗ as shown below in Figure 3. Also, (Q,A) is a soft set over V and (W,A)
is a soft set over Xp. Hence G = {H(v13), H(v6)} is a soft semigraph of G∗.

2.4. Degrees Associated with Soft Semigraphs. George, Jose and Thumbakara [13,
16] defined various types of degrees associated with soft semigraphs as follows: “Let H(x)
be any p-part of the soft semigraph G and let v be any vertex in H(x). Then the p-part
degree of v in H(x) denoted by deg v[H(x)] is defined as the number of f -edges having
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Figure 3. Soft Semigraph G = {H(v13), H(v6)}

v as an end vertex in H(x). Degree of a vertex v in a soft semigraph G, denoted by
deg v is defined as deg v = max{deg v[H(x)] : x ∈ A}, where deg v[H(x)] denotes the
p-part degree of v in H(x). The p-part end degree of v in H(x) denoted by degepv[H(x)]
is defined as the number of f -edges having v as an end vertex or partial end vertex in
H(x). End degree of a vertex v in a soft semigraph G, denoted by degepv is defined as
degepv = max{degepv[H(x)] : x ∈ A}, where degepv[H(x)] denotes the p-part end degree
of v in H(x). The p-part edge degree of v in H(x) denoted by degev[H(x)] is defined
as the number of f -edges containing v in H(x). Edge degree of a vertex v in a soft
semigraph G, denoted by degev is defined as degev = max{degev[H(x)] : x ∈ A}, where
degev[H(x)] denotes the p-part edge degree of v in H(x). The p-part adjacent degree of
v in H(x) denoted by degav[H(x)] is defined as the number of vertices adjacent to v in
H(x). Adjacent degree of a vertex v in a soft semigraph G, denoted by degav is defined
as degav = max{degav[H(x)] : x ∈ A}, where degav[H(x)] denotes the p-part adjacent
degree of v in H(x). The p-part consecutive adjacent degree of v in H(x) denoted by
degcav[H(x)] is defined as the number of vertices consecutively adjacent to v in H(x).
Consecutive adjacent degree of a vertex v in a soft semigraph G, denoted by degcav is
defined as degcav = max{degcav[H(x)] : x ∈ A}, where degcav[H(x)] denotes the p-part
consecutive adjacent degree of v in H(x)”.

2.5. Graphs Associated with Soft Semigraphs. George, Jose and Thumbakara [13]
defined various types of graphs associated with soft semigraphs as follows: “The end vertex
graph Ge of the soft semigraph G is given by Ge = {H(x)e : x ∈ A} where H(x)e is a
graph having vertex set Q(x) and two vertices u and v in H(x)e are adjacent if they are the
end vertices or a partial end vertices of an f -edge containing these vertices in the p-part
H(x). H(x)e is called p-part end vertex graph of H(x). The consecutive adjacency graph
Gca of the soft semigraph G is given by Gca = {H(x)ca : x ∈ A} where H(x)ca is a graph
having vertex set Q(x) and two vertices in H(x)ca are adjacent if they are consecutively
adjacent in the p-part H(x). H(x)ca is called p-part consecutive adjacency graph of H(x).
The adjacency graph Ga of the soft semigraph G is given by Ga = {H(x)a : x ∈ A} where
H(x)a is a graph having vertex set Q(x) and two vertices in H(x)a are adjacent if they
are adjacent in the p-part H(x). H(x)a is called p-part adjacency graph of H(x)”.
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3. Complete and Strongly Complete Soft Semigraphs

In this section, we explore the concepts of completeness within the framework of soft
semigraphs. We introduce the definitions of complete and strongly complete soft semi-
graphs, essential for understanding the structural properties of soft semigraphs. These def-
initions help to distinguish between various levels of completeness and connectivity within
the soft semigraph. We also establish the relationship between complete and strongly
complete soft semigraphs, illustrating their differences with examples. Furthermore, we
introduce specific notations for these soft semigraph structures to facilitate their identifi-
cation and analysis in subsequent discussions.

