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ON HERONIAN MEAN ANTI-MAGIC LABELING OF SOME GRAPHS

B. SIVARANJANI1,∗, R. KALA1, §

Abstract. Let G = (V (G), E(G)) be a finite, simple, connected and undirected graph
with p vertices and q edges. Let Φ : V (G) → {1, 2, 3, · · · , q+1} and the induced edge la-

beling Φ∗ : E(G) → {1, 2, 3, · · · , q+1} is defined by Φ∗(e = uv) =

⌈
Φ(u)+

√
Φ(u)Φ(v)+Φ(v)

3

⌉
or

⌊
Φ(u)+

√
Φ(u)Φ(v)+Φ(v)

3

⌋
for e ∈ E(G). Then Φ is said to be a Heronian mean label-

ing if induced edge labels Φ∗(e) are distinct. An anti-magic labeling is a bijection from
the set of edges to the set of integers {1, 2, 3, · · · , q} such that the weights are pairwise
distinct, where the weight at one vertex is the sum of all labels of the edges incident
to such vertex. A Heronian mean labeling Φ is said to be Heronian mean anti-magic
if w(vi) ̸= w(vj) for all distinct vertices vi, vj ∈ V (G), where w(v) =

∑
u∈N(v)

Φ∗(uv). A

graph is called Heronian mean anti-magic graph if it admits a Heronian mean anti-magic
labeling. In this paper, we investigate the behaviour of this labeling for graphs which
contains a clique of order at least 4, Pn ◦ 2K1, kCn, n ≥ 4, CLn, n ≥ 3, T ∪ T

′ where T

and T
′ be any two trees of order at least 3. We also prove that K2,n is Heronian mean

anti-magic for n ≤ 9 and is not for n ≥ 10.

Keywords: Mean labeling, Anti-magic labeling, Mean anti-magic labeling, Heronian
mean anti-magic labeling.

AMS Subject Classification: 05C78.

1. Introduction

In Graph Theory, graph labeling is an important branch which can be used to solve
many real life problems. It is the assignment of labels, traditionally represented by inte-
gers, to the vertices or edges of a graph. Formally, for a given graph G = (V (G), E(G)),
the vertex labeling is a function of V (G) over the set of labels. Graphs with such functions
defined are called vertex-labeled graphs. Similarly, edge labeling is a function of E(G)
on the set of labels. In this case, the graph is called an edge-labeled graph. The term
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’labeled graph’ generally refers to a vertex-labeled graph in which all labels are different.
In many applications, edges or vertices are labeled meaningfully in the relevant domain.
For example, edges can be assigned weights that represent the ‘cost’of travelling between
incident vertices. In the definition above, the graph is understood to be a finite undirected
simple graph. However, the labeling concept is applicable to all extensions and general-
izations of graphs. For example, in automaton theory and formal language theory, it is
useful to consider labeled multigraphs. That is, a pair of vertices may be connected by
some number of labeled edges. For graph theoretic terminology, we refer Harary [4] and
for labeling concepts we refer the famous survey article written by Gallian[1].

Most graph labelings trace their origins to labelings presented by Alexander Rosa in his
1967 paper. He identified three types of labelings which he called α, β and ρ. The β−
labelings were later renamed as ’graceful’ by Solomon Golomb, and the name has been
popular since. S. Somasundaram and R. Ponraj [9] originated the theory of mean labeling
of graphs in 2004. In the last 60 years, over 200 types of graph labeling have been studied
and almost 2500 articles have been published [2, 3, 6, 7, 8].

The concept of Heronian mean was introduced by S.S. Sandhya [10] and she has in-
vestigated the results for some graphs. In 1990, Hartsfield and Ringel [5] introduced the
concept called anti-magic labeling and anti-magic graphs. An anti-magic labeling is a
bijection from the set of edges to the set of integers {1, 2, . . . , q} such that the weights
are pairwise distinct, where the weight at one vertex is the sum of all the labels of the
edges incident to such vertex. A graph is called anti-magic if it admits anti-magic label-
ing. Hartsfield and Ringel showed that the paths, cycles, complete graphs Kn, (n ≥ 3) are
anti-magic. They conjectured that all connected graphs besides K2 are anti-magic which
still remains unsettled.

