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STOCHASTIC EXPECTATION MAXIMIZATION ALGORITHM FOR

EXPONENTIAL-POISSON DISTRIBUTION UNDER TYPE-I

PROGRESSIVE INTERVAL CENSORING

A. MOHAMMADI1,∗, A. SHADROKH2, M. YARMOHAMMADI3, §

Abstract. The Exponential-Poisson (EP) distribution is generated by combining the
Exponential distribution with a zero truncated Poisson distribution as a model for life-
time data with decreasing failure rate. This paper deals with the problem of estimat-
ing unknown parameters of the Exponential-Poisson distribution as a lifetime model
when samples are observed under progressive type-I interval censoring. We employ the
Newton-Raphson (NR), classical expectation maximization (EM) and stochastic expec-
tation maximization (SEM) algorithms to find the maximum likelihood estimates for the
unknown parameters. The performance of the proposed SEM estimators are illustrated
by a Monte Carlo simulation study and used for a real data set. Our simulation showed
that the performance of SEM algorithm is quite satisfactory on the basis of mean square
error and by increasing the sample size, the efficiency is also increases.

Keywords: Maximum likelihood estimation, Progressive Interval Censoring, EM and
SEM algorithm, Exponential Poisson.
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1. Introduction

Life testing and reliability experiments are effective ways for assessing live/failure life un-
der specified operating circumstances. Such tests are carried out on identical units before
(and throughout) the product’s release, and the failure times observed are documented.
After that, the failure time is further examined in order to evaluate and forecast product
attributes. Due to time limits, financial expenses, or inadvertent breakdown, such trials
are sometimes discontinued before all life-tested components fail. As a result, the data seen
in such circumstances may be incomplete. Type-I and type-II censoring systems are two
regularly used classical censorship techniques in which the experiment stops after a certain
period and number of failures, respectively. However, neither of these filtering systems
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allows the researcher to remove the live unit from the experiment before the end time. The
concept of progressive censoring, which involves removing units between tests, has lately
gained popularity. Furthermore, it has been shown that in many real-world scenarios, ex-
perimenters are unable to continually monitor endurance tests in order to detect accurate
failure lives. Medical and clinical research, for example, may not offer correct survival times
for people diagnosed with specific medicines. Failure lifetimes are frequently seen at inter-
vals called interval censoring in such scenarios. This censor, however, does not permit the
removal of units between experiments. [2] pioneered progressive type-I interval censoring
by combining the concepts of type-I, progressive, and interval censoring. Lifetime statis-
tics under this censorship may be shown as follows. Assume that at time t0 = 0, a random
sample of n units is subjected to a life test experiment, and that at inspection time ti, the
total number of observed failures in the interval (ti−1, ti] is Di. Further assume that Ri be
the total number of units removed from the experiment at time ti, i = 1, 2, ...,m. Here the
number of surviving units at time ti, say Yi is a random variable, and therefore Ri ≤ Yi.
The general practice to determine Ri is by a prescribed percentage qi of the remaining Yi
surviving units or by a pre-specified non negative integers in which the actually observed
Robs i = min (Ri,number of surviving units at inspection time ti) , i = 1, 2, . . . ,m−1 and
Robs m = number of surviving units at inspection time tm. Data observed under this
censoring can be represented as (Di, Ri, ti)

m
i=1. Among many, lifetime data set based on

112 patients with plasma cell myeloma (see [5] and references cited there in), data set of
HMO-HIV study, see [18], and survival times from surgery of a group of 374 patients, see
[13] have been statistically analyzed using progressive type-I interval censoring. Further
statistical inference under this censoring for Exponentiated Weibull family has been dis-
cussed by [3], for Weibull distribution by [12], for generalized Rayleigh distribution by [11],
for Gamma distribution by [21], for generalized Exponential distribution by [6] and [14],
for Weibull and generalized Exponential distributions by Lin and Lio [15], for lognormal
distribution by [16], and for Burr XII distribution by [1].

