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ALGEBRAIC PROPERTIES OF KERNEL SYMMETRIC
NEUTROSOPHIC FUZZY MATRICES

P. MURUGADAS !, T. SHYAMALADEVI 23* M. ANANDHKUMAR 2, §

ABSTRACT. We define secondary k-Kernel symmetric (KS) and provide numerical exam-
ples for neutrosophic fuzzy matrices (NFM). We discuss the relation between s-k- KS, s-
KS, k- KS and KS NFM. We identify the necessary and sufficient conditions for a NFM
to be a s-k- KS NFM. We demonstrate that k-symmetry implies k-KS and the converse is
true. Also, we illustrate a graphical representation of KS adjacency and incidence NFM.
Every adjacency NFM is symmetric, kernel symmetric but incidence matrix satisfies only
kernel symmetric conditions. We establish the existence of multiple generalized inverses
of NFM in F), and establish the additional equivalent conditions for certain g-inverses of
a s-k-KS NFM to be s-k-KS. Also, we characterize the generalized inverses belonging to
the sets ¥ (1, 2), ¢ (1, 2, 3) and 9 (1, 2, 4) of s-k- KS NFM ¢ .

Keywords: Neutrosophic fuzzy matrices, s- Kernel symmetric, Adjacency Neutrosophic
fuzzy matrices, Incidence Neutrosophic fuzzy matrices, Moore Penrose inverse.
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1. INTRODUCTION

The study of fuzzy and neutrosophic fuzzy matrices has seen substantial advancements
over the years, with contributions from various researchers exploring their theoretical
foundations and applications. These matrices, which generalize classical and fuzzy matrix
theories, offer a robust framework for handling uncertainty, vagueness, and imprecise in-
formation in mathematical models. This introduction provides an overview of significant
works contributing to the development and understanding of fuzzy and neutrosophic fuzzy
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matrices. Anandhkumar et al. have made notable contributions in this field through mul-
tiple studies. Their works cover a broad spectrum of topics, including inverse properties
of neutrosophic fuzzy matrices [1] reverse sharp and partial ordering operations [2] and
interval-valued symmetric matrices [3]. They have also explored concepts such as pseudo-
similarity [4], generalized symmetry [5], and k-idempotent properties [6], contributing to
the structural understanding and applications of these matrices. Their recent advance-
ments also include investigations into secondary k-column symmetry [7].

Earlier foundational studies laid the groundwork for these explorations. Lee [8] ex-
amined secondary symmetric matrices, introducing concepts pivotal for future develop-
ments.Dogra and Pal [9] have studied on Picture fuzzy matrix and its application. Hill and
Waters [10] studied k-real and k-Hermitian matrices, while Jaya Shree [11,12] contributed
to the theory of secondary k-kernel and k-range symmetric fuzzy matrices. These works
have significantly influenced the subsequent research directions in neutrosophic fuzzy ma-
trix theory.Recent developments in interval-valued and generalized matrices [13,14] have
expanded the applicability of fuzzy matrix theory. The works of Kaliraja, Bhavani and
Kim and Roush.Marimuthu and Chanthirababu [15] have studied On Schur Complement
in k-Kernel Symmetric Neutrosophic and Intuitionistic Fuzzy Matrices.

Historical contributions by Meenakshi and collaborators [16-19] also play a vital role in
the evolution of fuzzy matrix theory. Their research on secondary k-Hermitian matrices
[16], s-k-EP matrices [17] and regular interval-valued fuzzy matrices [18] introduced essen-
tial concepts and methodologies that have been further explored and extended by contem-
porary researchers. Punithavalli [20] has discussed The Partial Orderings of m-Symmetric
Fuzzy Matrices.Pal, M., Mondal [21-24] have studied Bipolar fuzzy matrices, Fuzzy ma-
trices with fuzzy rows and columns, Interval-valued fuzzy matrices with interval-valued
fuzzy rows and columns,Recent Developments of Fuzzy Matrix Theory and Applications.
Shyamal and Pal [25] have focused on Interval valued Fuzzy matrices, Triangular Fuzzy
Matrices, Two new operators on fuzzy matrices. The seminal work of Smarandache [21]
on neutrosophic sets provided a generalization of intuitionistic fuzzy sets, which has been
instrumental in the development of neutrosophic fuzzy matrices.