Definition 3.1. Let G∗ = (V,X) be a semigraph and G = (G∗, Q,W,A) be a soft semi-
graph of G∗ which is also given by {H(x) : x ∈ A}. Let H(x) be any p-part of G for some
x in A. Then H(x) is called a complete p-part if the p-part H(x) is a complete partial
semigraph of G∗. That is, any two vertices in H(x) are adjacent.

Definition 3.2. A soft semigraph G given by {H(x) : x ∈ A} is called a complete soft
semigraph if H(x) is a complete p-part for all x in A.

Example 3.1. Let G∗ = (V,X) be a semigraph as given in Figure 4 having the vertex set
{v1, v2, v3, v4, v5, v6, v7, v8, v9} and the edge set {(v1, v2, v3), (v2, v4, v6), (v4, v5), (v6, v7), (v6,
v8), (v6, v9), (v7, v8, v9)}.

Figure 4. Semigraph G∗ = (V,X)

Let A = {v1, v8} ⊆ V be a set of parameters. Define Q from A to P(V ) by Q(x) = {y ∈
V |xRy ⇔ x = y or x and y are adjacent},∀x ∈ A and W from A to P(Xp) by W (x) =
{mp edges < Q(x) >},∀x ∈ A. That is, Q(v1) = {v1, v2, v3} and Q(v8) = {v6, v7, v8, v9}.
Also W (v1) = {(v1, v2, v3)} and W (v8) = {(v6, v7), (v6, v8), (v6, v9), (v7, v8, v9)}. Then
H(v1) = (Q(v1),W (v1)) and H(v8) = (Q(v8),W (v8)) are partial semigraphs of G∗ as
shown below in Figure 5. Also, (Q,A) is a soft set over V and (W,A) is a soft set over
Xp. Hence G = {H(v1), H(v8)} is a soft semigraph of G∗. Here, in H(v1) and H(v8), any
two vertices are adjacent. Therefore, H(v1) and H(v8) are complete p-parts of G. So, G
is a complete soft semigraph.

Definition 3.3. Let G∗ = (V,X) be a semigraph and G = (G∗, Q,W,A) be a soft semi-
graph of G∗ which is also given by {H(x) : x ∈ A}. Let H(x) be any p-part of G for some
x in A. Then H(x) is called a strongly complete p part if the p-part H(x) is a strongly
complete partial semigraph of G∗. That is, H(x) is complete and every vertex in H(x) is
an end vertex of an f -edge in H(x).

Definition 3.4. A soft semigraph G given by {H(x) : x ∈ A} is called a strongly complete
soft semigraph if H(x) is a strongly complete p-part for all x in A.
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Figure 5. Soft Semigraph G = {H(v1), H(v8)}

Example 3.2. Let G∗ = (V,X) be a semigraph as given in Figure 6 having the vertex set
{v1, v2, v3, v4, v5, v6, v7, v8} and the edge set {(v1, v2), (v2, v3), (v2, v4), (v1, v4, v3), (v4, v5, v6),
(v4, v7, v8), (v5, v7), (v5, v8), (v7, v6), (v6, v8)}.

Figure 6. Semigraph G∗ = (V,X)

Let A = {v2, v6} ⊆ V be a set of parameters. Define Q from A to P(V ) by Q(x) =
{y ∈ V |xRy ⇔ x = y or x and y are adjacent},∀x ∈ A and W from A to P(Xp) by
W (x) = {mp edges < Q(x) >},∀x ∈ A. That is, Q(v2) = {v1, v2, v3, v4} and Q(v6) =
{v4, v5, v6, v7, v8}. Also W (v2) = {(v1, v2), (v2, v3), (v2, v4), (v1, v4, v3)} and W (v6) = {(v4,
v5, v6), (v4, v7, v8), (v5, v7), (v5, v8), (v7, v6), (v6, v8)}. Then H(v2) = (Q(v2),W (v2)) and
H(v6) = (Q(v6),W (v6)) are partial semigraphs of G∗ as shown below in Figure 9. Also,
(Q,A) is a soft set over V and (W,A) is a soft set over Xp. Hence G = {H(v2), H(v6)}
is a soft semigraph of G∗. Here, in H(v2) and H(v6), any two vertices are adjacent (i.e.,
H(v2) and H(v6) are complete p-parts of G) and every vertex in H(v1) and H(v6) are end
vertex of an f -edge in the corresponding p-part. That is, H(v1) and H(v6) are strongly
complete p-parts of G. So, G = {H(v2), H(v6)} is a strongly complete soft semigraph.

