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DIFFERENT ENERGIES OF THE ONE-POINT UNION OF
COMPLETE BIPARTITE GRAPH

K. V. PANDYAM* K. K. KANANI?, §

ABSTRACT. The concept of energy of graphs originated with chemical applications and
was first introduced by Gutman in 1978. The energy of a graph £(G) was defined as the
sum of the absolute eigenvalues of the adjacency matrix. In the present work, the energy
of graph, general extended adjacency energy of graph in the context of graph operation,
namely one point union of k-copies of complete bipartite graph K, , have been discussed.
Also, MATLAB coding has been generated for all the results. In this paper, we have
investigated the bounds on energy in terms of order of disjoint union of graphs and one
point union of graphs.

Keywords: Energy of graph; General extended adjacency energy; Complete bipartite
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1. INTRODUCTION

In this research work, the graphs under consideration are finite, connected, undirected
and simple graph G = (V(G), E(G)), where V(G) = {v1,v2, ..., v, } the set of vertices and
E(G) = {e1,ea,...,en} the set of edges of graph G. The energy of graph is introduced
and described as a frontier between chemistry and mathematics by Gutman [7]. The
adjacency matrix A(G) of G is defined as A(G) = [a;], where a;; = 1 if v; is adjacent
to vj, and 0 otherwise. Let A1, Ag,..., A\, be the eigenvalues of A(G) with multiplicities
Al A A,
mip Mo ... Mp

The energy of a graph G is the sum of the absolute values of the eigenvalues of the adja-
n

cency matrix of graph G and denoted by £(G). That is, £(G) :Z I\l
i=1
Subsequently, several degree-based energies were identified for simple graphs. In general

{m1, ma, ..., my}, respectively. Hence, spec(G) =
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terms, TI(G) = Z F(d;,d;) represents the degree-based topological indices for an undi-
VU
rected graph, where JF is a symmetric function of two variables.
The authors of the article [4] introduced general extended adjacency matrix with each
degree-based topological index. ATI(G) = (ai;), which is defined as a;;= F(d;,d;), if v;
and v; are adjacent and 0 otherwise. Let fi, f2, f3,..., fn be the eigenvalues of the ex-
tended adjacency matrix ATI(G). The energy of the general extended adjacency matrix
n

is defined as ETI(G) = Z | fil.
i=1

Definition 1.1. [8] A graph G = (V(G), E(G)) is said to be Bipartite if its vertices can
be partitioned into two disjoint subsets in such a way, that no edge joins two vertices in
the same set. And a Complete bipartite graph is a simple bipartite graph in which each
vertex in one partite set is adjecent to all other vertices in other partition set. If the two
partite sets have cardinality p and q, then this graph is denoted by Kp 4.

Definition 1.2. [3] A graph G in which a vertex is distinguished from other vertices is
called a rooted graph and the vertex is called the root of G. Let G be a rooted graph. The
graph G obtained by identifying the roots of n copies of G is called a One-point union
of the n copies of G.

Let KI(,Z) be the one-point union of k-copies of K}, 4. {vi1,vi2, ..., Vi(p1q)} be the vertices
of i*" copy of Kpq, where i =1,2,..., k. Let Kl(fq) be the graph obtained by identifying the
vertices v1i1,vs1,v31...Uk1 Of degree g which is denoted by vi;. Here the total number of

vertices in K,Sf“,} isk(p+q)—k+1. Kgfi} be the rooted graph as K, ; with root v;;1, where
1=1,2,... k.

Definition 1.3. [1] Let A € R™*", B € RP*?. Then the Kronecker product (or tensor

product) of A and B is defined as the matrix

(IHB ce alnB

A®B = L :
amlB ce amnB

Definition 1.4. [2] The Randi¢ matrix of the graph G = (V(G), E(G)) is the square

matriz of order n, whose (i, j)—element is equal to ————x if v; and vj are adjacent
v/ deg(vi)deg(v;)

vertices, and is zero otherwise. The Randié energy is the sum of the absolute values of
the eigenvalues of the Randi¢ matrix.