Together, these studies represent a cohesive and evolving body of knowledge in the
domain of fuzzy and neutrosophic fuzzy matrices, addressing theoretical challenges and
opening avenues for diverse applications. This comprehensive framework not only en-
hances mathematical understanding but also provides practical tools for decision-making
and modeling under uncertainty. 1){1} denotes a regular fuzzy matrix and v is set of all g-
inverses. A fuzzy matrix 1 is RS nd KS is denoted by R(y1) = R(x) and N (1) = N ().
It is identified that for complex matrices, the concepts of range and KS are equivalent.
Additionally, this is not true for NFM. Only partial information taking into account truth
membership and falsity-membership values can be handled by intuitionistic fuzzy sets. It
does not deal with the ambiguous and contradictory data found in belief systems.

We introduce and extend the notion of RS NFM. In section 2, a kernel symmetric
neutrosophic fuzzy matrix is described. In section 3, graphical representation of kernel
symmetric adjacency and incidence NFM is given. In section 4, various generalized inverses
of matrices in NFM are detailed. The comparable standards for various g-inverses of a
s-k KS fuzzy matrix to be a s-k KS are established. The generalized inverses of a is K.Sv
corresponding to the sets {1}, ¢¥{1,2},¢{1,2,3} and ¢{1,2,4} are characterized.
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1.1. Research gap. Meenakshi and Jayashri created the idea of range symmetric fuzzy
matrices, while Meenakshi and Jayashri introduced the concept of k-KS matrices. In this
study, we extend these ideas to Secondary k-KS NFM. This framework is essential to the
structure of the hybrid real matrix and we apply it to fuzzy matrices, examining specific
results in detail. Initially, we present alternative characterizations of Secondary k-KS
NFM. Subsequently, we provide an example of a Secondary k-KS NFM. Also, we explore
various g-inverses associated with regular matrices and establish a characterization of the
set of all inverses using Secondary k-KS NFM.

1.2. Notations.

YT = Transpose of the matrix 1,

YT = Moore-Penrose inverse of 1 ,

R(v)= Row space of 1,

N (1)) = Null space of 1,

RS = Range symmetric 1,

K S = Kernel symmetric ¢ ,

F,,= Square Neutrosophic Fuzzy Matrices.

2. KERNEL SYMMETRIC NEUTROSOPHIC Fuzzy MATRICES

Definition 2.1. Let ¢ be a NFM, if N (¢) = {a¢p = (0,0,1) :x € (NFM), } then v is
called as kernel or null space.

Definition 2.2. A NFM ) € F,, is s-symmetric NFM < 1) = VTV,

Example 2.1. Consider a NFM
<0.5,0.3,0.2> <0,0,1> <0.6,0.4,0.3 >
Y= <0,0,1> <0,0,1> <0,0,1> )
<0.6,0.4,0.3 > <0,0,1> <0.3,0.2,04 >
<0,0,0> <0,0,0> <1,1,0>
V=1<000> <1,1,0> <0,0,0>
<1,1,0> <0,0,0> <0,0,0>

Definition 2.3. An adjacency matriz is a square matriz that serves as a representation

for a finite graph. A NFM ) € F,, is s- KS symmetric NFM < N () = N(VyTV).

Example 2.2. Consider a NFM
<0.6,0.4,05> <0,0,1> <04,0.2,0.1 >
Y= <0,0,1> <0,0,1> <0,0,1> )
<04,0.2,0.1 > <0,0,1> <0.7,0.7,0.3 >
<0,0,0> <0,0,0> <1,1,0>
V=1<000> <1,1,0> <0,0,0>
<1,1,0> <0,0,0> <0,0,0>

Definition 2.4. A NFM ) € F,, is s-k-symmetric NFM < N () = N(KVyTVK).

Example 2.3. Consider a NFM
b= <0.6,0.3,04 > <0.7,0.3,0.4 > %
- [<0.7,0.3,04 > <0.7,0.3,0.5 >’

Definition 2.5. A NFM v is kernel symmetric NFM < N () = N(71).
Definition 2.6. A NFM ) is column symmetric NFM < C () = C(y1).
Definition 2.7. A NFM v is range symmetric NFM < R(¢) = R(yT).