Motivated by the above works, we introduced the concept of Heronian mean anti-magic
labeling[11] and studied the existence of Heronian mean anti-magic graphs. In this paper,
we continue to examine the existence of the labeling for some standard graphs and certain
special classes of graphs with their generalizations. Not all graphs are Heronian mean
anti-magic and we have proved the existence of Non Heronian mean anti-magic labeling
of some graphs using the inequality method.

2. Preliminaries

Throughout this paper, we mean G to be a simple, finite and undirected graph.

Definition 2.1. A set C ⊆ V (G) is said to be a clique of a graph G if the subgraph induced
by C is complete.

Definition 2.2. The union of two graphs G1 and G2 is the graph G1∪G2 with V (G1∪G2) =
V (G1) ∪ V (G2) and E(G1 ∪G2) = E(G1) ∪ E(G2).

Definition 2.3. Let G1, G2 respectively be (p1, q1), (p2, q2) graphs. The corona of G1 with
G2 is the graph G1 ⊙ G2 obtained by taking one copy of G1, p1 copies of G2 and joining
the ith vertex of G1 by an edge to every vertex in the ith copy of G2 where 1 ≤ i ≤ p1.

Definition 2.4. A kCn graph is obtained by considering a path Pk+1 on the vertices
u1, u2, . . . , uk+1 where each edge uiui+1 is replaced by a cycle of length l > 3. The vertex
set is given by V (G) = {ui|1 ≤ i ≤ k + 1} ∪ {uij |1 ≤ i ≤ k, 1 ≤ j ≤ n − 2} and the edge
set is given by E(G) = {uiuij |1 ≤ i ≤ k, 1 ≤ j ≤ 2} ∪ {uijui(j+2)|1 ≤ i ≤ k, 1 ≤ j ≤
n− 4} ∪ {ui+1ui(n−3), ui+1ui(n−2)|1 ≤ i ≤ k}.
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Definition 2.5. The Circular ladder graph CLn is graph obtained by the cartesian product
of Cn□K2, where K2 is the complete graph on two vertices and Cn is the cycle graph on
n vertices.

Definition 2.6. An injective function Φ : V (G) → {1, 2, 3, . . . , q + 1} is said to be a
Heronian mean labeling if the induced edge labeling Φ∗ : E(G) → {1, 2, 3, . . . , q+1} defined

by Φ∗(e = uv) =

⌈
Φ(u)+

√
Φ(u)Φ(v)+Φ(v)

3

⌉
or

⌊
Φ(u)+

√
Φ(u)Φ(v)+Φ(v)

3

⌋
gives distinct labels for

distinct edges. A Heronian mean labeling Φ is said to be Heronian mean anti-magic if
w(vi) ̸= w(vj) for all distinct vertices vi, vj ∈ V (G), where w(v) =

∑
u∈N(v)

Φ∗(uv). A graph

is called Heronian mean anti-magic graph if it admits Heronian mean anti-magic labeling.

Let us see two examples which are not Heronian mean anti-magic. The first example do
not satisfy the anti-magic condition and the second example do not satisfy the Heronian
mean condition. Thus both the graphs are not Heronian mean anti-magic.

Example 2.1. Consider the graph G given in Figure 1. The vertex set V (G) = {u1, u2}
and the edge set E(G) = {u1u2}. Here |V (G)| = 2 and |E(G)| = 1. Define a function
Φ : V (G) → {1, 2}. Without loss of generality we can assume that Φ is defined by Φ(u1) = 1

and Φ(u2) = 2. Then the induced edge labels are taken as, Φ∗(u1u2) =
⌈
1+

√
2+2
3

⌉
or⌊

1+
√
2+2
3

⌋
. Thus the edge Φ∗(u1u2) will receive either 1 or 2. Since the degree of both the

vertices are 1, the weights of u1 and u2 are equal (i.e.) w(u1) = w(u2) and so they cannot
be distinct. Hence the graph P2 is not Heronian mean anti-magic.

