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INVESTIGATION OF INTUITIONISTIC FUZZY CONTRA
Gδ-e-LOCALLY CONTINUOUS AND IRRESOLUTE FUNCTIONS

G. SARAVANAKUMAR1,∗ §

Abstract. This paper aims to present the concepts of intuitionistic fuzzy contra Gδ-e-
locally continuous and intuitionistic fuzzy contra Gδ-e-locally irresolute functions within
the framework of intuitionistic fuzzy topological spaces. Additionally, various notewor-
thy properties of these functions are explored and elucidated.
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1. Introduction

The genesis of fuzzy set theory can be traced back to Zadeh [11], with Atanassov [1]
later extending the concept to intuitionistic fuzzy(I.F) sets. I.F topological spaces and
related notions, including I.F continuity, were introduced by Coker [3]. Sobana et al. [9]
introduced the notion of I.F e-closed sets, while Ganster and Relly [5] utilized locally
closed sets to define LC-continuity and LC-irresoluteness. Balasubramanian [2] delved
into fuzzy Gδ sets in fuzzy topological spaces.

Building upon these foundational works, this paper introduces the concepts of I.F contra
Gδ-e-locally continuous and I.F contra Gδ-e-locally irresolute functions in I.F topological
spaces, along with the establishment of various intriguing properties.

2. Preliminaries

Definition 2.1. [1] Let ℑ be a nonempty, predetermined set I be [0, 1]. An I.F set
(I.F.S)Γ is an entity of the subsequent structure Γ = {⟨κ, θΓ (κ), ςΓ (κ)⟩ : κ ∈ ℑ},
where the function θΓ : ℑ → I & ςΓ : ℑ → I represent the degree of inclusion (θΓ (κ))
and the degree of exclusion (ςΓ (κ)) ∀ κ ∈ ℑ in regard to the set Γ , as appropriate, and
0 ≤ θΓ (κ) + ςΓ (κ) ≤ 1 ∀ κ ∈ ℑ.
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Definition 2.2. [1] Let ℑ be a nonempty predetermined set and the I.F.S’s Γ and
ß is an entity of the subsequent structure Γ = {⟨κ, θΓ (κ), ςΓ (κ)⟩ : κ ∈ ℑ}, ß =
{⟨κ, θß(κ), ςß(κ)⟩ : κ ∈ ℑ}. Then

(i) Γ ⊆ ß if and only if θΓ (κ) ≤ θß(κ) and ςΓ (κ) ≥ ςß(κ) for all κ ∈ ℑ;
(ii) Γ = {⟨κ, ςΓ (κ), θΓ (κ)⟩ : κ ∈ ℑ};
(iii) Γ ∩ ß = {⟨κ, θΓ (κ) ∧ θß(κ), ςΓ (κ) ∨ ςß(κ)⟩ : κ ∈ ℑ};
(iv) Γ ∪ ß = {⟨κ, θΓ (κ) ∨ θß(κ), ςΓ (κ) ∧ ςß(κ)⟩ : κ ∈ ℑ};

Definition 2.3. [1] The I.F.S’s 0∼ and 1∼ are formulated by , 0∼ = {⟨, 0, 1⟩ : κ ∈ ℑ} and
1∼ = {⟨κ, 1, 0⟩ : κ ∈ ℑ}.

Definition 2.4. [3] An I.F topology (I.F.T) n Coker’s sense, given a nonempty set,
express concisely. ℑ is a family ⊤ of I.F.Ss in ℑ Meeting the following axioms.:

(i) 0∼, 1∼ ∈ ⊤;
(ii) G1 ∩G2 ∈ ⊤, for any G1, G2 ∈ ⊤;
(iii) ∪Gi ∈ ⊤ for arbitrary family {Gi : i ∈ J} ⊆ ⊤.

Within this article, authored by (ℑ, ⊤) Simply through ℑ We’ll signify Coker’s I.F
topological space (I.F.T.S). Each I.F.S that pertains to ⊤ is called an I.F open set
(I.FOS) in ℑ. The complement thereof Γ of an I.FOS Γ in ℑ is referred to as a I.F closed
set (I.FCS) in ℑ.