Definition 1.5. [11] The Extended adjacency matrix of the graph G = (V(G), E(Q))

is the square matriz of order n, whose (i,j)—element is equal to l(j:ggzi_)) ZZEZ]:))) if v;
j 7

2
and v; are adjacent vertices, and zero otherwise. The Extended energy is the sum of the

absolute values of the eigenvalues of the extended adjacency matriz.

Lemma 1.1. [10] If G and H are two rooted graphs with roots r and s, then the charecter-
istic polynomial of the coalescence G - H is

(G- H) = ¢(G)p(H — s) + ¢(G —r)p(H) — x¢(G —r)p(H — ).
Lemma 1.2. [7] The energy of complete bipartite graph Ky 4 is 2,/pq.

Proposition 1.1. [12] Let M, N, P, Q be the matrices with the order p X p,p X q,q X p,q X q
respectively, and let () be invertible and
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M N
S=
P Q

Then detS = detQ - det{]M — NQ~1P].

Proposition 1.2. [1] If A € R™™ and B € R™ " be invertible matrices then (A ® B)™!

=A'eBL
[a b b b ]
b a b b
Proposition 1.3. [9] The matriz Anx,=| 0 b @ b
b b b a
L 4 nXxXn

then their determinant will be (a + (n — 1)b)(a — b)" "' and their inverse will be

[ @+ (n—2)b —b —b —b
—b a+(n—2)b —b —b
-1_ 1 —-b —b a+(n—2)b —b
A " (a—b)(at+(n—1)d) ( . )
—b —b —b a+(n—2)b
L nxn

2. MAIN RESULTS
Theorem 2.1. Let Kz(fq) be the one-point union of k-copies of K, ,. Then

EESN =2 /g Fp—T1+ (k—1)y/p—1.

Proof. For one-point union of 2-copies of K, ,, G = H = K, 4
G* = H* = K,_1 4 (by removing the root v;1, i = 1, 2)

5(C) = B(H) = (&  po)ar*i~2
$(G) = (") = (a2 = (p — g)art~?

By lemma 1.1., ¢(G - H) = ¢(G)p(H") + ¢(G*)p(H) — xd(G*)p(H™).

O(G - H) =2(a* — pq)(2® — (p — 1)q)z*P 2475 — p(2? — (p — 1)q)*a? 12176
O(G - H) = 2?1275z — (p — 1)q)[2(2* — pq) — (2* — (p — 1)q)]

S(A(KYY) - ) = (G- H) = 2 2075(22 — (p — 1)q)(«® — (p + 1)q).

)

For one-point union of 3-copies of K, 4, G = K,S?q), H=Kp,.
G* =Ky 1qUK,_ 14, H = K,_14. (by removing the root)

Qb(G) = x2p+2q—5(q;2 _ (p — 1)‘])((112 _ (p 4 1)(])7 ¢(H) — (x2 . pq)xp+q_2
(G*) = (x2 _pq)2x2(P+qf2), P(H*) = (x2 —(p— 1)q)$p+q,3

By lemma 1.1., ¢(A(Kyy) : @) = ¢(G - H) = 23737822 — (p — 1)g)%(22 — (p + 2)q).

Let ¢(K,§fi}) = gMPHha=3k+1(22 _ (p — 1)g)* (2% — (p + k — 1)q) be true, then for KZ(,{ch),
G = Kzgfﬁq)’ H = Kpg.

k
G* = U Kp-1,4, H* = Kp_1,4. (by removing the root)
=1

1=
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$(G) = 2R3k (g2 — (p —1)g)* N (2® — (p+ & — 1)q), o(H) = (2° — pg)a? 9~
H(G") = (a2 — pg) ka2, () = (22 — (p— D)g)a? -

by lemma 1.1., gb(A(K]g?qH) x) = ¢(G- H) = 3 +3ka=3k=2(32 _ (p —1)q)*(2? — pg+ 22 —
(p+k—1)g—a?+(p—1)q)
GAKY™) s ) = 222 — (p = 1)) (2 = (p + K)a)

