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NUMERICAL SOLUTIONS OF INTEGRAL EQUATIONS USING SHIFTED
FRACTIONAL VIETA-FIBONACCI POLYNOMIALS

H. R. MARASIH2* M. A. HAMA! §

ABSTRACT. In this paper, we propose a numerical technique to find approximate solutions of generalized
Abel’s integral equations, GAIEs, of the first and second kinds, based on the use of shifted fractional
Vieta-Fibonacci polynomials. This possibility is created by establishing a relationship between the ap-
pearance of Abel’s integral equations and the definition of fractional derivatives. The method reduces
the numerical solutions of the Abel’s integral equations to a system of algebraic equations. Convergence
analysis and error bound of the proposed method are studied. The applicability and efficiency of the
given methodology are demonstrated by a considerable number of examples. These examples show the
remarkable superiority of our method.

Keywords: Singular Volterra integral equation, Generalized Abel’s integral equatio, Fractional calculus,
Vieta-Fibonacci polynomial, Collocation method.
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1. INTRODUCTION

The importance of Abel integral equation, AlEs, appeared since Abel formulated it in general and
presented its analytical solution [1]. The Abel integral equation provides an important tool in modeling of
many complex systems in basic sciences and engineering from mathematical physics, biological processes,
and mechanics [2—4].

In recent years, researchers have used many different methods, including analytical and numerical
methods [5,6], to approximate the solution of the Volterra integral equations such as Block-Pulse functions
[7,8], Laplace transform [9,10], spline collocation methods [4,11], and Taylor expansion [12]. There are also
powerful methods that use polynomials and wavelets to solve Abel integral equation: shifted Legendre
polynomials [13], Chebyshev polynomials [14], Jacobi polynomials [15,16], Hermite wavelets [17, 18],
Legendre wavelets [12,13], Haar wavelets [19,20], Boubaker wavelets [1], Bernstein wavelets [21].
Recently, Vieta-Fibonacci polynomials have been used frequently for function approximation because
of their many special properties. In fact, the existence of these special features makes working with
these polynomials easier and more effective. Such as recurrence relations defining these polynomials,
analytically representation using the power series and also this Vieta-Fibonacci polynomial has a special
property of being orthogonal in the entire domain [—2, 2], equipped with a weight function. In this article,
we use Vieta-Fibonacci polynomials for solving singular Volterra integral equations of the first and second
kinds.
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Abel integral equations in the first and second kind [22] often appears as Egs. (1) and (2), respectively:

§(z) = Jy (z =) *n(t)dt, (1)
n(t) =&(@) + Jo (@ — 1) n(t)dt, (2)
where £(z) is a continuous function and x > 0.

Generalized Abel integral equations, GAIEs, in the first and second kind [9] with same « on the interval
0 < o <1 are also given as Egs. (3) and (4), respectively:
£(z) = [y (z =)~ n(t)dt, 3)
n(t) = &) + fy (@ =)~ n(t)dt, (4)
where z > 0 and 7n(x) is the unknown function and the expression (x — ¢)~* is called Abel kernel [23].
The aim of this work is to present a new and easy-to-implement scheme for finding the approximate
solution of first and second type GAIEs based on shifted Vita-Fibonacci polynomials. We show that frac-
tional calculus plays an important role in the numerical solution of AIEs with the presented methodology.
In fact the equation can be well described in terms of fractional integrals and the main motivation of this
method is to use the properties of fractional integrals and Vita-Fibonacci polynomials for solving AIEs,
numerically. The use of Vita-Fibonacci polynomials and their properties such as orthogonality helps to
approximate the partial integral and thus, the original problem is reduced to a system of linear algebraic
equations. Numerical examples and evaluated errors show the applicability and efficiency of the method.
The outline of this article is organized as follows. In section 2, we study the main preliminaries in
fractional calculus. Moreover, in this section the shifted Vieta-Fibonacci polynomials and some of their
properties are introduced. The function approximation by using Vieta-Fibonacci polynomials and their
operational matrix of fractional integration are given in section 3. Also, description of proposed method
to solve first and second kind GAIEs is given in section 3. section 4 is dedicated to studying convergence
and error analysis of the given method. In section 5, we provide some of the numerical examples by
applying the proposed approximation method.

2. PRELIMINARIES

Definition 2.1. For constant real number r € R, a real-valued function n(x), x € RT, is said to belong to
the space C, if there exists a real number p > r such that n(x) = xPi(x) and 7(x) € C(0,00). Additionaly,
C?, for alln € NU {0}, describes the set of real-valued functions n € C, with n™ (z) € C,.