Definition 2.5. [3] Let (ℑ, ⊤) represent I.F.T.S and Γ = {⟨κ, θΓ , ϑΓ ⟩ : κ ∈ ℑ} be an
I.F.S in ℑ. Then the I.F closure and I.F interior of Γ are delineated by

(i) I.Fcl(Γ ) =
∩
{C : C is an I.FCS in ℑand C ⊇ Γ};

(ii) I.Fint(Γ ) =
∪
{D : D is an I.FOS in ℑand D ⊆ Γ};

Definition 2.6. [4] Let ℑ constitute a nonempty set, and κ ∈ ℑ a constant element
within ℑ. If r ∈ I0, s ∈ I1 are predetermined real numbers such that r + s ≤ 1, then
the I.F.S κr,s = ⟨κ,κr, 1− κ1−s⟩ is termed as I.F point (I.F.P) in ℑ, where r denotes
the degree of inclusion of κr,s, s denotes the degree of exclusion of κr,s and κ ∈ ℑ the
support of κr,s. The I.F.P κr,s resides within I.F.S Γ (κr,s ∈ Γ ) if and only if r < θΓ (κ),
s > ςΓ (κ).

Definition 2.7. [6] An I.F.S U of an I.F.T.S ℑ is called
(i) neighborhood of an I.F.P c(a, b), if there’s a I.FOS G in ℑ such that c(a, b) ∈ G ≤

U .
(ii) q-neighborhood of an I.F.P c(a, b), if there’s a I.FOS G in ℑ such that c(a, b)qG ≤

U .

Definition 2.8. [10] Let Γ be I.F.S in an I.F.T.S (ℑ, ⊤). Γ is termed as
(i) I.F regular open set ( I.FROS) if Γ = I.FintI.Fcl(Γ )
(ii) I.F regular closed set ( I.FRCS) if Γ = I.FclI.Fint(Γ )

Definition 2.9. [2] Let (ℑ, ⊤) be a fuzzy topological space and λ be a fuzzy set in ℑ. λ

is called Gδ set if λ =
∞∧
i=1

λi where each λi ∈ ⊤. The complement of fuzzy Gλ is fuzzy Fσ

Definition 2.10. [10] Let (ℑ, ⊤) be an I.F.T.S and Γ = ⟨κ, θΓ (κ), ϑΓ (κ)⟩ be a I.F.S in
ℑ. Then the I.F δ closure and interior of Γ are represented and delineated by I.Fclδ(Γ ) =
∩{K : K is an I.FRCS in ℑ and Γ ⊆ K} and I.Fintδ(Γ ) = ∪{G : G is an I.FROS in ℑ and
G ⊆ Γ}.
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Definition 2.11. [9] Let Γ be an I.F.S in an I.F.T.S (ℑ, ⊤). Γ is termed as an I.F
e-open set (I.FeOS) in ℑ if Γ ⊆ I.FclI.Fintδ(Γ ) ∪ I.FintI.Fclδ(Γ )

Definition 2.12. [7] Let (ℑ, ⊤) be an I.F.T.S. Let Γ = {⟨κ, θΓ (κ), ςΓ (κ)⟩ : κ ∈ ℑ}
be an I.F.S on an I.F.T.S (ℑ, ⊤). Then Γ is deemed I.F e- locally closed set (I.F − e-
LCS) if Γ = C ∩ D, where C = {⟨κ, θC(κ), ςC(κ)⟩ : κ ∈ ℑ} is an I.FeOS and D =
{⟨κ, θD(κ), ςD(κ)⟩ : κ ∈ ℑ} is an I.FeCS in (ℑ, ⊤).