~[<0,0,0> <1,1,0>
< 1,1,0> <0,0,0>]|"
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Definition 2.8. The row space of a NFM is the set of all possible linear combinations of its
rows, where the operations are defined according to the type of fuzzy logic or algebra being
used. The rows of the matriz are treated as fuzzy vectors, and their combinations form
a subspace within the fuzzy vector space. Key Characteristics: 1. Fuzzy Row Vectors:
FEach row in the fuzzy matriz represents a fuzzy vector. 2. Fuzzy Linear Combination:
The operations used to combine rows depend on the fuzzy algebra, such as addition & and
scalar multiplication © defined for fuzzy sets or membership degrees. 3. Dimensionality:
The dimension of the row space corresponds to the rank of the fuzzy matrixz, which is the
mazximum number of linearly independent fuzzy rows.

Ezxample Consider a 3x3 NFM

Example 2.4. Consider a NFM
<0.2,04,08 > <0.7,0.3,04> <0.3,0.5,0.6 >

Y =1<0.3,04,08> <0.5,0.2,01 > <0.2,0.2,0.1 >,
<0.1,04,04 > <0.6,0.4,04> <0.2,0.3,0.5 >

Ry =[<0.2,04,0.8 ><0.7,0.3,0.4 >< 0.3,0.5,0.6 > ]
Ry =1[<0.3,04,0.8 >< 0.5,0.2,0.1 >< 0.2,0.2,0.1 >]
R3; =[<0.1,04,04 >< 0.6,0.4,0.4 >< 0.2,0.3,0.5 >]
Steps to Determine the Row Space: 1. Identify the rows 2. Apply fuzzy row reduction (if
needed) to determine linearly independent rows. Use fuzzy linear combinations (e.g., o ®
R1@& B ® R2) to describe all vectors in the row space.

Proposition 2.1. Let the function be defined as V(y) = (Yk[)» Yk[2]> Yk[3)> - - - » Yk[n])

€ Fux1 fory = (y1,Y2, .-, Yn) € Fixn), where V' is permutation matriz and satisfies the
following conditions, VVT = VTV = In then VT =V and N() = N(Vy),N(3p) =
N(¥).

Remark 2.1. Every s-k-symmetric NFM is s-k-KS NFM since 1 = KVYTVK if ¢ is
s-k-symmetric NFM. Thus, N () = N(KVyTV K), signifying that is a NFM with s-k-KS.

Example 2.5. Consider a NFM
Vo [< 0,0,0> <1,1,0 >] o= [< 0.9,0.3,04 > <0.2,0.3,0.4 >]

<1,1,0> <0,0,0>]|" <0.2,0.3,04> <0.7,0.3,0.5 >’

K- [< 1,1,0 > <0,0,0 >]
<0,0,0> <1,1,0>|"

T _|<L1,0> <0,0,0>| |<0,0,0> <1,1,0>
KVy VK = | <,0,0> < 1,1,0 >] [< 1,1,0 > <0,0,0 >]
<0.9,0.3,04> <0.2,03,04>] [<0,0,0> <1,1,0>] [<1,1,0> <0,0,0>
[< 0.2,0.3,04 > <0.7,0.3,0.5 >] L 1,1,0> <0,0,0 >] [ <,0,0> <1,1,0 >}
[<0.9,0.3,04 > <0.2,03,04>]
<0.2,03,04> <0.7,0.3,0.5>| ¥
W is symmetric, s- k -symmetric which implies s- k-KS NFM.

Example 2.6. Consider a NFM

KVylVK =

<0,0,0> <1,1,0> <0,0,0> <0,0,0> <0,0,0> <1,1,0>

K=|<1,10> <0,00> <000>|,V=1,<000> <1,1,0> <0,0,0>
<0,0,0> <0,0,0> <1,1,0> <1,1,0> <0,0,0> <0,0,0>
<0,0,0 > <0,0,0> <1,1,0>

Y= 1<0.5,0.3,04 > <1,1,0 > < 0,0,0 >
<0.4,0.2,0.6 > <0.5,0.3,04> <0,0,0>
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[<0,0,0 >
<1,1,0 >
| <0,0,0>
[<0,1,0 >
<0,1,0 >
|<1,1,0 >
[<0,0,0 >
<0,0,0 >
|<1,1,0 >
[<0,1,0 >
<1,1,0 >

|<0,1,0 >

<0.5,08,04> <04,0806> <0,0,04>
<0.5,0.7,0 >

<0,0.7,0 >

<1,1,0 >
<0,0,0 >
<0,0,0 >
<0,1,0 >
<0,1,0 >
<0,1,0 >
<0,0,0 >
<1,1,0 >
<0,0,0 >
<0,1,0 >
<0,1,0 >
<1,1,0 >

