
TWMS J. App. and Eng. Math. V.15, N.8, 2025, pp. 1996-2006

CONVERGENCE OF CLIFFORD JACOBI WAVELETS IN Lp-NORM

AND SHORT TIME FOURIER TRANSFORM

D. KUMAR1∗, §

Abstract. We have developed an approximate identity and studied the convergence of
Clifford-Gegenbauer-Jacobi polynomials and their associated wavelets in Lp-sense. Ad-
ditionally, the convergence of short-time Clifford Fourier transform in Feichtinger space
will be studied. This study aims to extend prior findings in wavelet and Fourier analy-
sis within the framework of Clifford analysis, addressing gaps in function reconstruction
beyond L2 spaces and utilizing approximate identities.
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1. Introduction

It has been noted in [20] that wavelets are valuable tools in signal processing compared
to Fourier analysis. Also, wavelets play a significant role in many fields, including electrical
engineering, image processing, quantum physics, seismology, geology, and mathematics.
Classical Fourier analysis employs a global approach to signal analysis. It replaces the
analyzed function over the entire space, while in wavelet analysis the signal is decomposed
in both time and frequency which describes it locally and globally as required.

The wavelets are generated by a single function g ∈ L2(R) by dilation and translation
with dilation parameter a > 0 and translation parameter b ∈ R and defined as

ga,b(x) = a−
1
2 g(

x− b

a
).

The single function g is known as mother wavelet which satisfies the admissibility condition
as

Cg =

∫ ∞

−∞

|ĝ(u)|2

|u|
du < +∞,
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where ĝ denotes the Fourier transform of g.
The continuous wavelet transform is defined by

Wg(f) =< f, ga,b >=

∫
R
f(x)ga,b(x)dx.

If the admissibility condition satisfied, then the analyzed function f may be reconstructed
in L2-sense (see [23, 24])

f(x) =
1

Cg

∫
R

∫ ∞

0
Wg(f)ga,b(x)

da

a2
db.

Clifford analysis deals with monogenic functions which are higher dimensional general-
izations of holomorphic functions in complex plane. Wavelet analysis on the real line and
in Euclidean spaces has been extended within the frame work of Clifford analysis (see [21,
8-13, 18, 22]).

Moreover, it is a generalization of the complex analysis and Hamiltonians and extends
to some type of finite dimensional associative algebra known as Clifford algebra endowed
with inner products and norms.

Although, the Clifford analysis generalizes the most important features of classical com-
plex analysis, monogenic functions do not satisfies all properties of holomorphic functions
of complex variables. Since Clifford algebras are non-commutative, the product of two
monogenic functions is in general is not monogenic.There are several techniques to gen-
erate monogenic functions such as the Cauchy-Kowalevski extension (CK-extension) (see
[30]).

Arfaoui et al. [3] developed new classes of Clifford wavelet functions. Such classes
contain the well known Jacobi, Gegenbauer and Hermite ones. The constructed poly-
nomials are applied to develop new Clifford wavelets. Additionally, reconstruction and
Fourier-Plancherel formulas have also been proven.

Banouch and Ben Mabrouk [5] investigated the development of a new uncertainty princi-
ple based on the wavelet transform in the Clifford analysis/algebra framework. Moreover,
they developed a sharp Heisenberg-type uncertainty principle for the continuous Clifford
wavelet transform.

Recently, Arfaoui and Ben Mabrouk [2] introduced new classes of wavelet functions by
extending some fractional calculus to the framework of Clifford analysis. Some classes
of monogenic polynomials are provided which extend the classical Jacobi polynomials in
the context of Clifford analysis. Additionally, they proved the reconstruction formula and
the Fourier-Plancherel rule. In the present paper, our methods and results differ from all
those discussed above.

Let Ω be an open subset of Rm or Rm+1 and f : Ω → A, where A is the real Clifford
algebra Rm (or Cm), can be written in the form (see [1], pp. 2291)

f =
∑
A

fAeA,

where eA is a suitable basis of A and the functions fA are R (or C)-valued.
The real space Rm, (m ≥ 2)(or Cm) endowed with an orthonormal basis (e1, . . . , em).

Throughout this paper, we consider e2j = −1, j = 1, . . . ,m, ejek + ekej = 0, j ̸= k, j,
k = 1, . . . ,m, and eϕ = 1.
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The Euclidean space Rm is embedded in the Clifford algebras Rm (or Cm) by the vector
x = (x1, . . . , xm) with the vector x given by

x =
m∑
j=1

ejxj .