Definition 2.2. [19] Let a > 0, n(z) € C,, and r > —1 then, the Riemann-Liouville fractional integral
operator of order a is defined by:
1 x
() = oo [ (@7 (), (5)
I'(a) Jo
Due to the definition of Riemann-Liouville fractional integral by Eq. (5), obviously
rp+1)
1928 = B+a 6

holds for g > —1.

Proposition 2.1. For any constant A\ € R, the following property is satisfied for Riemann-Liouville
fractional integral operator:

I An(x) = Mg (x).
2.1. Vieta-Fibonacci Polynomials. The Vieta-Fibonacci polynomials VF n(2) are given in the interval
[—2,2] by [24]:
sin(nbx)
— (7)
sin(0z)
where = 2cos(f) and 0 < 6 < w. The nth term of the Vieta-Fibonacci polynomials can be obtained
using the following recursive formula:

VFo(z) =0, VFi(z)=1, VF,(z)=2VF, \(z)-VF, o(z), ¥Yn>2. (8)

The shifted Vieta-Fibonacci polynomials, denoted by V F,(z), are defined in the interval [0,1] and
given by recursive formula [25]:

VF,(z)=
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VFy(x)=0, VFi(z)=1, VE,(z)= 4z —-2)VF,_1(x) - VF,_a(x), Vn>2. 9)
Theorem 2.1. [26] The shifted Vieta-Fibonacci polynomials are orthogonal with respect to the weight
function w(z) = (x — 2%)* on the interval [0,1], that is:

<VF,(2),VF,(z) > :/0 w(z)VF,(2)VFp,(z)dx
{O n #m, (10)

5§ n=m#0.

2.2. Function Approxamation. A function n(x) € L2(0,1) can be written as a linear combination of
shifted Vieta-Fibonacci polynomials as follows:

n(x) = ZCZVF@(:L’% (11)

where ¢; € R. By truncating the infinite series in Eq.(11) up to order N, n(z) can be approximated as
follows:

N
n(x) =~ ZCiVFi(QT)

- (12)
~ CToy(z),
where
C1 VF1 ($)
C2 VFQ (SL’)
C=1 . ,ON(2) = . (13)
EN Nx1 VFN (‘r) Nx1
©n(z) can be expressed as the following expression [27]:
O (x) = Ap(a), (14)
where
1 aii 0 0 0 N 0
T az.1 2.2 0 0 N 0
2 asz;1 as 2 as;3 0 A 0
pla)=| * A= ’ : (15)
ey ’
x1 an,1 anN2 aN32 aN4 © AN,N/ NN
and a; ; are given by:
()T s
aij = e L2 (16)
' 0 o.w.

3. DESCRIPTION OF THE METHOD
In this section, we present a numerical method for obtaining the numerical solution of GAIEs given
by Eqs.(3) and (4). By Eq.(5), the Riemann-Liouville fractional integral of order 1 — o, 0 < a < 1, for

n(x) is: ) i
) = ey | =

Then, we obtain a key formula:

M- a)t-n(e) = [ (o) (s a7
Comparing Eq.(3) with Eq.(17) gives:
&(z) =T (1 — )l *n(x). (18)
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Now, we use shifted Vieta-Fibonacci polynomials for approximating I1=%n(z) in (18):

I n(z) = L"CRON(2)

19
= CTALL%p(x). (19)
By Eq.(6), we have:
T
—a (1 —a T2 — rv —a
IL-%p(z) = (m(_)a)xl R NRRS S € ) , (20)
and by considering o(r) = A~1Ox(z), we can conclude:
IL=on(z) = '~ *CTAGA 'O N (), (21)
where
ra
retw O 0
0 T2) 0
G= Fe=e) (22)
: : o
0 0

3.1. Numerical Solution of the First Kind GAIEs using Shifted Vieta-Fibonacci Polynomials.
In order to solve Eq.(3), we use Eqgs.(18) and (21) to obtain the following equivalent equation:
1

l—a T —1 _
T YCTAGAT ON(2) = T —a)

§(@). (23)
Using collocation points {x;}Y ;, such as uniform collocation points, in Eq.(23) we obtain a linear system
of algebraic equations that gives unknown coeflicient vector C":

l—an~T -1 N 1 _ _
x; “C* AGA @N(acl)—r(l_a)g(xz), i=1,...,N. (24)