Remark 3.1. Every strongly complete soft semigraphs are complete. But the converse
need not be true. For example, the complete soft semigraph G given in Figure 5 is not
strongly complete since the p-part H(v1) of G is not a strongly complete p-part. Here, v2
is not an end vertex of any f -edge in H(v1).

Remark 3.2. A complete p-part on m vertices can be denoted by Cm. If it is a strongly
complete p-part on m vertices, it can be denoted by Cs

m. If G is a complete soft semigraph
having r complete p-parts Cm1, Cm2, . . . , Cmr, then G can be denoted by Km1,m2,...,mr =
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Figure 7. Soft Semigraph G = {H(v2), H(v6)}

{Cm1 , Cm2 , . . . , Cmr}. If G is a strongly complete soft semigraph having r strongly complete
p-parts Cm

s
1, Cm

s
2, . . . , Cm

s
r, then G can be denoted by Ks

m1,m2,...,mr
= {Cs

m1
, Cs

m2
, . . . , Cs

mr
}.

A strongly complete p-part having m vertices with one f -edge of cardinality m− 1 and all
other f -edges of cardinality two can be denoted by Cm−1

m where the cardinality of an f -edge
means the number of vertices in an f -edge. A strongly complete soft semigraph G can be
denoted as Km1−1,m2−1,...,mr−1

m1,m2,...,mr if its strongly complete p-parts are Cm1−1
m1

, Cm2−1
m2

, . . . ,

and Cmr−1
mr

.

4. Some Properties of Strongly Complete Soft Semigraphs in the form
Km1−1,m2−1,...,mr−1

m1,m2,...,mr

In this section, we investigate several key properties of strongly complete soft semi-
graphs, specifically those denoted in the form Km1−1,m2−1,...,mr−1

m1,m2,...,mr . Through a series of
theorems, we quantify various aspects of these structures, such as the total number of
f -edges, and various types of degrees associated with vertices. We examine the adjacent
degree, consecutive adjacent degree, end degree, and edge degree within these semigraphs,
providing precise formulations for the sum of these degrees. These results offer a deeper
understanding of the intricate relationships and characteristics that define strongly com-
plete soft semigraphs.

Theorem 4.1. Total number of f -edges in the strongly complete soft semigraph
Km1−1,m2−1,...,mr−1

m1,m2,...,mr is
∑r

i=1mi.

Proof. The strongly connected complete p-parts ofKm1−1,m2−1,...,mr−1
m1,m2,...,mr are Cm1−1

m1
, Cm2−1

m2
,

. . . , and Cmr−1
mr

. Take an arbitrary p-part Cmi−1
mi

. Here one f -edge E1 of Cmi−1
mi

is of
cardinality mi − 1 and all other f -edges are of cardinality two. There is only one vertex
vi in Cmi−1

mi
, which is different from the mi − 1 vertices contained in E1. Since Cmi−1

mi
is

complete, vi is adjacent to these mi−1 vertices through mi−1 f -edges of cardinality two.
Since Cmi−1

mi
is a partial semigraph, no more edge is possible. So, total number of f -edges

in Cmi−1
mi

is mi − 1 + 1 = mi, for i = 1, 2, . . . , r. Therefore, the total number of edges in

Km1−1,m2−1,...,mr−1
m1,m2,...,mr is m1 +m2 + . . .+mr =

∑r
i=1mi =

∑r
i=1mi. □

Theorem 4.2. Consider a strongly complete soft semigraph Km1−1,m2−1,...,mr−1
m1,m2,...,mr . Then

r∑
i=1

∑
v∈V (C

mi−1
mi

)

degav[C
mi−1
mi

] =
r∑

i=1

mi(mi − 1),
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where V (Cmi−1
mi

) represents the vertex set of the strongly complete p-part Cmi−1
mi

and

degav[C
mi−1
mi

] represents the p-part adjacent degree of the vertex v in Cmi−1
mi

.