In this paper we discuss the Exponential Poisson distribution under progressive type-I
interval censoring. The Exponential Poisson (EP) distribution is generated by combining
the Exponential distribution with a zero truncated Poisson distribution as a model for
lifetime data with decreasing failure rate [10]. Let T1, T2, ..., TW be a random sample
from distribution with density f(t;β) = βe−tβ, t, β ∈ R+ and W is a Poisson distributed
variable truncated at zero with probability mass function

P (w, λ) = e−λλwΓ−1(w + 1)
(
1− e−λ

)−λ
, w ∈ N, λ ∈ R+ where Γ(.) is the Gamma

function and W and Tis are independent. Let us define X = min(T1, T2, ..., TW ). Then,
f(x|w;β) = βwe−βwx, and marginal probability density function of X is

f (x;θ) =
λβe−λ−βx+λ exp (−βx)

(1− e−λ)
, x, β, λ ∈ R+ (1)

where θ = (λ, β). (It should be noted that [4] derived another lifetime distribution as
Poisson-Exponential (PE) distribution by taking X = max(T1, T2, ..., TW ))

It has found widespread use in economics, medicine, business, and actuarial sciences.
Zero values are not permitted in the distributions often used in lifetime experiments such as
Gamma, Weibull, and Log-normal, to name a few. A random variable X with probability
density function 1 and cumulative distribution function

F (x;θ) = (eλ exp(−βx) − eλ)(1− eλ)−1. (2)

has two parameter EP distribution and is denoted by EP (λ, β). The parameters λ and β
are the shape and scale parameters, respectively. The EP distribution (1) can take value on
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0. This allows this distribution to become a viable option for usage in issues involving zero
values. The occurrence of zero values in environmental studies is typical during the study
of precipitation, particularly during dry seasons. Such behavior is also found in reliability
studies, where instantaneous failures can occur owing to lower quality or difficulties during
component manufacture. For a detail account of this distribution and its properties one
may refer to [10]. This paper focus on the problem of estimating the unknown parameters
of the EP distribution under classical approach when data are observed using progressive
type-I interval censoring. Section 2 deals with MLEs. Section 3 discusses Newton-Raphson
method. Section 4 we obtain estimators using EM and SEM algorithms. Section 5 analyses
real data set and simulation study and conclusion is presented in the last section.

2. MLEs

The goal of this section is to find maximum likelihood estimators (MLEs) for the un-
known parameters of the EP distribution when data is observed with progressive type-I
interval censoring. Suppose that n number of units whose lifetimes are identically dis-
tributed random variables with pdf and cdf as defined in 1 and 2, used for life test ex-
periment at time t0 = 0. Further assume that (Di, Ri, ti)

m
i=1 are observed data under

progressive type-I interval censoring with the prescribed m inspection times ti. Then the
associated likelihood function of (λ, β) can be written as

L(θ) ∝ Πm
i=1 [F (ti;λ, β)− F (ti−1;λ, β)]

Di [1− F (ti;λ, β)]
Ri . (3)

Now using the log-likelihood function

l(λ, β) = lnL(λ, β)

= −ln(1− eλ)
m∑
i=1

(Di +Ri) +
m∑
i=1

Diln(e
λ exp(−βti) − eλ exp(−βti−1))

+
m∑
i=1

Riln(1− eλ exp(−βti−1)).

The maximum likelihood estimates of (λ, β) are the solution to the following equations

∂l(λ, β)

∂λ
=

eλ

1− eλ

m∑
i=1

(Di +Ri) +
m∑
i=1

Di

(
e−βtieλ exp(−βti) − e−βti−1eλ exp(−βti−1)

eλ exp(−βti) − eλ exp(−βti−1)

)

+
m∑
i=1

Ri

(
−e−βtieλ exp(−βti)

1− eλ exp(−βti)

)
= 0, (4)

∂l(λ, β)

∂β
=

m∑
i=1

Di

(
−λtie

−βtieλ exp(−βti) + λti−1e
−βti−1eλ exp(−βti−1)

eλ exp(−βti) − eλ exp(−βti−1)

)

+
m∑
i=1

Ri

(
λtie

−βtieλ exp(−βti)

1− eλ exp(−βti)

)
= 0. (5)

However, since the preceding equations have no closed-form solution, numerical methods
must be applied. Newton-Raphson is the most often utilized approach in the current
literature (NR). The primary disadvantage of this technique is that it needs the second
derivative of the logarithmic probability function for each iteration, which can be com-
putationally laborious owing to the complicated structure of the probability function.
Alternatively, the following equations may be solved using built-in numerical packages in
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various computer languages, however the results may change significantly. [8] presented an
Expectation-Maximization (EM) technique, which various authors have utilized to achieve
maximum likelihood estimates. This approach is far superior than the NR method, espe-
cially when the data is incomplete and collected under some censoring scheme. The EM
method is then discussed in order to get maximum likelihood estimators of (λ, β).