The product of two vectors is defined as

xy = x.y + x ∧ y,
where

x.y = − < x, y >= −
m∑
j=1

xjyj , x ∧ y =
m∑
j=1

m∑
k=j+1

ejek(xjyk − xkyj).

We define

x2 = − < x, x >= −|x|2.
The Clifford Fourier transform of an analyzing function f is defined as (see [1], pp. 2290)

F (f(x))(y) =

∫
Rm

e−i<x,y>f(x)dv(x),

where dv(x) is the Lebesgue measure on Rm.
The inner product of functions in the framework of Clifford analysis is defined by

< f, g >=

∫
Rm

f(x)g(x)dv(x).

2. Definitions and Auxiliary Results

We will use the following operators throughout the paper.
Translation: Tbf(x) = f(x− b) for b ∈ Rm.

Modulation: Ewf(x) = e2πi<w,x>f(x) for w ∈ Rm.

Dilation: Daf(x) = |a|−
1
2 f(xa ) for a ∈ R \ {0}.

We denote the two parameters Clifford-Jacobi polynomials by Zα,β
l,m (x). These polyno-

mials are generated by the weight function (see [19], pp. 2295)

wα,β(x) = (1− |x|2)α(1 + |x|2)β.
For more details about these polynomials (see [8-13]).

Definition 2.1 (Clifford-Jacobi Mother Wavelet). The generalized 2-parameters Clifford-
Jacobi mother wavelet (see [1], pp. 2299) is defined by

ϕα,βl,m(x) = Zα+l,β+l
l,m (x)wα,β(x).

Definition 2.2 (Clifford-Jacobi Wavelet Transform). The continuous Clifford-Jacobi wavelet
transform of a function f ∈ L2(Rm) (see [1], pp. 2301) is defined by

Wa,b(f) =< f, ϕ
α,β,b
l,m,a >=

∫
Rm

f(x)ϕ
α,β,b
l,m,a(x)dv(x) =< f,DaTbϕ

α,β
l,m > .

The mother wavelet ϕα,βl,m(x) satisfies the admissibility condition

Cα,β
l,m =

1

wm

∫
Rm

|ϕ̂α,βl,m(x)|2dv(x)
|x|m

<∞,
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where wm is the volume of the unit sphere Sm−1 in Rm and ϕ̂α,βl,m denote the Fourier

transform of ϕα,βl,m. For more about admissibility and wavelet properties (see [1, 15, 16, 27,

30]).

Following the approach in [9, pp. 402], it can be proven that if the admissibility condi-
tion satisfied, then the function f may be reconstructed in the L2-sense

f(x) =
1

Cα,β
l,m

∫
Rm

∫
a>0

Wa,b(f)ϕ(
x− b

a
)
dadv(b)

am+1
. (2.1)

The formula (2.1) is true in L2-sense but if f ∈ L1(Rm) or Lp(Rm), p ̸= 2, 1 ≤ p < ∞,
then the function f may not be reconstructed by the formula (2.1). Therefore, in this
paper, we address this problem by using an approximate identity. Finally, we discuss the
convergence of the short-time Clifford Fourier transform in Feichtinger space.

Definition 2.3. Let ψα,β
l,m ∈ L1(Rm) such that

∫
Rm ψ

α,β
l,m (x)dv(x) = 1. Then (ψα,β

l,m )ε(x) =

ε−mψα,β
l,m (xε ) is an approximate identity if

(1)
∫
Rm(ψ

α,β
l,m )ε(x)dv(x) = 1,

(2) supε>0

∫
Rm |(ψα,β

l,m )ε(x)|dv(x) <∞,

(3) limε→0

∫
|x|>δ |(ψ

α,β
l,m )ε(x)|dv(x) = 0, for every δ > 0 .

To prove (1) and (2), we see that∫
Rm

(ψα,β
l,m )ε(x)dv(x) =

∫
Rm

ε−mψα,β
l,m (

x

ε
)dv(x) =

∫
Rm

ψα,β
l,m (

x

ε
)dv(

x

ε
) = 1,

so

sup
ε>0

∫
Rm

|(ψα,β
l,m )ε(x)|dv(x) <∞.