Proof. Consider the strongly complete soft semigraphKm1−1,m2−1,...,mr−1
m1,m2,...,mr given by {Cm1−1

m1
,

Cm2−1
m2

, . . . , Cmi−1
mi

}. Take any strongly complete p-part Cmi−1
mi

for some i = 1, 2, . . . , r. In

Cmi−1
mi

there is one f -edge E of cardinality mi − 1 and mi − 1 f -edges of cardinality two.

There is only one vertex vi in Cmi−1
mi

other than the mi−1 vertices contained in the f -edge
E. Each vertex ui in E is adjacent to mi − 2 other vertices in E and to the vertex vi. So,
the p-part adjacent degree of each vertex contained in E is mi−2+1 = mi−1. Therefore,
these mi − 1 vertices give (mi − 1)(mi − 1) to the sum of p-part adjacent degrees. Also,
the vertex vi is adjacent to the mi − 1 vertices in E. So, its p-part adjacent degree is also
mi − 1. Therefore,∑
v∈V (C

mi−1
mi

)

degav[C
mi−1
mi

] = (mi−1)(mi−1)+(mi−1) = (mi−1)[(mi−1)+1] = mi(mi−1).

This is true for each strongly complete p-part Cmi−1
mi

, i = 1, 2, . . . , r. Hence,

r∑
i=1

∑
v∈V (C

mi−1
mi

)

degav[C
mi−1
mi

] =

r∑
i=1

mi(mi − 1).

□

Theorem 4.3. Let v be any vertex of the strongly complete soft semigraph
Km1−1,m2−1,...,mr−1

m1,m2,...,mr . Then degav = max{(mi − 1) : v ∈ V (Cmi−1
mi

), i = 1, 2, . . . , r}.

Proof. From the proof of Theorem 2, it is clear that all vertices in the strongly complete p-
part Cmi−1

mi
have p-part adjacent degreemi−1. So, to find the adjacent degree of a vertex v

in the strongly complete soft semigraph Km1−1,m2−1,...,mr−1
m1,m2,...,mr , we have to find the maximum

of p-part adjacent degrees of v among all strongly complete p-parts which contains the
vertex v. Therefore, degav = max{(mi − 1) : v ∈ V (Cmi−1

mi
), i = 1, 2, . . . , r}. □

Theorem 4.4. In a strongly complete soft semigraph Km1−1,m2−1,...,mr−1
m1,m2,...,mr ,

r∑
i=1

∑
v∈V (C

mi−1
mi

)

degcav[C
mi−1
mi

] =
r∑

i=1

(4mi − 6),

where degcav[C
mi−1
mi

] represents the p-part consecutive adjacent degree of the vertex v in

Cmi−1
mi

.

Proof. Take any strongly complete p-part Cmi−1
mi

of Km1−1,m2−1,...,mr−1
m1,m2,...,mr for some i =

1, 2, . . . , r. We know that Cmi−1
mi

has totally mi vertices, say v1, v2, . . . , vmi , an f -edge
of cardinality mi − 1, say E = (v1, v2, . . . , vmi−1) and mi − 1 f -edges of cardinality two
which has an end vmi (if we take the vertex which is not part of E as vmi). Then v1
and vmi−1 are consecutively adjacent to two vertices (v1 is adjacent to v2 and vmi and
vmi−1 are consecutively adjacent to vmi−2 and vmi) and vmi is consecutively adjacent to
mi − 1 vertices of E. Also, all the vertices of E other than v1 and vmi−1 are consecutively
adjacent to two vertices of E and vmi . That is, the (mi − 3) vertices of the f -edge E are
consecutively adjacent to three vertices each. Therefore,∑
v∈V (C

mi−1
mi

)

degcav[C
mi−1
mi

] = 2×2+(mi−1)+(mi−3)×3 = 4+mi−1+3mi−9 = 4mi−6.
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This is true for all Cmi−1
mi

, i = 1, 2, . . . , r.. Therefore,

r∑
i=1

∑
v∈V (C

mi−1
mi

)

degcav[C
mi−1
mi

] =

r∑
i=1

(4mi − 6).