3. Newton–Raphson method

Approximation to the MLE of unknown parameters λ and β can be obtained using

the Newton–Raphson method. Let θ̂
0
= (λ̂0, β̂0)⊤ as an initial estimate in the New-

ton–Raphson procedure, the next estimate is

θ̂1 = θ̂0 −
[
∂l(θ)

∂θ
|θ=θ̂0

]⊤ [ ∂2l(θ)

∂θ∂θ⊤ |θ=θ̂0

]−1

where

∂l(θ)

∂θ
=

(∂l(λ,β)
∂λ

∂l(λ,β)
∂β

)
and

∂2l(θ)

∂θ∂θ⊤ =

(
∂2l(λ,β)

∂λ2
∂2l(λ,β)
∂λβ

∂2l(λ,β)
∂λβ

∂2l(λ,β)
∂β2

)
with (∂l(λ, β)/∂λ) and (∂l(λ, β)/∂β) given in equations (4) and (5) and

∂2l(λ, β)

∂λ2
=

m∑
i=1

Di


[
exp(−2βti)e

λ exp(−βti) − exp(−2βti−1)e
λ exp(−βti−1)

]
×
[
eλ exp(−βti) − eλ exp(−βti−1)

]
−
[
exp(−βti)e

λ exp(−βti) − exp(−βti−1)e
λ exp(−βti−1)

]
×
[
e−βtieλ exp(−βti) − e−βti−1eλ exp(−βti−1)

]
[

eλ exp(−βti) − eλ exp(−βti−1)
]2

+

m∑
i=1

Ri

[
− exp(−2βti−1)e

λ exp(−βti−1)
(
1− eλ exp(−βti−1)

)
− exp(−2βti−1)e

2λ exp(−βti−1)
](

1− eλ exp(−βti−1)
)2 − eλ

(1− eλ)2

m∑
i=1

(Di +Ri),

(6)

∂2l(λ, β)

∂β2
=

m∑
i=1

Di


(1 + λ)

(
ti−1 exp(−βti−1)e

λ exp(−βti−1) − ti exp(−βti)e
λ exp(−βti)

)
×
[
eλ exp(−βti) − eλ exp(−βti−1)

]
+
[
ti−1λ exp(−βti−1)e

λ exp(−βti) + λti exp(−βti−1)e
λ exp(−βti−1)

][
exp−βtie

λ exp(−βti) − exp−βti−1e
λ exp(−βti−1)

]
[

eλ exp(−βti) − eλ exp(−βti−1)
]2

+

m∑
i=1

Ri

{
(1 + λ)(ti exp(−βti)e

λ exp(−βti))
(
1− eλ exp(−βti−1)

)
+λti exp(−2βti)e

2λ exp(−βti)

}
(
1− eλ exp(−βti−1)

)2 , (7)

∂2l(λ, β)

∂λβ
=

m∑
i=1

Di



[
−ti exp(−βti)e

λ exp(−βti)(1 + λ exp(−βti))
+ti−1 exp(−βti−1)e

λ exp(−βti−1)(1 + λ exp(−βti−1))
][

eλ exp(−βti) − eλ exp(−βti−1)
]

+
[
tiλ exp(−βti)e

λ exp(−βti)(1− λ exp(−βti))
][

e−βtieλ exp(−βti) − e−βti−1eλ exp(−βti−1)
]

[
eλ exp(−βti) − eλ exp(−βti−1)

]2
+

m∑
i=1

Ri


{
ti exp(−βti)e

λ exp(−βti) (1− λ exp(−βti))
(
1− eλ exp(−βti)

)
−
(
ti exp(−βti)e

λ exp(−βti)
) }

(1− λ exp(−βti))
2

 . (8)
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Using the above algorithm, we can then obtain the one-step approximation estimators.
The simulation analysis revealed that, as predicted, one step approximation estimators
beat their counterparts in most circumstances; so, we report just the findings in the last
section.