Definition 2.13. [7] Let (ℑ, ⊤) be an I.F.T.S. Let Γ = {⟨κ, θΓ (κ), ςΓ (κ)⟩ : κ ∈ ℑ}
be an I.F.S on an I.F.T.S ℑ. Then Γ is deemed an I.F eGδ- set if Γ =

∞∩
i=1

Γi, where

Γi = {⟨κ, θΓi(κ), ςΓi(κ)⟩ : κ ∈ ℑ} is an I.FeOS in an I.F.T.S (ℑ, ⊤).

Definition 2.14. [7] Let (ℑ, ⊤) be an I.F.T.S. Let Γ = {⟨κ, θΓ (κ), ςΓ (κ)⟩ : κ ∈ ℑ}
be an I.F.S on an I.F.T.S (ℑ, ⊤). Then Γ is deemed an I.F eGδ-locally closed set
(I.F− eGδ-LCS) if Γ = C ∩D, where C = {⟨κ, θC(κ), ςC(κ)⟩ : κ ∈ ℑ} is an I.F eGδ set
and D = {⟨κ, θD(κ), ςD(κ)⟩ : κ ∈ ℑ} is an I.FeCS in (ℑ, ⊤).

The complement of an I.F eGδ-LCS is said to be an I.F eGδ-LOS.

Definition 2.15. [7] Let (ℑ, ⊤) be an I.F.T.S. Let Γ = {⟨κ, θΓ (κ), ςΓ (κ)⟩ : κ ∈ ℑ}
be an I.F.S on an I.F.T.S (ℑ, ⊤). Then Γ is deemed an I.F Gδ-e-locally closed set
(I.FGδ-e-LCS) if Γ = ß ∩ C, where ß = {⟨κ, θß(κ), ςß(κ)⟩ : κ ∈ ℑ} is an I.F Gδ set and
C = {⟨κ, θC(κ), ςC(κ)⟩ : κ ∈ ℑ} is an I.FeCS in (ℑ, ⊤).

The complement of an I.F Gδ-e-LCS is said to be an I.F Gδ-e-LOS.

Definition 2.16. [7] Let (ℑ, ⊤) be an I.F.T.S. Let Γ = {⟨κ, θΓ (κ), ςΓ (κ)⟩ : κ ∈ ℑ}
be an I.F.S on an I.F.T.S (ℑ, ⊤). The I.F Gδ-e-locally closure of Γ are represented and
delineated by I.FGδ-e-lcl(Γ ) =

∩
{ß : ß = ⟨κ, θß(κ), ςß(κ)⟩ : κ ∈ ℑ is an I.F Gδ-e-LCS

in ℑ and Γ ⊆ ß}.

Definition 2.17. [7] Let (ℑ, ⊤) be an I.F.T.S Let Γ = {⟨κ, θΓ (κ), ςΓ (κ)⟩ : κ ∈ ℑ}
be an I.F.S on an I.F.T.S (ℑ, ⊤). The I.F Gδ-e-locally interior of Γ are represented
and delineated by I.FGδ-e-lint(Γ ) =

∪
{ß : ß = {⟨κ, θß(κ), ςß(κ)⟩ : κ ∈ ℑ} is an I.F

Gδ-e-LOS in ℑ and ß ⊆ Γ .

Definition 2.18. [7] Let (ℑ, ⊤) be an I.F.T.S. Let Γ = ⟨κ, θΓ , ςΓ ⟩ be an I.F.S in an
I.F.T.S (ℑ, ⊤). Then Γ is deemed an I.F Gδ-e-locally neighbourhood of an I.F.P xr,s
if there exists an I.F Gδ-e-LOS ß in an I.F.T.S (ℑ, ⊤) such that xr,s ∈ ß, ß ⊆ Γ . It is
indicated by I.FGδ-e-lnbd.

Definition 2.19. [7] Let (ℑ, ⊤) be an I.F.T.S. Let Γ = ⟨κ, θΓ , ςΓ ⟩ be an I.F.S in an
I.F.T.S (ℑ, ⊤). Then Γ is deemed an I.F Gδ-e-locally quasi neighbourhood of an I.F.P
xr,s if there exists an I.F Gδ-e-loc ß in an I.F.T.S (ℑ, ⊤) such that xr,sqß, ß ⊆ Γ . It is
indicated by I.FGδ-e-lqnbd.