In order to prove (3), we have∫
|x|>δ

|(ψα,β
l,m )ε(x)|dv(x) =

∫
|x|>δ

ε−m|ψα,β
l,m (

x

ε
)|dv(x) =

∫ ∞

δ
ε−m|ψα,β

l,m (
x

ε
)|dv(x)

+

∫ −δ

−∞
ε−m|ψα,β

l,m (
x

ε
)|dv(x),

let x
ε = u, then

lim
ε→0

∫ ∞

δ
ε

|ψα,β
l,m (u)|dv(u) +

∫ − δ
ε

−∞
|ψα,β

l,m (u)|dv(u) = 0.

Definition 2.4. Let ψα,β
l,m (x) ∈ L1(Rm) with ψα,β

l,m (0) = 1 and (ψα,β
l,m )n(x) = nψα,β

l,m (nx),

where n = 1
ε as n → ∞, ε → 0. Then the sequence of functions {(ψα,β

l,m )n}∞n=1 is an

approximate identity if

(1′)
∫
Rm(ψ

α,β
l,m )n(x)dv(x) = 1,∀n,

(2′) supn
∫
Rm |(ψα,β

l,m )n(x)|dv(x) <∞,

(3′) limn→∞
∫
|x|>δ |(ψ

α,β
l,m )n(x)|dv(x) = 0, for every δ > 0.

Consider the Schwartz class S(Rm) such that

S(Rm) = {f : Rm → Rm, sup
x∈Rm

(xn
dη

dxη
f)(x) <∞};n, η ∈ N ∪ {0}.
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Definition 2.5. We define the Lebesgue space

Lp(Rm) = {f :∥ f ∥p= (

∫
Rm

|f(x)|pdv(x))
1
p <∞, 1 ≤ p <∞}.

For p = ∞, we have

L∞(Rm) = {f :∥ f ∥∞= ess sup
x∈Rm

|f(x)| <∞}.

Now, we shall prove that S(Rm) ⊆ Lp(Rm), 1 ≤ p < ∞. It holds that if f ∈ S(Rm),
then |f(x)| ≤ c

1+|x|n for all x ∈ Rm. Let n ∈ N such that np− (m− 1) > 1. Then we have∫
Rm

|f(x)|pdv(x) ≤
∫
Rm

(
c

1 + |x|n
)pdv(x).

Putting x = rw, r = |x|, w ∈ Sm−1, we get∫
Rm

|f(x)|pdv(x) ≤ cp
∫ ∞

0

1

(1 + rn)p
rm−1dr

∫
Sm−1

dσ(w) = cpγm

∫ ∞

0

1

(1 + rn)p
rm−1dr

= cpγm

∫ ∞

0

rm−1

rnp + P (r)
dr = cpγm

rm

m
2F1(

m

n
, p; 1 +

m

n
;−rn)|∞0

<∞,

for m
n < p, here dσ(w) is the Lebesgue measure on unit sphere Sm−1, γm = (2π)

m
2

Γ(m
2
) is

the surface area of unit sphere in Rm and 2F1 is the hypergeometric function. Hence
f ∈ Lp(Rm).

Now, we have to prove that S(Rm) is dense in Lp(Rm). Let Ω be an open subset of Rm,
we define

D(Ω) = {ξ ∈ C∞(Ω) : supp(ξ) is compact} = C∞
0 (Ω).

For ∞ > p ≥ 1, D(Rm) is dense in Lp(Rm). It also noted that S(Rm) is a vector space
and D(Rm) ⊆ S(Rm). Now, we get

D(Rm) ⊆ S(Rm) ⊆ Lp(Rm), 1 ≤ p <∞.

The above arguments implies that S(Rm) is dense in Lp(Rm). It can be easily seen that

if f ∈ S(Rm), then Fourier transform f̂ ∈ S(Rm).

Note. If 0 ≤ ψα,β
l,m (x) ∈ S(Rm), then (ψα,β

l,m )n(x) = nψα,β
l,m (nx) is an approximate

identity.

Theorem 2.1. If f ∈ L1(Rm) and ψα,β
l,m (x) ∈ S(Rm), then (ψα,β

l,m ∗ f)(x) ∈ S(Rm).