4. Methodology

4.1. EM algorithm. Suppose that (Di, Ri, ti)
m
i=1 are the observed data under progressive

type-I interval censoring. Recall that under progressive type-I interval censoring total Di

number of failures are observed instead of exact failure lifetimes. Let us assume that
xij are the exact lifetimes of the total number of observed failures,i = 1, 2, ...,m and
j = 1, 2, ..., Di. Further suppose that zij are the lifetimes of the units those are censored
at the inspection times ti, i = 1, 2, ...,m and j = 1, 2, ..., Ri. Then the complete sample of
n number of units can be seen as a combination of observed data xij and censored data
zij . Subsequently the log-likelihood function of (λ, β) given the complete sample can be
written as:

lnLc(θ) ∝ nlnλ+ nlnβ − nλ− nln(1− e−λ)− β

m∑
i=1

Di∑
j=1

xij + λ

m∑
i=1

Di∑
j=1

exp(−βxij)

− β

m∑
i=1

Ri∑
j=1

zij + λ

m∑
i=1

Ri∑
j=1

exp(−βzij).

The partial derivatives of the above function with respective to λ and β, and equating
them to zero, gives:

n

λ
=

n(eλ + 1)

eλ − 1
−

m∑
i=1

 Di∑
j=1

exp(−βxij) +

Ri∑
j=1

exp(−βzij)

 , (9)

n

β
=

m∑
i=1

 Di∑
j=1

xij +

Ri∑
j=1

zij

+ λ

m∑
i=1

 Di∑
j=1

xij exp(−βxij) +

Ri∑
j=1

zij exp(−βzij)

 . (10)

The EM algorithm consist expectation step (E-step) and maximization step (M-step).
The E-step replaces the expressions of observed and censored lifetimes by their expec-
tations, whereas M-step maximizes the E-step at each iteration. Now let us consider
that (λ(k), β(k)) as the estimates of (λ, β) at the kth stage, then using (9) and (10)) the
estimators of (λ, β) at the (k + 1)th stage are given by

λ(k+1) = n

[
n(eλ(k) + 1)

eλ(k) − 1
−

m∑
i=1

(
DiE1i(λ

(k), β(k)) +RiE2i(λ
(k), β(k))

)]−1

,

β(k+1) = n

[
m∑
i=1

(
DiE3i(λ

(k), β(k)) +RiE4i(λ
(k), β(k))

)

+λ(k)
m∑
i=1

(
DiE5i(λ

(k), β(k)) +RiE6i(λ
(k), β(k))

)]−1

,
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where

E1i(λ
(k), β(k)) = E (exp(−βxij)|xij ∈ (ti−1, ti])

=
1− eλ

eλ exp(−βti) − eλ exp(−βti−1)

∫ ti

ti−1

e−βxf(x)dx,

E2i(λ
(k), β(k)) = E (exp(−βzij)|zij ∈ (ti,∞)) =

1− eλ

1− eλ exp(−βti)

∫ ∞

ti

e−βxf(x)dx,

E3i(λ
(k), β(k)) = E (xij |xij ∈ (ti−1, ti]) =

1− eλ

eλ exp(−βti) − eλ exp(−βti−1)

∫ ti

ti−1

xf(x)dx,

E4i(λ
(k), β(k)) = E (zij |zij ∈ (ti,∞)) =

1− eλ

1− eλ exp(−βti)

∫ ∞

ti

xf(x)dx,

E5i(λ
(k), β(k)) = E (xij exp(−βxij)|xij ∈ (ti−1, ti])

=
1− eλ

eλ exp(−βti) − eλ exp(−βti−1)

∫ ti

ti−1

xe−βxf(x)dx,

E6i(λ
(k), β(k)) = E (zij exp(−βzij)|zij ∈ (ti,∞)) =

1− eλ

1− eλ exp(−βti)

∫ ∞

ti

xe−βxf(x)dx.