Remark 2.1. [7]
(i) The family of all I.F Gδ-e-lnbd of an I.F.P xr,s It is indicated by N I.FGδ-e-l(xr,s).
(i) The family of all I.F Gδ-e-lqnbd of an I.F.P xr,s It is indicated by N I.FGδ-e-lq(xr,s).

3. Intuitionistic fuzzy contra Gδ-e-locally continuous functions

Definition 3.1. Let (ℑ, ⊤) and (℘, S) be any two I.F.T.S’s. Let ê : (ℑ, ⊤) → (℘, S)
be an I.F mapping (IFM). Then ê is said to be an I.F contra Gδ-e-locally continuous
function(I.FCont.Gδ-e-l.cts.fun), if ê−1(Γ ) is I.FGδ-e-LCS in ℑ for every I.FOS Γ in ℘
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Theorem 3.1. Let (ℑ, ⊤) and (℘, S) be any two I.F.T.S’s. Let ê : (ℑ, ⊤) → (℘, S) be
an IFM. Then the following are equivalent.

(i) ê is an I.FCont.Gδ-e-l.cts.fun.
(ii) ê−1(ß) is an I.F Gδ-e-LCS in an I.F.T.S (ℑ, ⊤), for each I.FOS ß in an I.F.T.S

(℘, S).
(iii) ê−1(Γ ) is an I.F Gδ-e-LOS in an I.F.T.S (ℑ, ⊤), for each I.FCS Γ in an I.F.T.S

(℘, S).
(iv) ê−1(I.Fint(Γ )) ⊆ I.FGδ-e-lint(ê−1(Γ )), for each I.FCS Γ in an I.F.T.S (℘, S).
(v) I.FGδ-e-lcl(ê−1(Γ )) ⊆ ê−1(I.Fcl(Γ )), for each I.FOS Γ in an I.F.T.S (℘, S).

Proof. (i)⇒ (ii): Let Γ be an I.FCS in an I.F.T.S (℘, S). Let xr,s be an I.F.P in an
I.F.T.S (ℑ, ⊤) such that xr,sqf

−1(Γ ). Since ê is an I.FCont.Gδ-e-l.cts.fun, there exists
ß ∈ N I.FGδ-e-lq(xr,s) such that ê(ß) ⊆ Γ . Then

xr,s ∈ ß (1)
ß ⊆ ê−1(ê(ß)) (2)

Thus, xr,s ∈ ß ⊆ ê−1(ê(ß)) ⊆ ê−1(Γ ). This implies xr,s ∈ ê−1(Γ ) which shows that
ê−1(Γ ) ∈ N I.FGδ-e-lq(xr,s). Hence ê−1(Γ ) is an I.F Gδ-e-LOS in an I.F.T.S (ℑ, ⊤).

(ii)⇒ (i): This can be proved by taking complement of (i)
(iii)⇒ (iv): Let Γ be an I.FCS in an I.F.T.S (℘, S). Since Γ ⊆ I.Fcl(Γ ), ê−1(Γ ) ⊇

ê−1(I.Fint(Γ )). By (iii), ê−1(I.Fint(Γ )) is an I.F Gδ-e-LOS in an I.F.T.S (ℑ, ⊤). Thus,
I.FGδ-e-lint(ê−1(Γ )) ⊇ ê−1(I.Fint(Γ )).

(iv)⇒(v): Using (iv), I.FGδ-e-lint(ê−1(Γ )) ⊇ ê−1(I.Fint(Γ )).Then I.FGδ-e-lint(ê−1(Γ ))

⊆ ê−1(I.Fint(Γ )), I.FGδ-lcl(ê−1(Γ )) ⊆ ê−1(I.Fcl(Γ )), I.FGδ- e-lcl(ê−1(Γ )) ⊆ ê−1(I.Fcl(Γ ))

implies that ê−1(I.Fcl(Γ )) ⊇ I.FGδ-e- lcl(ê−1(Γ )), putting Γ = Γ , we have ê−1(I.Fcl(Γ )) ⊇
I.FGδ-e-lcl(ê−1(Γ )).