Proof. We see that

(ψα,β
l,m ∗ f)(x) =

∫
Rm

ψα,β
l,m (y)f(x− y)dv(y),

dη

dxη
(ψα,β

l,m ∗ f)(x) =
∫
Rm

ψα,β
l,m (y)

dη

dxη
f(x− y)dv(y),

|x|n dη

dxη
(ψα,β

l,m ∗ f)(x) = |x|n
∫
Rm

f(x− y)
dη

dxη
ψα,β
l,m (y)dv(y)

=

∫
Rm

f(y)|x|n dη

dxη
ψα,β
l,m (x− y)dv(y).
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Since |x− y| ≤ |x|+ |y| ≤ 3|x|
2 , it gives

∫
|y|> |x|

2

f(y)|x|n dη

dxη
ψα,β
l,m (x− y)dv(y) +

∫
|y|< |x|

2

f(y)|x|n dη

dxη
ψα,β
l,m (x− y)dv(y) → 0.

Hence, the proof is complete. □

Theorem 2.2. Let ϕα,βl,m(x) ∈ Lp(Rm) is admissible with Cα,β
l,m = 1 and let {(ψα,β

l,m )n}∞n=1

be an approximate identity with (ψα,β
l,m )n ∈ S(Rm) and (ψα,β

l,m )n(x) = (ψα,β
l,m )n(−x)∀(ψα,β

l,m )n.

Then limn→∞ ∥ f − fn ∥p= 0, for all f ∈ Lp(Rm), 1 ≤ p <∞, where

fn(x) =

∫
Rm

∫
a>0

Wa,b(f)((ψ
α,β
l,m )n ∗DaTb(ϕ

α,β
l,m))

dadv(b)

am+1

and

f(x) =

∫
Rm

∫
a>0

Wa,b(f)DaTb(ϕ
α,β
l,m)(x)

dadv(b)

am+1
.

Proof. Consider

(f ∗ (ψα,β
l,m )n))(x) =

∫
Rm

f(u)(ψα,β
l,m )n(x− u)dx =< f, Tx(ψ

α,β
l,m )n >

=< Wa,bf,Wa,b(Tx(ψ
α,β
l,m )n) >

=

∫
Rm

∫
a>0

Wa,bf(a, b) < DaTb(ϕ
α,β
l,m), Tx(ψ

α,β
l,m )n >

dadv(b)

am+1

=

∫
Rm

∫
a>0

Wa,bf(a, b)((ψ
α,β
l,m )n ∗DaTb(ϕ

α,β
l,m))(x)

dadv(b)

am+1
.

The last term of the second line above is followed by Plancherel theorem of Clifford Jacobi

wavelet transform. We see that if ϕ
α,β,b
l,m,a(x) ∈ Lp(Rm), then ((ψα,β

l,m )n ∗ ϕα,β,bl,m,a) ∈ Lp(Rm).

Now, we consider

[ ∫
Rm

|((ψα,β
l,m )n ∗ f)(x)− f(x)|pdv(x)

] 1
p

=

[ ∫
Rm

dv(x)|
∫
Rm

(ψα,β
l,m )n(x− u)f(u)du− f(x)|p

] 1
p

.
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Putting f(x) =
∫
Rm f(x)(ψ

α,β
l,m )n(u)dv(u) in above equation, we get[ ∫

Rm

dv(x)|
∫
Rm

(ψα,β
l,m )n(u)(f(x− u)− f(x))dv(u)|p

] 1
p

≤
[ ∫

Rm

dv(x)

∫
|u|>δ

|(ψα,β
l,m )n(u)|p|f(x− u)− f(x)|pdv(u)|p

] 1
p

+

[ ∫
Rm

dv(x)

∫
|u|≤δ

|(ψα,β
l,m )n(u)|p|f(x− u)− f(x)|pdv(u)|p

] 1
p

≤
∫
|u|>δ

dv(u)|(ψα,β
l,m )n(u)|

[ ∫
Rm

dv(x)|f(x− u)− f(x)|p|p
] 1

p

+

∫
|u|≤δ

dv(u)|(ψα,β
l,m )n(u)|

[ ∫
Rm

dv(x)|f(x− u)− f(x)|p|p
] 1

p

≤
∫
|u|>δ

dv(u)|(ψα,β
l,m )n(u)|(2 ∥ f ∥p)

+

∫
|u|≤δ

dv(u)|(ψα,β
l,m )n(u)| sup

|u|<δ

[ ∫
Rm

dv(x)|f(x− u)− f(x)|p|p
] 1

p

.