BAKLY) : ) = MO (@2 — g(p — 1)) (2 — gk +p — 1))

By the mathematical inducation, it is true for all £ € N.
KFy —
spec(Kp,q)
0 Va1 —Valp-1) Valk+p-1) —a(k+p-1)
k(p+q)—3k+1 k-1 k—1 1 1
E(KLY) = 2k =)l — D +2(Valk+p—1) = 2y/alk—1(vp= D) +vEFp—1). O

Example 2.1. The energy of one-point union of 3-copies of Ka3 is 8v/3.

Figure 1: One-point union of 3-copies of K 3.

V11 V12 V22 V32 V13 Vi4 V15 V23 V24 V25 U33 U34 U35
op /0 0O 0O O 1 1 1 1 1 1 1 1 1
vef 0O 0 0 0 1 1 1 0 0 0 0 0 0
ve| O 0 0 0 0 0 0O 1 1 1 0 0 0
vl O 0 0 0 0O 0 0 0O 0 0 1 1 1
vzl 1 1 0 0 0O 0 O O 0O 0 0O 0 0
val 1 1 0 0 0O 0 O O 0O 0 0O 0 0
AEKS)=wvs| 1 1 0 0 0 0 0 0 0 0 0 0 0
vl 1 0 1 0 0 0 0 0O 0O 0 0O 0 0
vl 1 0 1 0 0 0 0O O 0O 0 0O 0 0
ws| 1 0 1 0 0 0 0 0O 0 0 0 0 0
vl 10 0 1 0 0 0O O 0O 0 0 0 0
vl 10 0 1 0 0 0O O 0O 0 0O 0 0
vis\1 0 0 1 0 0 0 0 0 0 0 0 0
(3) 0 V3 —V3 2v3 -2V3
spec(Ky3) = < 7 9 9 1 1 )
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Theorem 2.2. Let K},fi} be the one-point union of k-copies of K, ,. Then
ETI(K)) = 2kq(y(p — 1) + @), where a = [F(p, kq)|2 and v = [F(p, q))*-

Proof. The general extended adjacency matrix of K]gﬁl) is
K®) Okp-1)+1 B

ATI( ) - < BT qu )

where Bk (p—1)+1)xkg=

F(p, kq) F(p,kq) F(p,kq) F(p,kq) F(p, kq) F(p, kq)

F(p,q) F(p,q) 0 0 0 0

F(p,q) F(p,q) 0 0 0 0

0 0 F(p,q) F(p,q) 0 0

0 0 F(p,q) F(p,q) 0 0

0 0 0 0 F(p,q) F(p,q)

0 0 0 0 F(p,q) F(p,q)
The characteristic polynomial of the above matrix is given from proposition 1.1.,

k)N Lo k)| _ l‘—’k 41
S(ATI(KK)) : 2) = oI, — ATI(K))| T> N qu
= [@Iygl|xTyp-1)41 — (= B)(2lkg) " (=B")]
= | lkgllaTyp—1)41 — Blalyy) ' BT
1) — B(“”qurlBT =
a? —kqo | —qf -8 —qp —qf —qp —qf

-8 |2 —qy —q 0 0 0 0

—af | - ?—qy 0 0 0 0
) —qp 0 0 2—qy —qy 0 0

—qB 0 0 —q v —qy 0 0

—qB 0 0 0 0 z? — qy —q
(s T
- TT 1% ’
where a = [F(p, kq)|?, 3 = F(p,kq)F(p,q) and v = [F(p,q)]?

z? —qy —qy
and V = P® I, P= :
—q7 2* —qy

(p—1)x(p-1)
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[@Ii(y-1) — Blalpy) " BT = det(V) - det(S — TV 1)
det(V) = (xQ —(p— 1)q,y)k’(x2)k(p—2)

From proposition 1.2. and 1.3.,

(@ = (p—=2)av) a7 - 7
-1_ _ 1 : : ‘ :
P = (@2—(p—1)g7)(=?) ) ' . 2 ‘
v qy - (gj — (p — 2)q,}/) (p—1)x(p—1)
—— k(p —1)¢*5°

(22 — (p — 1)q7)
(2% — kqa)(2? — (p — 1)) — k(p — 1)¢*B?