□

Theorem 4.5. In a strongly complete soft semigraph Km1−1,m2−1,...,mr−1
m1,m2,...,mr ,

r∑
i=1

∑
v∈V (C

mi−1
mi

)

degepv[C
mi−1
mi

] =
r∑

i=1

2mi,

where degepv[C
mi−1
mi

] represents the p-part end degree of the vertex v in Cmi−1
mi

.

Proof. Consider the strongly complete soft semigraphKm1−1,m2−1,...,mr−1
m1,m2,...,mr given by {Cm1−1

m1
,

Cm2−1
m2

, . . . , Cmi−1
mi

}. Take any strongly complete p-part Cmi−1
mi

for some i = 1, 2, . . . , r. We

know that Cmi−1
mi

has an f -edge E of cardinality mi − 1 and mi − 1 edges of cardinality

two. There is only one vertex vmi in Cmi−1
mi

which is not contained in the f -edge E. Then,
the two end vertices of the edge E say, v1 and vmi−1 are the end vertices or partial end
vertices of 2 f -edges each, one is the f -edge E and the other is the f -edge from vmi to
them. Other mi − 3 vertices in the edge are the end vertices or partial end vertices of one
f -edge each which is the f -edge from the vertex vmi to these mi − 3 vertices. Also vmi is
the end vertex or partial end vertex of mi − 1 f -edges which are the f -edges from vmi to
the mi − 1 vertices of E. Therefore,∑
v∈V (C

mi−1
mi

)

degepv[C
mi−1
mi

] = 2× 2 + (mi − 3) + (mi − 1) = 4 +mi − 3 +mi − 1 = 2mi.

This is true for all Cmi−1
mi

, i = 1, 2, . . . , r.. Hence,

r∑
i=1

∑
v∈V (C

mi−1
mi

)

degepv[C
mi−1
mi

] =

r∑
i=1

(2mi).

□

Theorem 4.6. Consider a strongly complete soft semigraph Km1−1,m2−1,...,mr−1
m1,m2,...,mr . Then

r∑
i=1

∑
v∈V (C

mi−1
mi

)

degev[C
mi−1
mi

] =
r∑

i=1

(3mi − 3),

where degev[C
mi−1
mi

] represents the p-part edge degree of the vertex v in Cmi−1
mi

.

Proof. Consider any strongly complete p-part Cmi−1
mi

of Km1−1,m2−1,...,mr−1
m1,m2,...,mr for some i =

1, 2, . . . , r. In Cmi−1
mi

, we have an f -edge E containing mi−1 vertices, say v1, v2, . . . , vmi−1

and another vertex vmi which is not contained in E. There is also mi − 1 f -edges of
cardinality two from vmi to the mi − 1 vertices in E. So, each vertex vi in E, i =
1, 2, . . . ,mi − 1, is the part of two f -edges, one is E and the other is the f -edge to vmi .
Also, there are mi − 1 edges which contains vmi . Therefore,∑

v∈V (C
mi−1
mi

)

degev[C
mi−1
mi

] = 2× (mi − 1) + (mi − 1) = 3(mi − 1) = 3mi − 3.
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This is true for all Cmi−1
mi

, i = 1, 2, . . . , r.. Hence,

r∑
i=1

∑
v∈V (C

mi−1
mi

)

degev[C
mi−1
mi

] =
r∑

i=1

(3mi − 3).

□

Example 4.1. Let G∗ = (V,X) be a semigraph as given in Figure 8 having the vertex set
{v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14} and the edge set {(v1, v2, v3), (v1, v4), (v2,
v4), (v3, v4), (v4, v6, v10), (v5, v6, v8), (v7, v8, v9), (v10, v11), (v10, v12), (v10, v13), (v10, v14), (v11,
v12, v13, v14)}.