The term
∫
|u|>δ dv(u)|(ψ

α,β
l,m )n(u)|(2 ∥ f ∥p) → 0 by (Def. 2.5(3′)) and

sup
|u|<δ

[ ∫
Rm

dv(x)|f(x− u)− f(x)|p|p
] 1

p

→ 0.

This implies that both terms on the right-hand side of the above inequality tend to zero.
Hence, we obtain

lim
n→∞

∥ f ∗ (ψα,β
l,m )n − f ∥p= 0,

or

lim
n→∞

∥ fn − f ∥p= 0,

for f ∈ Lp(Rm). This completes the proof of Theorem 2.8. □

3. Feichtinger Space

The Feichtinger space originally was introduced in the technical report [17]. The pop-
ularity of the Feichtinger space increased with the turn of century due to [ 20,28]. Since
then, the Feichtinger space and the more general modulation spaces have appeared in
many books, e.g., [7,14]. For more recent applications ( see [4, 6, 29]).

The Feichtinger space is a Banach space, which is dense in the space L2(Rm). The Fe-
ichtinger space S0 is much larger than Schwartz space S(Rm) and shares many properties
such as both spaces are invariant under Fourier transform and time-frequency shifts. It was
introduced by Feichtinger [18] and Reiter and Stegman [28] and proved that time-frequency
shifts and Fourier transform are isometries on S0. All members of S0 are continuous and
integrable functions. Also, the space S0 does not depend on differentiability and it is the
space of all functions on Rm which are represented in time-frequency domain by integrable
functions [19]. In problem of sampling it has been observed that there are smooth func-
tions f ∈ L2(Rm) where the samples {f(n)}n∈Z do not have any decay. For elements in
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S0 this degeneracy is no longer possible (see [26, Theorem 5.7 (ii)] ). A generic function in
L2(Rm) does not even have a continuous representative. The Schwartz functions are indi-
vidually so well-behaved that the pointwise product of f, g ∈ S(Rm) satisfies f.g ∈ S(Rm).
Te individual niceness comes at the cost of weak collective properties. There is no way
to make S(Rm) into a Banach space. Although, individual elements in S(Rm) are well-
behaved, the space S(Rm) has poor collective properties. There is a trade-off between the
collectively well-behaved L2(Rm) and individually well-behaved S(Rm). The Feichtinger
space provides a suitable spot between these two extremes.

For many purposes the short-time Fourier transform (STFT) of a signal is easier to
handle, because it depends in a linear way on the analyzed signal. The (STFT) is, in
language of applied time frequency analysis [20], a joint time-frequency depiction of f . As
such, we should suspect that elements in S0 are well-behaved both in time and frequency.
Now, we define the norm of a function f in S0 as the L

1-norm of short-time Clifford Fourier
transform Ṽg(f) with respect to Gaussian window g:

∥ f ∥S0=

∫
Rm

∫
Rm

|Ṽgf(b, w)|dv(b)dv(w),

where g(b) = e−π<b,b> and the short-time Clifford Fourier transform Ṽgf(b, w) of analyzing
function f is defined as

Ṽgf(b, w) =

∫
Rm

f(t)g(t− b)e−2π<w,t>dv(t) =< f,EwTb(g) >,

where b, w ∈ Rm. The Gaussian function g can be replaced by an arbitrary function from
S0, i.e, by the trapezoidal function, triangle function, or any Schwartz function [25]. The
compactly supported function is in S0 if and only if its Fourier transform is integrable.
Due to the Fourier invariance of S0, any integrable band limited function is in S0. We

know that if (ψα,β
l,m )ε ∈ S(Rm) then (ψ̂α,β

l,m )ε ∈ S(Rm) and S(Rm) is dense in Lp(Rm), p ≥ 1

this implies that (ψα,β
l,m )ε ∈ L1(Rm) and hence (ψα,β

l,m )ε ∈ S0.

Now, first we show that if g, f ∈ S0, then the mapping (b, w) → EwTb(g) : Rm ×
Rm → L1(Rm) is continuous. EwTb is the composition of two functions translation Tb and
modulation Ew. It is evident that Tb is continuous. To prove the continuity of Ew, we
need to show the following:

|Ew(g)− Ew′(g)| → 0, w > w′,

if |w − w′| → 0.
We have

|Ew(g)− Ew′(g)| = |
∫
Rm

(e2πi<w,t> − e2πi<w′,t>)g(t)dv(t)|

≤
∫
Rm

|(e2πi<w,t> − e2πi<w′,t>)g(t)|dv(t)

≤
∫
Rm

(1− e2πi<(w−w′),t>)g(t)|dv(t) < ε.