By specifying the constant coefficients, the approximate solution of the first kind GAIEs is obtained.
3.2. Numerical Solution of the Second Kind GAIEs using Shifted Vieta-Fibonacci Polyno-

mials. Similar to the first kind GAIEs, Eq.(4) can be written for the second kind GAIEs in the following
equivalent form:

n(z) = T(1 = )I,~"n(z) = &(x), (25)
In order to solve Eq.(4), we use Eqgs.(21) and (25) to obtain the following form of equivalent equation:
CT(I -T(1 — )z "*AGA 1O N (x) = &(z). (26)

Using collocation points {x;}X¥; in Eq.(26), we obtain a linear system of algebraic equations that gives
unknown coefficient vector C":

CT(I-T(1 - o)z} " *AGA ™M ON(z;) = &(z1), i=1,...,N. (27)

By specifying the constant coefficients, the approximate solution of the second kind GAIEs is obtained.

4. CONVERGENCE AND ERROR ANALYSIS

In this section, we study and discuss the error estimation for the function approximation and error
analysis of the proposed method. To this end, we consider the Sobolev space, H™(a, b):

H™(a,b) = {g: (a,b) = R|gD € L?(a,b), i=0,1,...,m}, (28)

where ¢(9) denotes the i-th order derivative of g. Moreover, we consider the norm defined by:

g llem=

o lg® 3. (29)
k=0
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Lemma 4.1. [28] Assume that g € H™(—1,1) for m € NU{0} and Pn(g)(z) = vazl ¢;VF;(x), be the
best approximation of g. Then, there is a constant K > 0 such that:
19— Pn(9) 22< KN""[g|gmin, (30)

where

lg

Hm: N -

D Ig® 3. (31)

l=n

Lemma 4.2. Let g € H™(0,b) and g : (—1,1) — R be defined as g(z) = g(@) on the interval
(=1,1). Then:
169 =220 g0 ey 1=0,1,.m. (32)

Proof. Let y = w. Then:
199 12210y = /11 19" ()| dw
- [l (M)\Qdﬂﬂ
(33)
— gl-2p2i— 1/ ‘gl)

— 91— 21b21 1 ” g (1) ”%2
This completes the proof. O

Theorem 4.1. Let g(x) € H™1(0,b) be the exact solution of a GAIE and gn(x) be the approximate
solution computed using the proposed method. Then, there is a constant K > 0 such that:

|| g —gnN ||L2§ KN_m|g‘H7n:n, (34)
Proof. Let Pn(g)(x) = Zivzl ¢;V F;(z) be the best approximation of g(z). Then:

g —gn 72 <l g — Pn(9) IZ-

b _ (35)
=5 15-Pv@ I -
By Lemmas 4.1 and 4.2, we conclude that:
lg—gn ll7: < KN_Q’”Z 5@ 72
= (36)
_ KN—2mZ2—21b21 H g(l) H%Q
l=n
This completes the proof. O

5. NUMERICAL SIMULATIONS

In this section, the efficiency and accuracy of the proposed method are evaluated using several nu-
merical examples and compared with other methods presented in previous works. All computations are
done using Matlab software and the error of the results is calculated with mean absolute error (MAE) in
{wi} Ly

M
> i1 [n(@i) — nn ()|

In(@) — v (@)|[mae = i (37)
Example 5.1. Let us consider the following Abel integral equation of the first kind [29)]:
2 241 1 r
V(8a® + 10z +15) / n(t) ir (38)
15 VT —T
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The exact solution is n(x) = 2% + x + 1. We have solved the integral equation by applying the
procedure introduced in Section 3 by taking N = 10 terms of Vieta-Fibonacci polynomailas; i.e. nio(z) =
High ability of the method is obvious from Figure 1 and Table 1. For N = 3, the proposed method
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FIGURE 1. Numerical solution of Example 5.1 includes: (A) comparison our numerical
results with the exact solution and (B) absolute error.

predicts the solution of the Eq.(38) as Eq.(39), which is consistent with the exact solution, n(x):

n3(z) = 1.000000000000000z% + 1.0000000000000012: + 1.000000000000000.

TABLE 1. Comparing the numerical results for Example 5.1 obtained by the proposed
method (based on Vieta-Fibonacci polynomailas) with the methods based on Legendre,
15t Chebyshev and 2"¢ Chebyshev polynomials proposed in [29].