1
u1 u2

2

Figure 1. P2

Example 2.2. Consider the complete bipartite graph K1,6 as shown in Figure 2.
Let the vertex set be V (K1,6) = {v, v1, v2, v3, v4, v5, v6} and the edge set be
E(K1,6) = {vv1, vv2, vv3, vv4, vv5, vv6}. Here |V (K1,6)| = 7 and |E(K1,6)| = 6. Let
the apex vertex be v. Define a function Φ : V (K1,6) → {1, 2, 3, 4, 5, 6, 7}. Since p = q+1, 1
must be a label for some vertex in K1,6. If Φ(v) = 1, then the remaining 6 vertices will re-
ceive labels 2, 3, 4, 5, 6, 7 in some order. Without loss of generality, let Φ(v1) = 2,Φ(v2) =
3,Φ(v3) = 4,Φ(v4) = 5,Φ(v5) = 6,Φ(v6) = 7. Then the induced Heronian mean edge label
for vv1 will be 1 or 2. Similarly, the edge label for vv2 will be either 1 or 2, the edge label
for vv3 will be either 2 or 3 and the edge label for vv4 will be either 2 or 3. Then there
exist two vertices vi and vj such that Φ∗(vvi) = Φ∗(vvj) and so they cannot be distinct.

If Φ(v) = a, 2 ≤ a ≤ 5, by similar arguments there exist vertices vi and vj such that
Φ∗(vvi) = Φ∗(vvj) and hence the edges cannot be distinct.

If Φ(v) > 5, by calculating Heronian mean edge labels, one can see that no edge shall
receive 1 or 2 as their edge labels. Since we can never label 6 distinct edges with 5 values
{3, 4, . . . , 7}, the graph does not satisfy the Heronian mean condition.

Thus, there is no Heronian mean labeling for K1,6. Hence K1,6 is not a Heronian mean
anti-magic graph.



2074 TWMS J. APP. ENG. MATH. V.15, N.8, 2025
v

v1 v2 v3 v4 v5 v6

Figure 2. K1,6

3. Main Results

In this section we investigate the behaviour of certain classes of graphs like Clique,
Pn ◦ 2K1, kCn, CLn, T ∪ T

′ and K2,n.

The following theorem shows that a graph which contains a clique of order at least 4 can
never be labeled with the consecutive vertex labels.

Theorem 3.1. Let G be any graph with q edges and C be a clique of order at least 4. If
Φ : V (G) → {1, 2, . . . , q + 1} is a Heronian mean anti-magic function, then any 4 vertices
in C can never be labeled with the consecutive vertex labels.

Proof. Let C = {u1, u2, . . . , uk} be the clique of order k ≥ 4. Let Φ : V (G) → {1, 2, . . . , q+
1} be a Heronian mean anti-magic function.
Suppose not, then there exist 4 vertices u1, u2, u3, u4 ∈ C such that Φ(u1) = i,Φ(u2) =
i+ 1,Φ(u3) = i+ 2,Φ(u4) = i+ 3.
Then the induced edge labels are,
Φ∗(u1u2) = (i, i+ 1) or [i, i+ 1]
Φ∗(u1u3) = (i, i+ 2) or [i, i+ 2]
Φ∗(u1u4) = (i, i+ 3) or [i, i+ 3]
Φ∗(u2u3) = (i+ 1, i+ 2) or [i+ 1, i+ 2] which is not distinct.
This is a contradiction to Heronian mean anti-magic function. Therefore, any 4 vertices
in C cannot be labeled consecutively. □

The following theorem proves the existence of Heronian mean anti-magic labeling for
the corona product of path graph with two copies of K1.

Theorem 3.2. For every positive integer n, the graph Pn ⊙ 2K1 is a Heronian mean
anti-magic graph.

Proof. Let G ∼= Pn ⊙ 2K1 for n ≥ 1. Let V (G) = {ui, xi, vi|1 ≤ i ≤ n} be the vertex set
where ui(1 ≤ i ≤ n) are the vertices of Pn and vi, xi(1 ≤ i ≤ n) are the pendent vertices.
The edge set is E(G) = {uixi, uivi|1 ≤ i ≤ n} ∪ {uiui+1|1 ≤ i ≤ n− 1}.
Here |V (G)| = 3n and |E(G)| = 3n− 1.
Let us define a vertex function Φ : V (G) → {1, 2, . . . , (3n− 1) + 1} by,

Φ(ui) = 3i− 1, 1 ≤ i ≤ n
Φ(vi) = 3i− 2, 1 ≤ i ≤ n
Φ(xi) = 3i, 1 ≤ i ≤ n.