Further using an iterative procedure, the desired maximum likelihood estimates of (λ, β)
can be obtained. Here the procedure can be terminated when a desired convergence is
achieved for a small value of ϵ > 0 satisfying |λ(k+1) − λ(k)|+ |β(k+1) − β(k)| < ϵ. Observe
that in the EM algorithm the expressions like E1i ,E2i . . . do not admit a closed form,
subsequently these expressions need to be computed numerically. To avoid this situation
we next propose Stochastic expectation maximization algorithm (SEM).

4.2. SEM algorithm. This section discusses the SEM algorithm for obtaining MLEs
of (λ, β). In the preceding section, it was discovered that E-step had complicated and
intractable calculations. Several authors have proposed several ways to eliminate the
computational expense in the existing literature. [19] proposed the idea to approximate
the expectations in the E-step by the Monte Carlo average, but still the maximization
procedure turn out to have complicated and more time-consuming, see [20]. [9] proposed
the notion of replacing the E-step with a stochastic step (S-step) and running it via
simulation In many cases, the idea of SEM has been shown to be more suited than the
EM method in terms of computing burden, see [22] and [23]. Next we use the same
idea, and first generate the independent Di number of samples of xij , i = 1, 2, ...,m and
j = 1, 2, ..., Di from the following conditional distribution function

FD(xij ;λ, β|xij ∈ (ti−1, ti]) = F (ti;λ, β)− F (ti−1;λ, β), xij ∈ (ti−1, ti].

We further generate Ri number of samples of zij , i = 1, 2, ...,m and j = 1, 2, ..., Ri from
the following conditional distribution function

FZ(zij ;λ, β|zij > ti) =
F (zij ;λ, β)− F (ti;λ, β)

1− F (ti;λ, β)
, zij > tj .
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Now using these generated observations in 9 and 10, the (k+1)th stage estimator of (λ, β)
can be obtained as

λ(k+1) = n

n(eλ(k) + 1)

eλ(k) − 1
−

m∑
i=1

 Di∑
j=1

exp(−βxij) +

Ri∑
j=1

exp(−βzij)

−1

,

β(k+1) = n

 m∑
i=1

 Di∑
j=1

xij +

Ri∑
j=1

zij

+ λ(k)
m∑
i=1

 Di∑
j=1

xij exp(−βxij) +

Ri∑
j=1

zij exp(−βzij)

−1

,

Finally we denote the MLEs of (λ, β) as (λ̂, β̂) after the termination of iterative procedure.
Now the observed Fisher information matrix of the MLEs of (λ, β) can be obtained as

S(λ, β) =

[
σ11 σ12
σ21 σ22

]
=

[
−∂2l(λ,β)

∂λ2 −∂2l(λ,β)
∂λ∂β

−∂2l(λ,β)
∂λ∂β −∂2l(λ,β)

∂β2

]−1

λ=λ̂,β=β̂

here the involved expressions are reported in 6, 7 and 8. Further the corresponding
100(1 − γ)% asymptotic confidence interval estimates for λ and β can be obtained as

λ̂± Zγ/2
√
σ11 and β̂ ± Zγ/2

√
σ22 respectively, where Zγ/2 is the upper (γ/2)th percentile

of the standard normal distribution.

5. Simulation study and data analysis

5.1. Simulation study. The objective of this section is to investigate the performance of
the proposed estimators through a simulation study. We first generate the data (Di, Ri, ti)

m
i=1

for given n,m, prefixed inspection times and censoring schemes under progressive type-I
interval censoring using the algorithm proposed by [2]. According to the algorithm, first
generate D1 ∼ Bin(n, F (t1;λ, β)) and given the value of D1, generate R1 = [q1×(n−D1)]
, here Bin(., .) represents the binomial distribution. Further for i = 2, 3, ...,m, we have

Di|(Di−1, Ri−1, ..., D1, R1) ∼ Bin

n−
i−1∑
j=1

(Dj +Rj),
F (ti;λ, β)− F (ti−1;λ.β)

1− F (ti−1;λ, β)

 ,

with Ri = [qi × (n−
∑t−1

j=1(Dj +Rj))].
For simulation studies we consider different values of n such as

n = {20, 30, 40, 50, 100, 150, 200} with inspection times t1 = 0.1, t2 = 0.3, t3 = 0.5, t4 = 0.7
and t5 = 0.9, and censoring schemes: p1 = (q1 = 0.25, q2 = 0.25, q3 = 0, q4 = 0, q5 =
1), p2 = (q1 = 0, q2 = 0, q3 = 0.25, q4 = 0.25, q5 = 1) and p3 = (q1 = 0, q2 = 0, q3 =
0, q4 = 0, q5 = 1). Notice that the censoring scheme p3 corresponds to the traditional
type-I interval censoring.