<0,0,0 >
<0,1,0> <0,1,0> <0,1,0>

<0,0,0 >
<0,0,0 >
<1,1,0 >
<0,1,0 >
<1,1,0 >
<0,1,0 >]
<1,1,0 >
<0,0,0 >
< 0,0,0 >
<1,1,0 >
<0,1,0 >

<0,1,0 >

<0,0,0 >

<0,0.7,0 >
<1,0,0 >

<0,1,0> <0,1,0> <1,1,0>

<1,1,0> <0,1,0> <0,1,0>

<0,0.7,0 >
| <0,0,0>
[<0,1,0> <0,1,0> <1,1,0>
<1,1,0> <0,1,0> <0,1,0>
<0,1,0> <1,1,0> <0,1,0>
<0,0,0 >
<0,0,0 >

(< 0.5,0.8,04> <0.4,08,06> <0,0,04>
<05,0.7,0> <0,0.7,0 >
<0,0,0 >

<1,0,0 >

<1,0,0>

<0,0.2,0> <0,0,0>
<0,0,0 >

<0.5,0,0> <04,0,0> <0,0,0>
Y # KVYTVK is not s- k —symmetric iff not is- k-KS.

<0,0,0 >
<1,1,0 >
<0,0,0 >

<1,1,0>
<0,0,0 >
<0,0,0 >

7 .
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<1,1,0 >
<0,0,0 >
<0,0,0 >

<0,0,0 >
<0,0,0 >
<1,1,0 >

2.1. Graphical Representation of kernel symmetric Adjacency NFM.

Definition 2.9. Adjacency NFM : An adjacency Neutrosophic Fuzzy Matrix is a square
matrix that serves as a representation for a finite graph. The matrix’s elements convey
information regarding whether pairs of vertices within the graph are connected or not.
In the specific scenario of a finite simple graph, the adjacency matrix can be described
as a binary matrix, often denoted as a (1,1,0) and (0,0, 1) -matrix, where the diagonal
elements are uniformly set to (0,0,1). If G(V, E) denote a simple graph with n vertices.
The adjacency matrix A = [a;;] is a symmetric matrix defined

1,1 h s adi t toV;
A=la;] = {( »1,0) when v, is adiancent to V; denoted by A(G) or Ag.

(0,0,1) otherwise

Example 2.7. Consider an adjacency NFM and a corresponding graph
[ vl v3 v4 v2 vh ]
vl <0,0,1> <1,1,0> <1,1,0> <0,0,1> <0,0,1>
v3<1,1,0> <0,0,1> <«0,0,1> <0,0,1> <1,1,1>
v4<1,1,0> <0,0,1> <0,0,1> «<1,1,0> <0,0,1>
v2<0,0,1> <0,0,1> <1,1,0> <0,0,1> <1,1,0>
v5<0,0,1> <1,1,0> <0,0,1> <1,1,0> <0,0,1>]
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FIGURE 1

Definition 2.10. Incidence NFM: If G(V, E) represent a simple graph with n vertices.
Let V. =Vi,Va,...,V,, and E = ey, ea,...,em. Then, the incidence NFM I = [myj;] is a
matriz defined by

1,1 h 1S 1NCL to e;
Ao = {( ,1,0) when v is incidence to e; denoted by A(G) or Ag.

(0,0,1) otherwise

Example 2.8. Consider an incidence NFM and a corresponding graph. The incidence
NFM is
<11,0> <1,1,0> <0,0,0> <0,0,1> <0,0,1> <0,0,1> <1,1,0>
<11,0> <1,1,0> <0,0,1> <1,1,0> <0,0,1> <1,1,0> <0,0,1>
A=1<00,1> <1,1,0> <1,1,0> <1,0,1> <0,0,1> <0,0,1> <0,0,1>
<0,0,1> <0,0,1> <1,1,0> <1,1,0> <1,1,0> <0,0,1> <0,0,1>
<0,0,1> <0,0,1> <0,0,1> <0,0,1> <1,1,0> <1,1,0> <1,1,0>
Corresponding Graph