Methods in [29]

Proposed Method

T Exact | Legendre wavelet | 15¢ Chebyshev wavelet | 2°?Chebyshev wavelet | Vieta Fibonacci
0.1 1.11 0.9295325636 1.0719999995 1.110000001 1.109999999999995
0.2 1.24 1.115745774 1.1546666661 1.240000002 1.239999999999999
0.3 1.39 1.309633163 1.2479999994 1.389999998 1.390000000000000
0.4 1.56 1.511194733 1.3519999994 1.560000001 1.560000000000001
0.5 1.75 1.720430483 1.466666666 1.750000001 1.750000000000000
0.6 1.96 1.937340412 1.5919999994 1.959999998 1.960000000000000
0.7 2.19 | 2.161924522 1.7279999994 2.190000001 2.190000000000001
0.8 2.44 | 2.394182812 1.8746666661 2.440000001 2.440000000000000
0.9 2.71 2.634115282 2.0319999994 2.709999998 2.710000000000001
MAE | - 1.804674364e-1 5.653333339¢-1 2e-9 1.794989953100253e-15

Example 5.2. Let us consider the Abel’s integral equation of second kind with x € [0,1] as the follow-
ing [17, 22, 39]:

4 ,71(1—x
— sin
Vo +1 l+a

T x
+3-/

n(t)
r—t
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FIGURE 2. Comparison between our method and method in [22] for Example 5.2 (A)
absolute error, (B) exact and approximate solutions.

TABLE 2. Comparison of approximate results and absolute errors reported in [22] of

Example 5.2.
Our Method [22]
T Exact solution | Approximate solution | Absolute Error | Approximate solution | Absolute Error
0.1 0.953463 0.953462 2.311367e-08 0.952954 0.000509
0.2 0.912871 0.912870 1.251010e-08 0.913009 0.000139
0.3 0.877058 0.877058 9.490916e-09 0.877150 0.000092
04 0.845154 0.845154 7.604130e-09 0.844994 0.000160
0.5 0.816497 0.816496 6.444178e-09 0.816672 0.000176
0.6 0.790569 0.790569 5.575872e-09 0.790381 0.000188
0.7 0.766965 0.766964 4.958316e-09 0.767163 0.000198
0.8 0.745356 0.745355 4.417058e-09 0.745193 0.000163
0.9 0.725476 0.725476 4.119741e-09 0.725369 0.000108
1 0.707107 0.707106 3.139302e-09 0.707432 0.000326
Mg |n(z) — nu(2)] 0.953462 2.311 x 108 0.952954 5.09 x 1077
. . . 1
where the exact solution of this example is n(x) = ﬁ
T

Table 2 compares the numerical solutions of Example 5.2 with the results of [22]. Also, in the results
of [39] for this example the best error is 3.99925 x 1075 while the absolute error of our proposed method
does not exceed 2.31136 x 1075.

Example 5.3. Let us consider the Abel’s integral equation of first kind with © € [0,1] as the following
n(t)

/50, 31]:
T _ 1=
¢ /0 v —t

—erf(y/x), where erf(z) denotes the following error function

NG
2 [T e
erf(:c)fﬁ/o e " dt.

dt,

with the exact solution n(x) =
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B1 . Numerical Solution by Vieta-Fibonacci
! Y exact I I I I
®  Vieta-Fibonacci n=1
Vieta-Fibonacci n=2
1.2
1k
2
508
>
06 /
~
o
0.4 e

0.1 0.2 0.3 0.4 0.5 0.6
X-axis

0.7 0.8

0.9 1

Numerical Solution by Li-Huang

Y exact
®  LiHuan
Li Huan

g n=1
g n=2

0.1 0.2

0.3 0.4 0.5

0.6 0.7 0.8 0.9 1

X-axis

FiGURE 3. Comparison of numerical solutions of Example 5.3 between our method and
method of [31]. (A): Absolute error, (B): Exact and approximate solutions.

TABLE 3. Comparison of numerical solutions of Example 5.3 between our method and

method of [31].

Our Method [31]
T Exact n=1 n=2 n=1 n=2
0.1 0.21529 [ 0.21379 |  0.21515 [ 0.22085 |  0.21321
0.2 0.32588 | 0.32564 |  0.32583 | 0.33262 |  0.32298
0.3 0.42757 | 0.42741 0.42754 | 0.43413 |  0.42403
0.4 0.52933 | 0.52924 |  0.52931 | 0.53457 |  0.52524
0.5 0.63503 | 0.63496 |  0.63502 | 0.63775 |  0.63037
0.6 0.74704 | 0.74699 |  0.74703 | 0.74597 |  0.74176
0.7 0.86719 | 0.86714 |  0.86721 | 0.86088 |  0.86118
0.8 0.99709 | 0.99706 |  0.99724 | 0.98393 |  0.99019
0.9 1.13830 | 1.13825 1.13895 1.11642 1.13029
1 1.29239 | 1.29247 | 1.29497 | 1.25968 |  1.28299
MEgrn(z) — nn ()] 0.00149 | 2.584 x 103 [ 0.03271 [ 9.398 x 10~3

Example 5.4. [31,36]. Let us consider the Generalized Abel’s integral equation of first kind with oo =
0<z<1 and&(z) =3 as the following:

1
3’

=104,

where the evact solution is n(r) = =5

Comparison of approximate results and maximum absolute errors obtained by our proposed method
with [36] are provided in Table 4.