For these values of n and p we generate simulated data using EP (0.5, 2.5) and EP (2, 1)
distributions. The average of maximum likelihood estimates of the parameters (λ, β) and
their mean square error (MSE) based on 100 Monte Carlo replications using SEM, EM and
NR algorithms for mentioned distributions are shown in Tables 1 and 2 respectively. From
these tables the estimates obtained using EM and SEM algorithms are almost close to each
other for all the considered schemes. However the NR method estimates are marginally
higher than the other methods. It is clear that the estimators using the SEM method have
lower MSE values compared to other methods. On the other hand, the NR method has the
least efficiency. The results show that by increasing the sample size,the estimated values
of the parameters became closer to the true values and the efficiency is also increases.



Table 1. Maximum likelihood estimates of EP (0.5, 2.5) distribution using SEM, EM and NR algorithms.

SEM EM NR
n 20 30 50 100 150 200 20 30 50 100 150 200 20 30 50 100 150 200

p1 λ̂ 0.5179 0.5127 0.5167 0.4888 0.4931 0.4954 0.8395 0.6997 0.6974 0.6555 0.6509 0.6309 2.0787 1.2514 1.0459 0.9235 0.9064 0.8832

MSE(λ̂) 0.0629 0.0555 0.0573 0.0006 0.0014 0.0003 0.9813 0.5128 0.4833 0.4573 0.3743 0.2571 0.8513 0.0611 0.0324 0.3935 0.7058 0.0678

β̂ 2.6906 2.5658 2.4847 2.5530 2.4802 2.5075 2.5379 2.4718 2.3423 2.5187 2.3621 2.4478 3.0129 2.8877 2.7774 2.7297 2.6565 2.6191

MSE(β̂) 0.8340 0.2694 0.1510 0.0897 0.0495 0.0374 1.1434 0.4359 0.3967 0.1607 0.1983 0.1451 10.080 5.2579 1.4416 4.3872 7.7222 7.7135

p2 λ̂ 0.5637 0.4906 0.4945 0.4848 0.4928 0.4924 0.8632 0.8252 0.7415 0.7312 0.5913 0.6074 0.8262 0.8100 0.8223 0.8056 0.8055 0.8096

MSE(λ̂) 0.1816 0.0046 0.0020 0.0009 0.0005 0.0003 0.9317 0.7732 0.6126 0.5150 0.2012 0.1978 7.3298 2.4317 0.0086 0.6628 1.7693 12.689

β̂ 2.5552 2.5440 2.5830 2.5066 2.5060 2.5012 2.4328 2.3778 2.4640 2.3757 2.5051 2.4952 2.6785 2.6830 2.6695 2.6621 2.6437 2.6275

MSE(β̂) 0.6085 0.2647 0.2140 0.0683 0.0617 0.0513 0.9754 0.5834 0.4663 0.3018 0.1768 0.1513 0.2125 13.773 12.546 0.5896 1.5333 0.3366

p3 λ̂ 0.6001 0.5989 0.4877 0.4871 0.4918 0.4991 0.8490 1.0981 0.6703 0.7397 0.6319 0.5678 0.7641 0.7854 0.7728 0.7636 0.7639 0.7544

MSE(λ̂) 0.2803 0.2499 0.0012 0.0005 0.0003 0.0002 1.0920 1.3513 0.4407 0.5285 0.2597 0.1210 12.916 2.5614 0.0468 0.8437 0.3090 0.3150

β̂ 2.5304 2.5371 2.4851 2.4982 2.5296 2.5074 2.4338 2.2784 2.3960 2.3613 2.4001 2.4904 2.6629 2.6471 2.6405 2.6332 2.6210 2.6149

MSE(β̂) 0.4267 0.3517 0.1666 0.0752 0.0427 0.0380 0.7422 0.7607 0.3565 0.2821 0.1550 0.0956 12.325 0.0103 6.3219 8.6560 1.8806 5.5610

Table 2. Maximum likelihood estimates of EP (2, 1) distribution using SEM, EM and NR algorithms.