Since f and EwTb(g) are continuous, therefore Ṽgf(b, w) =< f,EwTb(g) > is also con-
tinuous.



2004 TWMS J. APP. ENG. MATH. V.15, N.8, 2025

Now, we prove

Theorem 3.1. Let g ∈ S0 and (ψα,β
l,m )ε be an approximate identity such that (ψα,β

l,m )ε ∈ S0

and (ψα,β
l,m )ε(b) = (ψα,β

l,m )ε(−b) for all b. Then

∥ f − (fα,βl,m )ε ∥2→ 0 as ε→ 0,

where

(fα,βl,m )ε(t) =

∫
Rm

∫
Rm

Ṽgf(b, w) < (ψα,β
l,m )ε ∗ EwTb(g) > tdv(b)dv(w),

and

f(t) =

∫
Rm

∫
Rm

Ṽgf(b, w)EwTb(g)tdv(b)dv(w).

Proof. We see that

f ∗ (ψα,β
l,m )ε(b) =

∫
Rm

f(t)(ψα,β
l,m )ε(b− t)dv(t)

=< f, Tb(ψ
α,β
l,m )ε >=< Ṽgf, Ṽg(Tb(ψ

α,β
l,m )ε) >

=

∫
Rm

∫
Rm

Ṽgf(b, w) < EwTb(g), Tb(ψ
α,β
l,m )ε > dv(b)dv(w)

=

∫
Rm

∫
Rm

Ṽgf(b, w) < ((ψα,β
l,m )ε ∗ EwTb(g))tdv(b)dv(w).

Since f ∗ (ψα,β
l,m )ε → f ∈ S0 and ((ψα,β

l,m )ε ∗EwTb(g)) → EwTb(g)) ∈ S0. Since S0 is dense

in L2(Rm), we obtain

∥ f ∗ (ψα,β
l,m )ε − f ∥2→ 0 as ε→ 0.

This completes the proof of Theorem 3.1. □

4. Practical Applications of the Work.

The Fourier transform of a time-domain signal gives the frequency-amplitude represen-
tation of the signal. The frequency spectrum of a real valued signal is always symmetric.
The information which can not be seen in the time domain can be seen in the frequency
domain. For example, the typical shape of a ECG signal (Electrocardiography, Graph-
ical recording of heart’s electrical activity) is well known to Cardiologists and they use
the time-domain ECG signals which are recorded on strip-charts to analyze these signals.
Now, computerized ECG recorders utilize the frequency information to check the patho-
logical condition. Some times the frequency content of the signal is more useful to diagnose
the existence of pathological condition. There is no frequency information is available in
the time-domain signal and no time information is available in Fourier transformed sig-
nal. The Fourier transform gives the frequency information of the signal at all time. The
Fourier transform can be used for non-stationary signals if we need only spectral com-
ponents but not interested where these occur. If we need both information then Fourier
transform is not suitable. All biological signals are non-stationary such as ECG, EEG
(Electro activity of the brain, electroencephalograph) and EMG (Electrical activity of
the muscles, electromyogram). The wavelet transform gives the time-frequency represen-
tation of the non-stationary signals. Short-time Fourier transform (STFT) also give this
information. The wavelet transform was developed as an alternative to the (STFT). In
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(STFT) the signal is divided into small enough segments where the signal can be assumed
stationary.

5. Conclusions

Arfaoui and Ben Mabrouk [2] introduced new classes of wavelet functions to the frame-
work of Clifford analysis. Some classes of monogenic polynomials are provided, which
extend the classical Jacobi polynomials in the context of Clifford analysis. They proved
the reconstruction formula and Fourier-Plancherel rule in L2 space but if f ∈ L1(Rm) or
Lp(Rm), p ̸= 2, 1 ≤ p < ∞, then the function f may not be reconstructed by the formula
given by Arfaoui and Ben Mabrouk. Therefore, in this paper we have tried to solve this
problem by using approximate identity. Also, we have discussed the convergence of short-
ime Clifford Fourier transform in Feichtinger space.

Acknowledgement. The author would like to extend their gratitude to referees for giving
fruitful comments to improve the paper.
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