Vi 1 Vi
ez
eh
E? E-I- Ul
€3
Vs -1 Vi
FIGURE 2

2.2. Relation between isomorphism, non-isomorphism and KS.
Graph A

Consider the graph G and name as follows

Let us consider adjacency matrix of the given graph is
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[<0,0,1 >
<1,1,0 >
<0,0,1>
<0,0,1>
<0,0,1>
<0,0,1>

FiGURE 3

<0,0,1>
<0,0,1>
<1,1,0 >
<0,0,1>
<0,0,1>
<0,0,1>

FIGURE 4

<0,0,1>
<1,1,0 >
<0,0,1>
<1,1,0 >
<0,0,1>
<1,1,0 >

<0,0,1>
<0,0,1>
<1,1,0 >
<0,0,1>
<1,1,0 >
<0,0,1>

Consider the graph H and name as follows

<0,0,1>
<0,0
<0,0,1>
<1,1,0 >
<0,0,1>
<0,0,1>

—
V

FIGURE 5

Consider the graph H and name as follows

Let us consider adjacency matrix of the given graph is

[<0,0,1 >
<1,1,0 >
<0,0,1>
<0,0,1>
<0,0,1>
<0,0,1>

<0,0,1>
<0,0,1>
<1,1,0 >
<0,0,1>
<0,0,1>
<0,0,1>

<0,0,1>
<1,1,0 >
<0,0,1>
<1,1,0 >
<0,0,1>
<1,1,0 >

<0,0,1>
<0,0,1>
<1,1,0 >
<0,0,1>
<1,1,0 >
<0,0,1>

<0,0,1>
<0,0,1>
<0,0,1>
<1,1,0 >
<0,0,1>
<0,0,1>

<0,0,1>]
<1,1,0 >
<1,1,0 >
<0,0,1>
<0,0,1>

<0,0,1>]

<0,0,1>]
<1,1,0 >
<1,1,0 >
<0,0,1>
<0,0,1>

<0,0,1>

2063

The two graphs have the same number of vertices, same number of edges and same degree
sequence. Though both the graphs have 3 pendent vertices, 2 vertices of degree 2 and 1
vertex of degree 3, the incidence relation of 3 pendent vertices are not preserved because
in graph G 2 pendent vertices are attached to vertices of degree 2 and 1 pendent vertex
is attached to vertex of degree 3 but in graph H only 1 pendent vertex is attached to
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vertex of degree 2 an 2 pendent vertices are attached to vertex of degree 3. Therefore, the
isomorphism between the two graphs cannot be established.
Thus, the given two graphs are non-isomorphic.

V1 el V2 ul L3 uz
(=)
ez =) ky
Vs ko 4 ks
3 ka
. es
V 3 4 Vi u ks us
FIGURE 6

Let us consider adjacency matrix of the given graph is
<0,0,1> <1,1,0> <0,0,1> <1,1,0> <0,0,1>
<1,1,0> <0,0,1> <1,1,0> <0,0,1> <1,1,0>
G=1<00,1> <1,1,0> <0,0,1> <1,1,0> <0,0,1>
<1,1,0> <0,0,1> <1,1,0> <0,0,1> <1,1,0>
<0,0,1> <1,1,0> <0,0,1> <1,1,0> <0,0,1>

<0,0,1> <1,1,0> <0,0,1> <1,1,0> <0,0,1>
<1,1,0> <0,0,1> <1,1,0> <0,0,1> <1,1,0>
H=|<0,01> <11,0> <00,1> <1,1,0> <0,0,1>
<1,1,0> <0,0,1> <1,1,0> <0,0,1> <1,1,0>
<0,0,1> <1,1,0> <0,0,1> <1,1,0> <0,0,1>

There is a 1-1 correspondence between the vertices and edges. Therefore, the two graphs
G and H are isomorphic.

The given two graphs have same number of vertices, edges and degree sequence and also
the adjacency matrices are equal. Therefore the given Graph is isomorphic and also KS
NFM.

Every isomorphic and non-isomorphic graph is KS adjacency NFM but converse need not
be true.

2.3. Theorems and Resuts.

Theorem 2.1. The subsequent conditions are equivalent for 1 € F,

(i) N(y) = N(¥").
(ii) T = H = K1 for several NFM H, K and p(¢)) = 7.