SEM EM NR
n 20 30 50 100 150 200 20 30 50 100 150 200 20 30 50 100 150 200

p1 λ̂ 1.8106 1.9215 1.9835 2.0132 2.0169 2.0141 1.8257 1.8784 1.8615 1.9315 2.1071 2.0633 1.5677 2.1743 2.2905 2.2168 2.0856 2.0142

MSE(λ̂) 0.3551 0.1690 0.0834 0.0251 0.0095 0.0079 1.4338 1.2677 0.4472 0.3446 0.2545 0.1736 2.4551 0.4235 2.6584 7.7856 1.4356 0.6324

β̂ 1.1255 1.0688 1.0317 1.0011 0.9907 0.9865 1.2884 1.1853 1.1265 1.1014 1.0756 1.0408 1.7261 1.5776 1.4859 1.4324 1.3954 1.3608

MSE(β̂) 0.1738 0.1245 0.0430 0.0143 0.0053 0.0044 0.4093 0.2649 0.1169 0.1105 0.0618 0.0303 0.9809 2.1193 11.139 0.2507 1.5681 0.1182

p2 λ̂ 1.9307 1.9586 2.0308 1.9936 2.0281 2.0020 1.7699 1.7516 1.7413 1.7357 1.8973 1.9784 2.6177 2.7228 2.7294 2.7525 2.6377 2.5575

MSE(λ̂) 0.1989 0.1960 0.0291 0.0189 0.0129 0.0093 1.2597 1.0446 0.3735 0.2448 0.1806 0.1750 0.1490 0.0001 0.6559 1.3266 0.0065 0.1357

β̂ 1.0569 1.0531 1.0036 0.9731 0.9998 0.9772 1.1901 1.1931 1.1235 1.0527 1.0610 1.0349 1.3993 1.4340 1.4380 1.4197 1.4105 1.3938

MSE(β̂) 0.1359 0.1218 0.0161 0.0116 0.0069 0.0057 0.3492 0.3214 0.1277 0.0886 0.0502 0.0477 12.575 8.4211 1.1836 1.3706 0.4117 0.6881

p3 λ̂ 1.9138 1.9686 1.9776 2.0162 2.0250 2.0334 1.7930 1.8248 1.7016 1.8172 1.8166 1.9303 2.9650 3.0505 3.0197 2.9586 2.9141 2.8663

MSE(λ̂) 0.2723 0.1668 0.0406 0.0139 0.0121 0.0093 1.2394 0.6003 0.4645 0.2814 0.2858 0.1403 15.366 0.9574 0.4108 2.6016 0.6358 16.606

β̂ 1.0980 1.0756 1.0061 0.9894 0.9939 1.0032 1.1871 1.1217 1.1503 1.0831 1.0916 1.0498 1.4026 1.4013 1.4011 1.3934 1.3846 1.3729

MSE(β̂) 0.1321 0.0802 0.0323 0.0081 0.0066 0.0050 0.2417 0.1831 0.1678 0.0798 0.0772 0.0366 2.1271 3.6771 1.1819 0.0082 3.2348 0.4609
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Table 3. Average estimates based on 100 replications using EP(0.5,2.5) distribu-
tion.

Algorithms
SEM EM NR

Average of λ̂ 0.511561 0.730028 0.920694

Average of MSE(λ̂) 0.050017 0.555044 2.444167

Average of β̂ 2.531422 2.428400 2.692622

Average of MSE(β̂) 0.211133 0.418178 5.574900

Table 4. Average estimates based on 100 replications using EP(2,1) distribution.