(v)⇒ (i): Let Γ be an I.FCS in an I.F.T.S (℘, S). Then I.FclΓ = Γ . Using (v),
ê−1(I.Fint(Γ )) ⊆ I.FGδ-e-lint(ê−1(Γ )) implies that ê−1(Γ ) ⊆ I.FGδ-e-lint(ê−1(Γ )). But,
I.FGδ-e-lint(ê−1(Γ )) ⊆ ê−1(Γ ) implies that ê−1(Γ ) = I.FGδ-e-lint(ê−1(Γ )) that is, ê−1(Γ )
is an I.F Gδ-e-LOS in an I.F.T.S (ℑ, ⊤). Let xr,s be any I.F.P in ê−1(Γ ). Then xr,s ∈
ê−1(Γ ). We have xr,sqf

−1(Γ ) implies that ê(xr,s)qf(ê
−1(Γ )). But ê(ê−1(Γ )) ⊆ Γ . Thus,

for any I.F.P xr,s and Γ ∈ N ê(xr,s), there exists ß = ê−1(Γ ) ∈ N I.FGδ-e-lq(xr,s) such that
ê−1(ê(Γ )) ⊆ Γ . Therefore, ê(ß) ⊆ Γ . Thus, ê is an I.FCont.Gδ-e-l.cts.fun. □

Theorem 3.2. Let (ℑ, ⊤) and (℘, S) be any two I.F.T.S’s. Let ê : (ℑ, ⊤) → (℘, S) be
an I.F bijective function. Then ê is an I.FCont.Gδ-e-l.cts.fun if and only if I.Fint(ê(Γ )) ⊆
ê(I.FGδ-e-lint(Γ )), for each I.FCS Γ of an I.F.T.S (ℑ, ⊤).

Proof. Assume that ê is an I.FCont.Gδ-e-l.cts.fun and Γ be an I.FCS in an I.F.T.S
(ℑ, ⊤). Hence, ê−1(I.Fint(ê(Γ ))) is an I.F Gδ-e-LOS in an I.FTS (ℑ, ⊤). From Theorem
(v) of (3.1) ê−1(I.Fintê(Γ )) ⊆ I.FGδ-e-lint(ê−1(ê(Γ ))), ê−1(I.Fintê(Γ )) ⊆ I.FGδ-e-lint(Γ ).
Since ê is an I.F surjective function, ê(ê−1(I.Fintf(Γ ))) ⊆ ê(I.FGδ-e-lint(Γ )). That is,
I.Fint(ê(Γ )) ⊆ ê(I.FGδ-e-lint(Γ )).

Conversely, assume that I.Fint(ê(Γ )) ⊆ ê(I.FGδ-e-lint(Γ )), for each I.F.S Γ of an
I.F.T.S (ℑ, ⊤). Let ß be an I.FCS in an I.F.T.S (℘, S). Then ß = I.Fcl(ß). Since ê

is an I.F surjective function, ß = I.Fcl(ß) = I.Fint(ê(ê
−1(ß))) ⊆ ê(I.FGδ-e-lint(ê−1(ß))).

Since ê is an I.F injective function, ê−1(ß) ⊆ ê−1(ê(I.FGδ-e-lint(ê−1(ß)))). From the fact
that ê, is an I.F injective function, we have

ê−1(ß) ⊆ I.FGδ-e-lint(ê−1(ß)) (3)
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but

I.FGδ-e-lint(ê−1(ß)) ⊆ ê−1(ß) (4)

From (3) and (4) implies that ê−1(ß) = I.FGδ-e-lint(ê−1(ß)). That is, ê−1(ß) is an I.F
Gδ-e-LOS in an I.F.T.S (ℑ, ⊤). Thus, ê is an I.FCont.Gδ-e-l.cts.fun. □

Theorem 3.3. Let (ℑ, ⊤) and (℘, S) be any two I.F.T.S’s. Let ê : (ℑ, ⊤) → (℘, S)
be an I.F bijective fuction. Then ê is an I.FCont.Gδ-e-l.cts.fun if and only if ê(I.FGδ-e-
lcl(Γ )) ⊆ I.Fcl(ê(Γ )), for each I.FOS Γ of an I.F.T.S (ℑ, ⊤).