Theorem 2.2. The subsequent conditions are equivalent for ¢ € F,
(i) N(¢) = N(KVy)TVK)

(i) N(KVy) = N(KV)T)

(ii) N(YKV) = N((¢vKV)T)

(iv) N(Vip) = N(K(Vy)'K)

(v) N(K) = N(V(pK)"'V)

(vi) N(yT) = N(KV (4)VK)

(vii) N(¢) = N(¢"VK)

(viii) N(") = N(pKV)

(iz) v = VKYTVKH, for Hy € F,
(x) v = HHKVYTVK for H € F,
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(zi) T = KVYVKH for H € F,

(zii) YT = HKVYKV for H € F,.

Proof: (i) < (ii) < (iv)

viss—k—KS

& N(yY) = N(KVyTVK)

& N(KVy) = N(KVy)T [ By Definition : 2.1]
= KV ¢ is KS

& VPisk—KS

Hence, (i) < (i) < (iv) hold.

(i) < (iii) < (v)

Niss—k—KS & N@)=NKVHTVK) [By Definition 2.4]
& N(KVy) = N(KVy)T) [ By Definition: 2.5]
& NVK(KV)(VE)T = N(VKWTVKWVEK)T)

& N(KV)=N((KV)T)

e KV is KS

S YK iss— KS

Hence, (i) < (iii) < (v) hold.

(i) < (vii)

KV is KS < N(KVy) = N(KVy)T)

& N(Y) = N(KVy)T) /By Proposition 2.1 |
& NN =NATVK)

Hence, (1i) < (vii) hold.

(43d) if f (viid) :

YVK is KS < NWVK) = N((VK)T)

& N@WVK) = N(@yT) [ By Proposition 2.1 |
Hence, (iii) < (viii) hold.

(i) if f (vi)

Viss—k—KS<< N =NKVYIVK)

& N(KVy) = N(KVy)T) [ By Proposition 2.1 ]
& (KVy)Tis KS

e YTVK is KS

s yliss—k—KS

Hence, (1) < (vi) hold.

(1) if f (wi) if f (x)

Viss—k—KS& N\ =NKVNVEK)

& N@yl) = N(KVVK)

eyl = KVyVKH [By Theorem 2.1]

v =H KVYT'VK for Hy € F,

Hence,(i) < (zi) if f < (z) hold.

(i1) < (zii) if f < (iz)

KVPis RS & Vi isk—KS

& N(V) = N(K(V)TK)

& (¢) = NW'VK) | By Proposition 2.1 |
& N(@T) = N(KV)
oyl =HKVY for H € F, [By Theorem 2.1]

syl = HKVyYKV
o =VKYT"VKH, for H € F,
Hence, (ii) < (zii) if f < (iz) hold.
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Corollary 2.1. The subsequent conditions are equivalent for A € F),
(i) N() = N(VTV)

(i) N(Vep) = (V)T

(iii) N(V) = N(@V)T

(iv) ¢ is s — KS

(v) N(T) = N(V))

(vi) N(®) = N@TV)

(vii) N(T) = N(V)

(viii) N(KV1) = N((V)T)
(iz) v = VYTV Hy for Hy € F,
(x) = HiVYTV for Hy € F),
(zi) T = VyVH for H € F,
(zii) YT = HVYV for H € F.

Theorem 2.3. For then any pair of the following statements indicate the other one
(i) N(¥) = N(K4TK)

(ii) N() = N(VEQTHEV)

(iii) N(4T) = N(VE)T)

Proof:(i) and (i1) if f (ii1)

Y is s —k-KS = R(¢y) = R(WIVK) [By Theorem 2.2]
= N(KyK) = N(KyTK)

Hence (i) and (ii) = N (1) = N((VyK)T)

Hence, (iti) hold.

(1) and (ii3) if f (ii)

Y isk— KS= N()=NKyT'K)

= N(KyK) = N(u7)

Hence (i) and (iii) = N(KyK) = N(VyK)T)

= N(¥) = NWTVE)

= N(¥) = N((KV)T)

=Yiss—k—KS [By Theorem 2.2]
Therefore,(ii) hold.

(i7) and (iii) < (7)

Viss—k-KS= N)=Nu'VK)

= N(KyK) = N(KyTV) [ By Definition: 4.5]
Hence (ii) and (iii) = N(KyK) = N(T)

= N() = N(K¢TK)

=visk —KS

Therefore, (i) hold.