Figure 8. Semigraph G∗ = (V,X)

Let A = {v2, v12} ⊆ V be a set of parameters. Define Q from A to P(V ) by Q(x) =
{y ∈ V |xRy ⇔ x = y or x and y are adjacent},∀x ∈ A and W from A to P(Xp) by
W (x) = {mp edges < Q(x) >},∀x ∈ A. That is, Q(v2) = {v1, v2, v3, v4} and Q(v12) =
{v10, v11, v12, v13, v14}. Also W (v2) = {(v1, v2, v3), (v1, v4), (v2, v4), (v3, v4)} and W (v12) =
{(v10, v11), (v10, v12), (v10, v13), (v10, v14), (v11, v12, v13, v14)}. Then H(v2) = (Q(v2),W (v2))
and H(v12) = (Q(v12),W (v12)) are partial semigraphs of G∗ as shown below in Fig-
ure 9. Also, (Q,A) is a soft set over V and (W,A) is a soft set over Xp. Hence
G = {H(v2), H(v12)} is a soft semigraph of G∗.

Figure 9. Soft Semigraph G = {H(v2), H(v12)}

Here, in H(v2) and H(v12), any two vertices are adjacent (i.e., H(v2) and H(v12) are
complete p-parts of G) and every vertex in H(v1) and H(v12) are end vertex of an f -edge
in the corresponding p-part. That is, H(v1) and H(v12) are strongly complete p-parts of
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G. So, G = {H(v2), H(v12)} is a strongly complete soft semigraph. Also, in H(v2) there
is exactly one f -edge of cardinality 3 and all other f -edges are of cardinality 2 and H(v2)
has totally 4 vertices. Therefore, H(v2) is C

3
4 . Here, H(v12) has totally 5 vertices, exactly

one f -edge of cardinality 4, and all other f -edges are of cardinality 2. So, H(v12) is C4
5 .

Hence, G = {C3
4 , C

4
5}. Therefore, G can be denoted as K3,4

4,5 . Let us verify the above results
in this strongly complete soft semigraph.

Here, m1 = 4,m2 = 5, r = 2. We have the total number of f -edges in K3,4
4,5 =

∑r
i=1mi =∑2

i=1mi = m1 +m2 = 4 + 5 = 9.
Let us find the p-part adjacent degrees. Here, degav1[C

3
4 ] = 3, degav2[C

3
4 ] = 3, degav3[C

3
4 ]

= 3, degav4[C
3
4 ] = 3, degav10[C

4
5 ] = 4, degav11[C

4
5 ] = 4, degav12[C

4
5 ] = 4, degav13[C

4
5 ] = 4,

and degav14[C
4
5 ] = 4. Then

r∑
i=1

∑
v∈V (C

mi−1
mi

)

degav[C
mi−1
mi

] = (3 + 3 + 3 + 3) + (4 + 4 + 4 + 4 + 4) = 12 + 20 = 32.

Also,
r∑

i=1

mi(mi − 1) =

2∑
i=1

mi(mi − 1) = 4× 3 + 5× 4 = 12 + 20 = 32.

That is,
r∑

i=1

∑
v∈V (C

mi−1
mi

)

degav[C
mi−1
mi

] =
r∑

i=1

mi(mi − 1).

Also, we can see that degav = max{(mi − 1) : v ∈ V (Cmi−1
mi

), i = 1, 2, . . . , r}.
The p-part consecutive adjacent degrees are degcav1[C

3
4 ] = 2, degcav2[C

3
4 ] = 3, degcav3[C

3
4 ]

= 2, degcav4[C
3
4 ] = 3, degcav10[C

4
5 ] = 4, degcav11[C

4
5 ] = 2, degcav12[C

4
5 ] = 3, degcav13[C

4
5 ] =

3, and degcav14[C
4
5 ] = 2. Then

r∑
i=1

∑
v∈V (C

mi−1
mi

)

degcav[C
mi−1
mi

] = (2 + 3 + 2 + 3) + (4 + 2 + 3 + 3 + 2) = 10 + 14 = 24.