_ 1T _
S-TVIT =] (22 = (p—1)qv)

]

H(ATI(KE)) ) = Aot L0210 E () 2 (p— Dy + kqa))

'q k(p—1)+1
SATI(KE)) : 2) = FPTO=30 (22 — (p — 1)gy)F (2% — ((p — D7 + kqav))]
(k)y _ 0 +/(p—1gy =((p—1)gy + kqa)
spec(Kpq) = ( k(p+q) — 3k +1 k—1 1 )
ETI(KY)) = 2kq(v(p — 1) + a),
where a = [F(p, kq)]* and v = [F(p, q)]*. O

Corollary 2.1. The Randi¢ energy of one-point union of k-copies of the complete bipartite

p—1

graph K, , obtained by identifying k vertices of degree q is 2+ 2(k — 1) o

Proof. For the Randi¢ matrix of (KZ(){?),

a=[F(p,kq))* = 7.8 = F(p.ka)F(p,q) = 7 and v = [F(p,q)]* = 5

G(R(KN)) « x) = aPra)—3k+1[((g2 — 2oLyk=1y(32 1)

]
—, /= /el —
spec(KI(,{cq)) = 0 P p bl
kp+q) —3k+1 k-1 k-1 1 1

RE(Ky9) = 2+ 2(k — 1), /22 0

Corollary 2.2. The Extended energy of one-point union of k-copies of the complete bi-
partite graph K, , obtained by identifying k vertices of degree q is

k(k—1)v/a(p—1) (0> +4%)+1/k2q(p—1) (p2+¢2)2 +kq(k2q>+p?)?
kpq ’

Proof. The the extended matrix of KISZ) ,

2 2)2 2 2 2 2.2

o = [F(p,kq)]? = LELE, B = P(p, kq)F(p, q) = EF0)E0)
2 2.2\2
and v = [F(p, q)]* = Zghob-.

O Acat(K (i) : @) = ab9(a? = y(p = 1)F (@M 0D gy s la® — (p— 1)y — o
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-1
_  k(p+q)—3k+1 2 ap=1)(p*+e*)?\" 2 _ KFrq(p—1)(0*+4¢*)*+kq(K*¢*+p*)?
=z z 1p2g? r 1KZp2 g2

(K(k ) 0 L Va= D+ VE2q(p—1)(p?>+¢)%+kq(k2¢2+p?)2
spec(Kpq) = 2pq 2kpgq

P k(p+q) — 3k +1 k-1 1

Bl 1) = M) G AT :

Example 2.2. The Randi¢ energy of one-point union of 3-copies of K32 is 2 + 4\/g.

Va3

Va2

Figure 2: One-point union of 3-copies of K3 2.

the Randi¢ matrix of the graph is R(K?E?’Q)) =

V11 V12 V13 V22 V23 V32 V33 V14 V15 V24 U25 U34 U3
vy /0 0 0 0 0 0 0 3—;5 ﬁ ﬁ ﬁ ﬁ ﬁ
vl 0 0 0 0 0 0 0 % % 0 0 0 0
vzl 0 0 0 0O 0 0 0 % % 0 0 0 0
vel 0 0 0 O O 0 0 0 0 % % 0 0
v3l 0 0 0O O O 0O 0 0 0 % % 0 0
v2] 0 0 0O O O 0 0 0 0 0 0 % %
v3] 0 0 O O O 0O O O 0 0 0 % %
V14 ?\1@ % % 0o 0 0 0 0 0 0 0 0 0
vl s 5 w5 0 0 0 0 0 0 0 0 0 0
Va4 ?\1@ 0 0 % % 0 0 0 0 0 0 0 0
vis | 55 0 0 % % 0 0 0 0 0 0 0 0
V34 ?\1@ 0 0 0 0 % % 0 0 0 0 0 0
vs\z5 0 0 0 0 % % 0 0 0 0 0 0