Hence the Theorem.

3. s- K-KERNEL SYMMETRIC REGULAR NFM

We show the existence of several generalized inverses of NFM in F, and determine the
conditions for different g-inverses of a s-k-KS NFM to be s-k KS NFM. Generalized inverses
belonging to the sets {1, 2},¢{1,2,3} and {1,2,4} of s-k-KS NFM are characterized.

Theorem 3.1. Let (Yp,v¥r,vr) € NFM,,Z € NFM,{1,2} and (¢, ¢¥1,%r)Z,

Z (Yp,1,0F) are s-k-KS NFM. Then (Y, 1, ¢F) is s - k- KS NFM < Z is s -k - KS
NFM.

PTOOf: Since N(KV)‘) = N(KV (¢Ta¢[7¢F) Z (¢T7¢17¢F)) - N(Z (T/)Tﬂ/}Iﬂ/JF))

= NZVV (Yr,¢1,%r)) = N(ZVKKV (Y1, ¢1,9rF)) € N(KV (Y7, %1,9F))
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H@TLC@, N(KV (wTv Q/)Iv wF)) = N(Z (wTv ¢I; wF))
= N(KV(Z (Y1, 91, ¢r)"VE) (Z is s—k—KSNFM]
= N((r,91,9r)" ZTVK)
= N(ZTVK)
= N({(KVZ)T)
N((KEV (Y7, ¢1,9r)") = N((Yr, 1, 9F)" VK)
= N(Z" (Yr,d1,vr)" VK)
= N((KV (¥r,¢1,%r) Z)T)
= N(KVAZ) [Viss—k—KS]
= N(KVZ)
KVZis KS < N(KV (Yr,¢r,vr)) = N(KVy)T)
N(KVZ)T)= N(KVZ)
& KVZis KS
& 7 is s- k- KS.

Theorem 3.2. Let Z € {1,2,3}, N(KV) = N(KV2Z)T). Then (¢Yr,v¢r,¢r) is s-k-KS
NFM = 7 is s — k— KS NFM.

Proof: Since Z € (Yr,¢r1,vr){1,2,3},

HG’I’LCG(¢T,¢[,¢F)Z(¢T,w[,¢p) = (¢T7¢IawF)7Z(¢T7¢Ia¢F)Z = Za((wT7¢I’¢F) Z)T
= (Yr,1,YrF) Z

N((KV (Y, 1, ¥p)7) = N(ZT (Y, b1, $p) " VE) [By using VZ = 1]
— N(KVO\Z)T) = N(A\2)T) = N(2) (W2)T = 7]
=N(Z) [By using Z = Z\Z]

= N(KVZ) KV (4r,¢1,7r) is KSNFM < N(KV)) = N(KVA)T)
N(KVZ)T)= N(KVZ)

& KVZis KS

& Ziss—k—KS.

Theorem 3.3. Let (Y, ¢r,r) € NFM,,Z € (Yr,¢¥r,vr){1,2,4}, N(KVP)T)
= N(KVZ). Then is s- k-KS NFM < Z is s- k- KS NFM.
Proof: Since Z < (Y, vr,vr){1,2,4}, we have (Y, r,vr) Z (Y, 1, YF)
= (¢Tﬁ¢[7¢F>?Z(wT7¢vaF)Z = Z7 (Z(¢T7Qp1a¢F>)T = Z(wvath)
N(KV) = N((¥7,v1,YF))
N(Z (¢Ta¢[a¢F))[Z (U1, Y1,9F) Z = Z, (1,1, 0F) Z1)]
N((Z (¢T7¢17¢F)) W(Z r, b, vp)T = Z (W, Y1, )]
= NEWTWIWF) D)
N(

")
(KVZ)T)

KV (V1,01 9F) is KSNFM < N(KVA) = N((KVA)T
N(KVZ)')= N(KVZ)
< KVZis KSNFM
& 7 is s- k— KS NFM.
In particular for K = I, the above Theorems reduces to equivalent conditions for various
g-inverses of a s-kernel symmetric NFM to be secondary kernel symmetric NFM.