Algorithms
SEM EM NR

Average of λ̂ 1.979900 1.806233 2.563383

Average of MSE(λ̂) 0.090561 0.567294 3.013444

Average of β̂ 1.024122 1.119828 1.434967

Average of MSE(β̂) 0.051533 0.153594 2.862017

Tables 3 and 4 show the average of the estimated λ and β parameters and the MSE
values for three algorithms obtained from table 1 and 2 respectively. Table 3 shows that
the SEM algorithm has the closest estimates (i.e. 0.511561,2.531422) to the real ones (i.e.
0.5,2.5). The average of MSE values for this algorithm is minimum. Table 4 shows that
the SEM algorithm has the closest estimates (i.e. 1.9799,1.024122) to the real ones (i.e.
2,1). The average of MSE values for this algorithm is also minimum.

5.2. Data analysis. We evaluate a research including 112 patients with plasma cell
myeloma treated at the National Cancer Institute (N.C.I) [7] to demonstrate the ap-
proaches used in this publication. This dataset is presented in table 5. We denoted
the number of patients dropped out from the study at the end of the time interval
(ti−1, ti] by Dis. Although the progressive censoring numbers are not determined before
to the research, the statistical inference processes investigated in this article are based on
Ri, i = 1, ...,m, as numbers of withdrawals described in section 2, and therefore apply to
this dataset. We consider EP (λ, β) distribution to fit the data based on plot 1 of empirical
distribution of survival and population distribution. Our estimates summarized in table
6.

Further we compare the goodness-of-fit of the data set to EP distribution with the other
distribution such as Weibull distribution, with the shape and scale parameters as λ and β
respectively, using negative log-likelihood criterion (NL) and Kolmogorov–Smirnov (K–S)
test. Notice that for the K–S test, we define the maximum distance

Dn(F ) = sup
0≤t≤∞

|F̂ (t;λ, β)− F (t; λ̂, β̂)|,

as the distance between the empirical distribution F̂ (t;λ, β) for the observed data using

progressive type-I interval censoring and the population distribution F (t; λ̂, β̂) . The
empirical CDF at each inspection time ti can be estimated as

F̂ (t;λ, β) = 1−Πi
j=1(1− p̂j), i = 1, 2, ...,m,
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Table 5. Gathered survival data by N.C.I .

Interval Number
(Months) at risk Di Ri

[0, 5.5] 112 18 1
[5.5, 10.5] 93 16 1
[10.5, 15.5] 76 18 3
[15.5, 20.5] 55 10 0
[20.5, 25.5] 45 11 0
[25.5, 30.5] 34 8 1
[30.5, 40.5] 25 13 2
[40.5, 50.5] 10 4 3
[50.5, 60.5] 3 1 2
[60.5,∞) 0 0 0

Table 6. Estimates based on NR, EM and SEM algorithms.

Algorithms
NR EM SEM

shape (λ) 0.89872 0.83664 0.83657
scale (β) 0.034314 0.03511 0.03512

Figure 1. Difference of empirical and population distributions.

where p̂1 =
D1
n and p̂j =

Dj

n−
∑j−1

k=1(Dk+Rk)
, j = 2, 3, ...,m.

We found that corresponding to EP distribution maximum likelihood estimates are
(0.83657, 0.03512), NL is 194.55, and K–S value is 0.0961 whereas correspond to Weibull
distribution maximum likelihood estimates are (1.3619, 0.0152), NL is 198.43, and K–S
value is 0.0972. From all the calculated values it is seen that the EP distribution has
smaller values of NL criterion and K–S test statistic, subsequently the EP distribution
fits the data set reasonably well as compared to the Weibull distribution (by [12]). Now
for the considered data the asymptotic 95% confidence interval estimates of λ and β are
(0.8153, 0.8578) and (0.0334, 0.0368), respectively. Figure 1 shows difference of empirical
and population (EP) distributions.
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6. Conclusion

In this paper we considered lifetime data following EP distribution under progressive
type-I interval censoring. We observed that MLEs of the unknown parameters of the
distribution do not admit closed form, and further the implementation of EM algorithm
still require optimization technique to solve the involved expressions in E-step. To avoid
the numerical technique we considered SEM algorithm to obtain the MLEs. In simulation
study we presented a comparison between the estimates obtained by SEM algorithm and
estimates using NR and EM algorithms. Our simulation study showed that the perfor-
mance of SEM algorithm is quite satisfactory on the basis of mean square error and by
increasing the sample size, the estimated values of the parameters became closer to the
true values and the efficiency is also increases. For illustration purpose we also considered
a real data set.
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