Proof. Assume that ê is an I.FCont.Gδ-e-l.cts.fun and Γ be an I.FOS in an I.F.T.S
(ℑ, ⊤). Hence, ê−1(I.Fcl(ê(Γ ))) is an I.F Gδ-e-LCS in an I.F.T.S (ℑ, ⊤). From Theo-
rem (v) of (3.1) ê−1(I.Fclê(Γ )) ⊇ I.FGδ-e-lcl(ê−1(ê(Γ ))), ê−1(I.Fclê(Γ )) ⊇ I.FGδ-e-lcl(Γ ).
Since ê is an I.F surjective function, ê(ê−1(I.Fclf(Γ ))) ⊇ ê(I.FGδ-e-lcl(Γ )). That is,
I.Fcl(ê(Γ )) ⊇ ê(I.FGδ-e-lcl(Γ )).

Conversely, assume that I.Fcl(ê(Γ )) ⊇ ê(I.FGδ-e-lcl(Γ )), for each I.F.S Γ of an I.F.T.S
(ℑ, ⊤). Let ß be an I.FOS in an I.F.T.S (℘, S). Then ß = I.Fint(ß). Since ê is an I.F
surjective function, ß = I.Fint(ß) = I.Fcl(ê(ê

−1(ß))) ⊇ ê(I.FGδ-e-lcl(ê−1(ß))). Since ê is an
I.F injective function, ê−1(ß) ⊇ ê−1(ê(I.FGδ-e-lcl(ê−1(ß)))). From the fact that ê, is an I.F
injective function, we have

ê−1(ß) ⊇ I.FGδ-e-lcl(ê−1(ß)) (5)

but

I.FGδ-e-lcl(ê−1(ß)) ⊇ ê−1(ß) (6)

From (5) and (6) implies that ê−1(ß) = I.FGδ-e-lcl(ê−1(ß)). That is, ê−1(ß) is an I.F
Gδ-e-LCS in an I.F.T.S (ℑ, ⊤). Thus, ê is an I.FCont.Gδ-e-l.cts.fun. □

Theorem 3.4. Let (ℑ, ⊤) and (℘, S) be any two I.F.T.S’s. Let ê : (ℑ, ⊤) → (℘, S)
be an I.F bijective fuction. If ê is an I.FCont.Gδ-e-l.cts.fun. Then if Γ ∈ I℘ is an I.FOS,
then ê−1(Γ ) = I.FGδ-e-lcl(ê−1(Γ )).

Proof. Let Γ be an I.FOS in an I.F.T.S (℘, S). By Theorem(iv)of (3.1).

I.FGδ-e-lcl(ê−1(Γ )) ⊆ ê−1(I.Fcl(Γ )) = ê−1(Γ ) (7)

Since Γ = I.Fint(Γ ). But

ê−1(Γ ) ⊆ I.FGδ-e-lcl(ê−1(Γ )) (8)

From (7) and (8) implies that ê−1(Γ ) = I.FGδ-e-lcl(ê−1(Γ )). □

Proposition 3.1. Let (ℑ, ⊤), (℘, S) and (ℵ, R) be any three I.F.T.S’s. Let ê : (ℑ. ⊤) →
(℘, S) be an I.FCont.Gδ-e-l.cts.fun. If ê(ℑ) ⊂ ℵ ⊂ ℘ then g : (ℑ, ⊤) → (ℵ, R) where
R = S/ℵ restricting the range of ê is an I.FCont.Gδ-e-l.cts.fun.