Example 5.5. [32, 33]. Let us consider the Generlazed Abel’s integral equation of second kind with
o= % as the following :
2 4 ¥
n(t) =2z — %xi + gsﬂ 7/0 (x—t)"2dt
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%1010 Absolute Error
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F1GURE 4. Comparison of absolute error between the results of our method and method
of [36] for Example 5.4

TABLE 4. Comparison of numerical solutions of Example 5.4 between our method and
method of [36].

Method in [36] Our Method

T Exact N=4 N =6 N =4 N =6

0 0.00000 |  0.000E-0 0.000E-0 0.000E-0 0.000E-0

0.2 0.32588 |  0.309E-9 0.125E-14 0.138E-15 3.053E-16

0.4 0.52933 | 0.303E-10 0.392E-15 1.665E-16 6.661E-16

0.6 0.74704 |  0.286E-9 0.842E-16 0.000E-0 1.221E-16

0.8 0.99709 |  0.542E-9 0.684E-15 1.110E-16 2.331E-16
Mg, |n(z) — nn(z)] 0.542 x 1077 [ 0.125 x 10~ [ 0.138 x 10~ ° | 6.661 x 10~ 16

Absolute Error

Absolute Error

X-axis

FI1GURE 5. Comparison of absolute errors between the results of our method and method
[32] for Example 5.5

The results of applying the method on this example can be seen in Table 5 and Figure 5.

Example 5.6. [3/]. Let us consider the Generalized Abel’s integral equation of second kind with o = 0.8
,0<2<1and&(x) =x+1 as the following:

where the exact solution take the form n(x)

§(x) = /0 mdt,
(1+1.25z)

n(t)

mx0-2

5in(0.8m) 08,

The results of applying the method on this example can be seen in Table 5 and Figure 6.
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ical Solution by Vieta-Fibonacci
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Numerical Solution by Li-Huang
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F1GURE 6. Comparison of numerical solutions of Example 5.6 between our method and
method of [34]. (A): Absolute error, (B): Exact and approximate solutions.

TABLE 5. Absolute errors for approximate results of Example 5.5 obtained by proposed
method for different values of N.

T Exact Ery =4 Ery =5 Ery =6
0.2 0.22222 |  8.3267e-17 8.3267e-17 4.996e-16
0.4 0.44444 | 1.1102e-16 2.7756e-16 5.5511e-16
0.6 0.66667 0.0000e-0 4.4409¢-16 1.5543e-15
0.8 0.88889 | 1.1102e-16 7.7716e-16 4.4409e-15
Mazx g, |n(z) — 0, ()] 1.1102 x 10716 [ 7.7716 x 10716 | 4.4409 x 10~

TABLE 6. Comparison of numerical solutions of Example 5.6 between our method and

method of [34].

Avazzadeh Method in [34] Our Method

T Exact | Chebyshevp—10 | Chebyshevn—20 | VFporLy,_1o | VFPOLY,—a0
0.1 0.33881 0.32882 0.33219 0.33360 0.33531
0.2 0.32446 0.32529 0.32117 0.32268 0.32340
0.3 0.32838 0.32346 0.32567 0.32730 0.32773
0.4 0.33784 0.34031 0.33805 0.33709 0.33740
0.5 0.34981 0.34828 0.34960 0.34924 0.34948
0.6 0.36309 0.36120 0.36162 0.36264 0.36283
0.7 0.37712 0.37894 0.37715 0.37675 0.37690
0.8 0.39159 0.38938 0.39207 0.39127 0.39143
0.9 0.40633 0.40782 0.40670 0.40605 0.40634
1 0.42117 0.42415 0.42245 0.42097 0.42205

Mg n(z) — nn(x)] 2.81 x 1073 111 x 1073 [ 117 x 1073 | 1.07 x 1073

6. CONCLUSIONS

The numerical scheme used in this article was very accurate in determining approximate results of
GAIEs. The proposed method used simplicity the Vieta Fibonacci polynomial to create an efficient and
accurate method for solving [GAIEs|. The equation has been converted into a system of linear algebraic
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equations. The illustrate examples showed that the obtained results were very better compared with the
results of many other methods.
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