Also,

r∑
i=1

(4mi − 6) =
2∑

i=1

(4mi − 6) = (4m1 − 6) + (4m2 − 6) = 10 + 14 = 24.

That is,
r∑

i=1

∑
v∈V (C

mi−1
mi

)

degcav[C
mi−1
mi

] =
r∑

i=1

(4mi − 6).

The p-part end degrees are degepv1[C
3
4 ] = 2, degepv2[C

3
4 ] = 1, degepv3[C

3
4 ] = 2, degepv4[C

3
4 ]

= 3, degepv10[C
4
5 ] = 4, degepv11[C

4
5 ] = 2, degepv12[C

4
5 ] = 1, degepv13[C

4
5 ] = 1, and

degepv14[C
4
5 ] = 2. Then

r∑
i=1

∑
v∈V (C

mi−1
mi

)

degepv[C
mi−1
mi

] = (2 + 1 + 2 + 3) + (4 + 2 + 1 + 1 + 2) = 8 + 10 = 18.

Also,
r∑

i=1

(2mi) =
2∑

i=1

(2mi) = 2m1 + 2m2 = 8 + 10 = 18.
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That is,
r∑

i=1

∑
v∈V (C

mi−1
mi

)

degepv[C
mi−1
mi

] =

r∑
i=1

(2mi).

The p-part edge degrees are degev1[C
3
4 ] = 2, degev2[C

3
4 ] = 2, degev3[C

3
4 ] = 2, degev4[C

3
4 ]

= 3, degev10[C
4
5 ] = 4, degev11[C

4
5 ] = 2, degev12[C

4
5 ] = 2, degev13[C

4
5 ] = 2, and degev14[C

4
5 ]

= 2. Then
r∑

i=1

∑
v∈V (C

mi−1
mi

)

degev[C
mi−1
mi

] = (2 + 2 + 2 + 3) + (4 + 2 + 2 + 2 + 2) = 9 + 12 = 21.

Also,
r∑

i=1

(3mi − 3) =
2∑

i=1

(3mi − 3) = (3m1 − 3) + (3m2 − 3) = 9 + 12 = 21.

That is,
r∑

i=1

∑
v∈V (C

mi−1
mi

)

degev[C
mi−1
mi

] =
r∑

i=1

(3mi − 3).

Theorem 4.7. Let G∗ = (V,X) be a semigraph and G = (G∗, Q,W,A) be a soft semigraph
of G∗ given by {H(x) : x ∈ A}. Then G is a complete soft semigraph if and only if its
p-part adjacency graph H(x)ca is complete for all x ∈ A.

Proof. Suppose that G = {H(x) : x ∈ A} is a complete soft semigraph. Then H(x) will
a complete p-part of G for all x in A. That is, any two vertices in H(x) are adjacent for
all x in A. Then, if we draw H(x)a, there will be an edge connecting any two vertices in
H(x) for all x in A. That is, H(x)a is a complete graph for all x in A.

Conversely, assume that p-part adjacency graph H(x)a is complete for all x in A. That
is, any two vertices in H(x)a are connected by an edge for all x in A. Therefore, every
vertex in H(x) is adjacent, for all x in A. That is H(x) is a complete p-part for all x in
A. Hence, G = {H(x) : x ∈ A} is a complete soft semigraph. □

5. conclusion

This paper has introduced and explored the concepts of complete and strongly complete
soft semigraphs, contributing significantly to the field of soft set theory and semigraph the-
ory. By defining these structures and analyzing their properties, particularly in the form
Km1−1,m2−1,...,mr−1

m1,m2,...,mr we have provided a deeper understanding of their mathematical un-
derpinnings. The detailed examination of various degrees and the total number of f -edges
has elucidated the intricate nature of strongly complete soft semigraphs. These findings
enhance the theoretical framework of soft semigraphs, offering new avenues for research
and potential applications in areas requiring parameter management and uncertainty han-
dling. The results presented in this paper lay a robust foundation for further investigations
into the complexities of soft semigraphs.
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