Corollary 3.1. Let (Y1, %1, 1F) belongs to ,,, Z belongs (Yr,v¥r,vr) (1,2) and (YVp, Y1, vr) Z,

Z (Yp,Yr,vr) are KS NFM. Then (Y, 5, ¢F) is s- KS NFM < Z is s- KS NFM.
Proof: Since N(VA) = N(V (¢r,¢r1,%r) Z (r,%1,%r)) € N(Z (Y1, 9¥1,9F))

= N(ZVV (Y1, ¢1,9F)) = N(ZVV (Y1, 1,¢F)) C NV (Y1, %1, ¢F))

Hence, N(V (Yr,%1,9F)) = N(Z (41, ¢r1,7%F))
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(V(Z (r, 1, 9r)TV) [Z is s — KSNFM)]
((Yr,vr,vp)" Z7V)
(ZTV)

(V)T

V (r, 1, 0r))T) = N((Yr, v, 0r) " V)
= N(Z" (Y7, ¢1,9r)" V)
= N((V (4r,¢r1,¢p) Z)1)
=N(VAZ) [V is s — KS]

=0

VZis KS & N(V (¥r,r,vr)) = N(V)T)
s N(V2)TY =NV 2Z)

S VZis KS

= 7 is s- KS.

Corollary 3.2. Let (¢, ¢1,%F) belongs to F,, Z belongs to (Y, vr,vr) (1,2,3),

N(EV (bp, 1, 0p)) = N(VX)T). Then is s- KS NFM < Z is s- KS NFM.

Proof: Since Z € (Y, vr,vr){1,2,3},

Hence (Yr,r,v%r) Z (br, Y1, ¥F) = (1, ¥1,0r) . Z (br, Y1, ¢r8) Z = Z, (Y1, 1,0r) Z)T
= (Y1, Y1, 9F) Z

N((V (r, 91, ¢p)7) = N(ZT (o, 41, 9p)" V) [By using Y Z1p = 1]

— N(V(A2)T) = N(A2)T) = N(2) (2)T = 7]
=N(Z) [By using Z = Z\Z|
— N(VZ) V (b, b1, 0r) is KSNFM & N(VA) = N((VA)T)

s N((WVZ)T)=NWVZ)

S VZis KS

& Ziss— KS.

Corollary 3.3. Let ¢ belongs to F,, Z belongs to (vr, 1, vr) (1,2,4), N(V)T)
=N(VZ). Then (Yr,¢r1,9r) is s- KS NFM < Z is s- KS NFM.

P?”OOf.‘ Since 7 & (wTﬂ/}[,lpF) {1, 2,4}, we have (wT,lﬁ],wF) Z (1/}T,¢[,¢F)
= (1,1, 0F) , Z (U1, ¥1,%F) Z = Z,(Z (Y1, ¢1, %) = Z(Ur, ¥1,9F)
N(KV) = N((¢r,%1,%r))

= N(Z (Y1, ¢1,9r) | Z (Y1, 41,9F) Z = Z, (Y7, 01,0 F) ZY)]

= N((Z (Y1, 1, ) Z r, 1, )T = Z (r, o1, vr)]

= N((¢r,¥r1,¢r) Z7)

=N(z")

= N(VZ)T)

V (Y7, %1,vr) is SNFM < N(VA) = N(VA)T

& N((VZ)T) =N((V2Z2)

s VZis KSNFM

& 7 is s— KS NFM.

4. CONCLUSION

We show that k-symmetry implies k-KS, though the reverse is universally applicable.
We elucidated the equivalent criteria for the g-inverses of s-KS NFM to retain their s-
KS. Our work has provided a characterization of the generalized inverses of s-KS NFM
for specific sets ¥{1,2},1{1,2,3},and ¥{1,2,4}. We show that s-k- KS , s- KS, k- KS,
and KS NFM relate to each other. For a NFM to be a s-k- KS NFM, necessary and
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sufficient requirements are identified. It is demonstrated that k-symmetry implies k-KS
and the reverse is necessarily true. We also describe Graphical Representation of Range
symmetric, Column symmetric and kernel symmetric Adjacency and Incidence NFM is
characterized. Every Adjacency NFM is symmetric, range symmetric, column symmetric
and kernel symmetric but Incidence matrix satisfies only kernel symmetric conditions.
Every range symmetric Adjacency NFM is kernel symmetric Adjacency NFM but kernel
symmetric Adjacency NFM need not be range symmetric NFM. In the future, we will prove
additional properties relating to g-inverses of Secondary k-Kernel Symmetric Neutrosophic
Fuzzy Matrices with Generalized Inverses.
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