Proof. Let ß be an I.FOS in an I.F.T.S (ℵ, R). Then ß = S/ℵ, for some I.FOS Γ of an
I.F.T.S’s (℘, S). If ê(ℑ) ⊂ ℵ ⊂ ℘, ê−1(Γ ) = g−1(ß). Since ê−1(Γ ) is an I.F Gδ-e-LCS in
an I.F.T.S (ℑ, ⊤). Hence, g−1(ß) is an I.F Gδ-e-LCS in an I.F.T.S (ℑ, ⊤). Therefore,
g is an I.FCont.Gδ-e-l.cts.fun. □

Proposition 3.2. Let (ℑ, ⊤), (X1, T1) and (X2, T2) be any three I.F.T.S’s and Pi :
X1 × X2 → Xi be an I.F projection of X1 × X2 onto Xi. If ê : ℑ → X1 × X2 is an
I.FCont.Gδ-e-l.cts.fun. Then Pi ◦ ê : ℑ → Xi is also an I.FCont.Gδ-e-l.cts.fun.
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Proof. Let Γ be an I.FOS in an I.F.T.S’s (Xi, Ti) (i = 1, 2), (Pi◦ê)−1(Γ ) = ê−1(P−1
i (Γ )).

Since Pi is an IFM P−1
i (Γ ) is an I.FCS in an I.F.T.S’s X1 ×X2. Hence, ê−1(P−1

i (Γ )) is
an I.F Gδ-e-LCS in an I.F.T.S (ℑ, ⊤). Hence, Pi ◦ ê is an I.FCont.Gδ-e-l.cts.fun. □
Definition 3.2. Let (ℑ, ⊤) and (℘, S) be two I.F.T.S’s. Let ê : (ℑ, ⊤) → (℘, S) be an
IFM. Then ê is said to be an

(i) I.F contra Gδ-e-locally irresolute function(I.FCont.Gδ-e-l.irr.fun), if for each I.F
Gδ-e-LCS Γ in an I.F.T.S (℘, S), ê−1(Γ ) is an I.F Gδ-e-LOS in an I.F.T.S (ℑ, ⊤).

(ii) I.F contra weakly Gδ-e-locally irresolute function(I.FCont.WGδ-e-l.irr.fun), if
for each I.F Gδ-e-LCS Γ in an I.F.T.S (℘, S), ê−1(Γ ) is an I.FOS in an I.F.T.S
(ℑ, ⊤).

Example 3.1. Let ℑ = {a, b} = ℘, and Γ =
⟨
κ, ( a

0.3 ,
b
0.3), (

a
0.6 ,

b
0.6)

⟩
,ß =

⟨
κ, ( a

0.3 ,
b
0.1), (

a
0.5 ,

b
0.4)

⟩
,Γ∨ß =

⟨
κ, ( a

0.3 ,
b
0.3), (

a
0.5 ,

b
0.4)

⟩
,Γ∧ß =

⟨
κ, ( a

0.3 ,
b
0.1), (

a
0.6 ,

b
0.6)

⟩
, C =

⟨
κ, ( a

0.7 ,
b
0.7), (

a
0 ,

b
0.1)

⟩
Now, the family ⊤ = {0∼, 1∼, Γ, ß, Γ ∨ ß, Γ ∧ ß} of I.F.S’s in ℑ is an I.F.T on ℑ

and the family S = {0∼, 1∼, C} of I.F.S’s in ℘ is an I.F.T on ℘. If we define the function
ê : ℑ → ℘ be the identity function. Now, ê is an I.FCont.Gδ-e-l.irr.fun because C is an
I.FGδ-e-LOS in ℘, ê−1(C) is also an I.FGδ-e-LCS in ℑ.