If the induced edge labels are taken as,
Φ∗(uiui+1) = 3i, 1 ≤ i ≤ n− 1
Φ∗(uivi) = 3i− 2, 1 ≤ i ≤ n
Φ∗(uixi) = 3i− 1, 1 ≤ i ≤ n− 1
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Φ∗(unxn) =

{
3n− 1 for n ̸≡ 0(mod 4)

3n for n ≡ 0(mod 4)

then the obtained edge labels are all distinct.
We observe that,

w(ui) = 12i− 6, 1 ≤ i ≤ n− 1

w(un) =

{
9n− 6 for n ̸≡ 0(mod 4)

9n− 5 for n ≡ 0(mod 4)

w(vi) = 3i− 2, 1 ≤ i ≤ n
w(xi) = 3i− 1, 1 ≤ i ≤ n.

Now we show that w(u) ̸= w(v) for u, v ∈ V (G). It is clear that for 1 ≤ i ≤ n, w(vi) = 3i−2
and w(xi) = 3i−1 are distinct. Also for 1 ≤ i ≤ n−1, w(ui) = 12i−6 is a multiple of 6 and
w(vi) = 3i− 2 is not a multiple of 6. Therefore w(ui) ̸= w(vi). It is also clear that when
n ̸≡ 0(mod 4), w(vi) ̸= w(un) for 1 ≤ i ≤ n because w(vi) = 3i − 2 ̸= w(un) = 9n − 6.
When n ≡ 0(mod 4), if w(vi) = w(un), then it implies that 3i − 2 = 9n − 5 which gives
i = 3n − 1 which is not possible because i ≤ n. Hence w(vi) ̸= w(un). We know that,
w(ui) is multiple of 6 but w(xi) is not. Hence w(xi) ̸= w(ui). Also w(un) ̸= w(ui) for
1 ≤ i ≤ n−1. If w(xi) = w(un) for 1 ≤ i ≤ n, then 3i−1 = 9n−5 which gives 3i = 9n−4
which is impossible because the right hand side is multiple of 3 but the left hand side is
not. Similarly 3i− 1 ̸= 9n− 6.
Hence in all the cases we see that w(u) ̸= w(v) for u, v ∈ V (G). Thus Pn ⊙ 2K1 is a
Heronian mean anti-magic graph. □

As described in the proof of Theorem 3.2, a Heronian mean anti-magic labeling for
P7 ⊙ 2K1 is shown in Figure 3.

u1 u2 u3 u4 u5 u6 u7

2

3 6 9 12 15 18

5 8 11 14 17 20

v1

1 4 7 10 13 16 19

v2 v3 v4 v5 v6 v7
1 4 7 10 13 16 19

2

3 6

5 8 11 14 17 20

9 12 15 18 21
x1 x2 x3 x4 x5 x6 x7

Figure 3. P7 ⊙ 2K1

In the next theorem, we prove the Heronian mean anti-magic labeling for k copies of
the cycle Cn.

Theorem 3.3. For every positive integer k and n ≥ 4, the graph kCn is a Heronian mean
anti-magic graph.

Proof. Let G ∼= kCn be a graph where k is the number of cycles attached and n is the
length of the cycle. Let V (G) = {ui|1 ≤ i ≤ k+1} ∪ {uij |1 ≤ i ≤ k, 1 ≤ j ≤ n− 2} be the
vertex set and the edge set be E(G) = {uiuij |1 ≤ i ≤ k, 1 ≤ j ≤ 2} ∪ {uijui(j+2)|1 ≤ i ≤
k, 1 ≤ j ≤ n− 4} ∪ {ui+1ui(n−3), ui+1ui(n−2)|1 ≤ i ≤ k}. Here |V (G)| = k(n− 1) + 1 and
|E(G)| = kn.
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Let us define a vertex function Φ : V (G) → {1, 2, . . . , kn+ 1} by,
Φ(u1) = 1
Φ(ui) = ni− n, 2 ≤ i ≤ k + 1
Φ(u1j) = j + 1, 1 ≤ j ≤ n− 2
Φ(uij) = ni− n+ j + 1, 2 ≤ i ≤ k, 1 ≤ j ≤ n− 2