N
[\
—_
—_

2
spec(Ké?)) = ( 0 \/;

72
RE(KSY)) = 2+4/2.

|
Prer
—_
|
—_
\/

3. MATLAB PROGRAM

The generalized adjacency matrix, its determinant and its energy can be found in the
following MATLAB program:
p=input(”Enter the q degree vertices:”);
gq=input(”Enter the p degree vertices:”);
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n=input(”Enter the no. of copies of graph:”);
A = zeros(n*(p-1)+1,0*(p-1)+1);
Bl=ones(1,n*q);

A1l =ones(p-1,q);

N =n;

Ar = repmat(Al, 1, N);

Ac = mat2cell(Ar, size(Al,1), repmat(size(Al,2),1,N));
B2 = blkdiag(Ac:);

B=[B1;B2];

C=B.;

D= zeros(n*q,n*q);

K = [A,B;C,D];

det(K);

E=sum/(abs(eig(K)))

The generalized Randi¢ matrix, its determinant and its Randié¢ energy can be found in
the following MATLAB program:

p=input(”Enter the q degree vertices:”);
gq=input(”Enter the p degree vertices:”);
n=input(”Enter the no. of copies of graph:”);

A = zeros(n*(p-1)+1,n*(p-1)+1);

Bl= (1/sqrt(n*p*q))*ones(1,n*q);

A1 =ones(p-1,q);

N =n;

Ar = repmat(Al, 1, N);

Ac = mat2cell(Ar, size(Al,1), repmat(size(Al,2),1,N));
B2 = 1/(sqrt(p*q))*blkdiag(Ac:);

B=[B1;B2];

C=B.;

D= zeros(n*q,n*q);

K = [A,B;C,D];

det(K);

E=sum(abs(eig(K)))

The generalized extended adjacency matrix, its determinant and extended energy can
be found in the following MATLAB program:
p=input(”Enter the q degree vertices:”);
gq=input(”Enter the p degree vertices:”);
n=input(”Enter the no. of copies of graph:”);

A = zeros(n*(p-1)+1,n*(p-1)+1);
B1=1/2%(((n*a),/p)+(p/ (n*q))) "ones(1,n*q);

A1 =omnes(p-1,q);

N = n;

Ar = repmat(Al, 1, N);

Ac = mat2cell(Ar, size(A1,1), repmat(size(Al,2),1,N));
B2 = 1/2*((p/a)+(a/p))*blkdiag(Ac:);

B=[B1;B2];

C=B.;

D= zeros(n*q,n*q);

(7
(7
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K = [A,B;C,DJ;
det(K);
E=sum/(abs(eig(K)))

4. CONCLUSIONS
Conclusion 4.1. £(JK,4) > S(K]Sf“q))
k

Proof. Here from lemma 1.2., £(J K 4) = 2k,/pq and from theorem 2.1.
k

E(KND) = 2/alVETp— 1+ (k—1)vp—1].

Let us assume 2k./pq < 2\/q[vVk+p—1+(k—1)yp—1

kyp<VE+p—T1+(k—-1)p—-1

Eyp+vVp—1<VE+p—1+kyp—1

but ky/p>kyp—Tand Vp—1>VE+p—1

Therefore, k\/p+vVp—1>Vk+p—1+kyp—1

from contradiction, 2k,/pq < 2,/q[v/k +p — 1+ (k —1)y/p — 1] is not possible.

2k\/pq > 2/qlVEk +p— 1+ (k—1)y/p—1]

That is, E(J Kp.q) > K. O
k

In this paper, the energy and degree based energies of k-copies of one point union of
K, 4 graph are obtained. Their MATLAB code have been discussed. The energy of simple
union of K, , is higher than energy of one point union of K, with the same number of
copies have been investigated.
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