Example 3.2. Let ℑ = {a, b} = ℘, and Γ =
⟨
κ, ( a

0.3 ,
b
0.3), (

a
0.6 ,

b
0.6)

⟩
, ß =

⟨
κ, ( a

0.3 ,
b
0.1), (

a
0.5 ,

b
0.4)

⟩
,Γ∨ß =

⟨
κ, ( a

0.3 ,
b
0.3), (

a
0.5 ,

b
0.4)

⟩
,Γ∧ß =

⟨
κ, ( a

0.3 ,
b
0.1), (

a
0.6 ,

b
0.6)

⟩
, C =

⟨
κ, (a0 ,

b
0.1), (

a
0.7 ,

b
0.7)

⟩
Now, the family ⊤ = {0∼, 1∼, Γ, ß, Γ ∨ ß, Γ ∧ ß, C} of I.F.S’s in ℑ is an I.F.T on ℑ

and the family S = {0∼, 1∼, C} of I.F.S’s in ℘ is an I.F.T on ℘. If we define the function
ê : ℑ → ℘ be the identity function, Now, ê is an I.FCont.WGδ-e-l.irr.fun, because C is
an I.FGδ-e-LCS in ℘, ê−1(C) is I.FOS in ℑ.

Theorem 3.5. Let (ℑ, ⊤) and (℘, S) be any two I.F.T.S’s. Let ê : (ℑ, ⊤) → (℘, S) be
an IFM . Then the following statements are equivalent

(i) ê is an I.FCont.Gδ-e-l.irr.fun
(ii) for every I.F.S Γ of an I.F.T.S (ℑ, ⊤), ê(I.FGδ-e-lint(Γ )) ⊇ I.FGδ-e-lint(ê(Γ )).
(iii) for every I.F.S Γ of an I.F.T.S (℘, S), I.FGδ-e-lint(ê−1(Γ )) ⊇ ê−1(I.FGδ-e-

lint(Γ )).

Proof. (i)⇒ (ii): Let Γ be an I.F.S in an I.F.T.S (ℑ, ⊤). Suppose ê is an I.FCont.Gδ-e-
l.irr.fun. Now, I.FGδ-e-lcl(ê(Γ )) is an I.F Gδ-e-LCS in an I.F.T.S (℘, S). By hypoth-
esis, ê−1(I.FGδ-e-lint(ê(Γ ))) is an I.F Gδ-e-LOS in an I.F.T.S (ℑ, ⊤) and hence, Γ ⊇
ê−1(ê(Γ )) ⊇ ê−1(I.FGδ-e-(lint(ê(Γ )))). Now, I.FGδ-e-lint(Γ ) ⊇ ê−1(I.FGδ-e-lint(ê(Γ ))).
That is, ê(I.FGδ-e-lint(Γ )) ⊇ I.FGδ-e-lint(ê(Γ )).

(ii)⇒ (iii): Let Γ be an I.F.S in an I.F.T.S (℘, S), then ê−1(Γ ) is an I.F.S in an
I.F.T.S (ℑ, ⊤). By (ii), ê(I.FGδ-e-lint(ê−1(Γ ))) ⊇ I.FGδ-e-lint(ê(ê−1(Γ ))). Since ê is an
I.F bijective function, I.FGδ-e-lint(ê−1(Γ )) ⊇ ê−1(I.FGδ-e-lint(Γ ))

(iii)⇒ (i): Suppose Γ is I.FGδ-e-LCS in an I.F.T.S (℘, S). Then I.FGδ-e-lcl(Γ ) =
Γ . By hypothesis, I.FGδ-e-lint(ê−1(Γ )) ⊇ ê−1(I.FGδ-e-lint(Γ )), I.FGδ-e-lint(ê−1(Γ )) ⊇
ê−1(Γ ). □

4. Conclusions

This paper introduced and developed the concepts of intuitionistic fuzzy contra Gδ-e-
locally continuous and irresolute functions within intuitionistic fuzzy topological spaces.
Several significant properties of these functions have been identified, enhancing the un-
derstanding of their roles in fuzzy topology. These functions generalize traditional con-
tinuous and irresolute functions by effectively handling uncertainty through intuitionistic
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fuzzy sets. While offering a broader framework for analysis, future research could focus
on addressing the computational complexity and practical implementation challenges and
exploring new properties and types of intuitionistic fuzzy sets.
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