If the induced edge labels are taken as,

Φ∗(uiuij) =

{
j for i = 1, 1 ≤ j ≤ 2

ni− n+ j for 2 ≤ i ≤ k, 1 ≤ j ≤ 2

Φ∗(uijui(j+2)) =

{
j + 2 for i = 1, 1 ≤ j ≤ n− 4

ni− n+ j + 2 for 2 ≤ i ≤ k, 1 ≤ j ≤ n− 4

Φ∗(ui+1ui(n−3)) = ni− 1, 1 ≤ i ≤ k
Φ∗(ui+1ui(n−2)) = ni, 1 ≤ i ≤ k

then the obtained edge labels are all distinct.
We observe that,

w(u1) = 3
w(ui) = 4ni− 4n+ 2, 2 ≤ i ≤ k
w(um+1) = 2kn− 1

w(uij) =

{
2i+ 2j for i = 1, 1 ≤ j ≤ n− 2

2ni− 2n+ 2j + 2 for 1 ≤ i ≤ k, 1 ≤ j ≤ n− 2

Therefore, for every vertex v in V (G), w(v) are distinct. Hence, the graph kCn is Heronian
mean anti-magic. □

As described in the proof of Theorem 3.3, a Heronian mean anti-magic labeling for 4C6

is shown in Figure 4.
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Figure 4. 4C6

Theorem 3.4. For every positive integer n ≥ 3, the Circular ladder graph CLn is a
Heronian mean anti-magic graph.

Proof. Let G ∼= CLn be a graph. Let V (G) = {ui, vi|1 ≤ i ≤ n} be the vertex set and the
edge set be E(G) = {u1u2, v1v2, un−1un, vn−1vn} ∪ {uivi|1 ≤ i ≤ n} ∪ {uiui+2, vivi+2|1 ≤
i ≤ n− 2}. Here |V (G)| = 2n and |E(G)| = 3n.
Let us define a vertex function by Φ : V (G) → {1, 2, . . . , (3n) + 1} by,

Φ(u1) = 1
Φ(ui) = 3i− 1, 2 ≤ i ≤ n
Φ(vi) = 3i, 1 ≤ i ≤ n

If the induced edge labels are taken as,
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Φ∗(u1u2) = 2, Φ∗(u1u3) = 3
Φ∗(uiui+2) = 3i+ 1, 2 ≤ i ≤ n− 2
Φ∗(un−1un) = 3n− 2
Φ∗(v1v2) = 4
Φ∗(vivi+2) = 3i+ 2, 1 ≤ i ≤ n− 2
Φ∗(vn−1vn) = 3n− 1
Φ∗(u1v1) = 1
Φ∗(uivi) = 3i, 2 ≤ i ≤ n

then the obtained edge labels are all distinct.
We observe that,
When n = 3,

w(ui) = 9i− 3, 1 ≤ i ≤ n− 1
w(un) = 19
w(vi) = 8i+ 2, 1 ≤ i ≤ n− 1
w(vn) = 22

When n = 4,
w(u1) = 6
w(ui) = 7i+ 1, 2 ≤ i ≤ n
w(v1) = 10, w(vn) = 31
w(vi) = 7i+ 4, 2 ≤ i ≤ n− 1

When n ≥ 5,
w(u1) = 6, w(u2) = 15, w(u3) = 22
w(ui) = 9i− 4, 4 ≤ i ≤ n− 1
w(un) = 9n− 7
w(v1) = 10, w(v2) = 18
w(vi) = 9i− 2, 3 ≤ i ≤ n− 1
w(vn) = 9n− 5

Therefore, for every vertex v in V (G), w(v) are distinct. Hence, the graph CLn, n ≥ 3 is
Heronian mean anti-magic. □

As described in the proof of Theorem 3.4, a Heronian mean anti-magic labeling for CL7

and is shown in Figure 5.

The following theorem shows that union of trees cannot be Heronian mean anti-magic.

Theorem 3.5. If T and T
′ be any two trees of order at least 3, then T ∪ T

′ is not a
Heronian mean anti-magic graph.

Proof. Let T be a tree with n1 ≥ 3 vertices and T
′ be another tree with n2 ≥ 3 vertices.

Then |E(T )| = n1−1 and |E(T
′
)| = n2−1. Now |V (T ∪T

′
)| = n1+n2 and |E(T ∪T

′
)| =

n1 + n2 − 2. Thus no function, Φ : V (T ∪ T
′
) → {1, 2, . . . , (n1 + n2 − 2) + 1} can be

injective, since |V (T ∪ T
′
)| = n1 + n2 > |{1, 2, . . . , (n1 + n2 − 2) + 1}|. □

We need the following lemma to prove the non existence of Heronian mean anti-magic
labeling for n ≥ 10.

Lemma 3.1. The following inequality holds.
(i) For n ≥ 10, (n− 5)2 > 2n+ 1.
(ii) For n ≥ 14, (n− 6)2 > 4n+ 2.
(iii) For n ≥ 18, (n− 7)2 > 6n+ 3.
(iv) For n ≥ 17, (n− 5)2 > 8n+ 4.
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Figure 5. CL7

(v) For n ≥ 21, (n− 6)2 > 10n+ 5.

Proof. We prove all the inequalities using mathematical induction.
1. When n = 10, (n− 5)2 = 25 > 2(10) + 1
Hence (1) holds for n = 10.
Assume that the result is true for n = m > 10 so that (m− 5)2 > 2m+ 1
To Prove : (m+ 1− 5)2 > 2(m+ 1) + 1
((m− 5) + 1)2 = (m− 5)2 + 2(m− 5) + 1
> 2m+ 1 + 2m− 10 + 1
= 4m− 8.
Now, to prove : 4m− 8 > 2m+ 3.
i.e., to prove, 2m > 11
i.e., to prove, m > 11

2 , which is true.
Hence the result. Similarly, we can prove the remaining inequalities by using mathematical
induction. □

The following theorem proves that the complete bipartite graph K2,n is Heronian mean
anti-magic for n ≤ 9 and is not for n ≥ 10.

Theorem 3.6. (i) For every positive integer n ≤ 9, K2,n is a Heronian mean anti-magic
graph.
(ii) For every positive integer n ≥ 10, K2,n is not a Heronian mean anti-magic graph.

Proof. (i) Let G ∼= K2,n, n ≤ 9. Let V (G) = {u, v, ui|1 ≤ i ≤ n} be the vertex set and the
edge set be E(G) = {uui, vui|1 ≤ i ≤ n}. Here |V (G)| = n+ 2 and |E(G)| = 2n.
Define a vertex function Φ : V (G) → {1, 2, . . . , 2n+ 1} as follows:
For n = 1, Φ(u) = 1, Φ(v) = 2, Φ(u1) = 3
For 2 ≤ n ≤ 5,

Φ(u) = 1, Φ(v) = 2n, Φ(un) = 2n+ 1.
Φ(ui) = 2i, 1 ≤ i ≤ n− 1.
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For 6 ≤ n ≤ 9,
Φ(u) = 1, Φ(v) = 2n, Φ(u1) = 3.

Φ(ui) =

{
2i for 2 ≤ i ≤ 4

2i+ 1 for 5 ≤ i ≤ n

If the induced edge labels are taken as,
For n = 1, Φ∗(uu1) = 1, Φ∗(vu1) = 2
For n ≥ 2,

Φ∗(uui) = i, 1 ≤ i ≤ n.
Φ∗(vui) = n+ i, 1 ≤ i ≤ n

then the obtained edge labels are all distinct and so the labeling Φ satisfies the Heronian
mean condition. Now, we have to show that w(a) =

∑
x∈N(a)

Φ∗(xa) are distinct for all the

vertices in G. We have
For n = 1, w(u) = 1, w(v) = 2, w(u1) = 3
For n ≥ 2,

w(u) = n(n+1)
2

w(v) = 3n2+n
2 and

w(ui) = n+ 2i, 1 ≤ i ≤ n.
Thus w(a) is distinct for every a ∈ V (G). So Φ is a Heronian mean anti-magic labeling.
Hence, K2,n, n ≤ 9 is Heronian mean anti-magic graph.

As described in the proof of Theorem 3.6, Heronian mean anti-magic labeling for K2,7

and is shown in Figure 6.

u v
1 14

u1 u2 u3 u4 u5 u6 u7

1

8
2

9
3
10
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14

7
3 4 6 8 11 13 15

Figure 6. K2,7

(ii) Let n ≥ 10. Let Φ : V (K2,n) → {1, 2, . . . , 2n + 1} be any mapping such that
the induced edge mapping Φ∗ : E(K2,n) → {1, 2, . . . , 2n + 1} is given by Φ∗(xy) =⌈
Φ(x)+Φ(y)+

√
Φ(x)Φ(y)

3

⌉
or Φ∗(xy) =

⌊
Φ(x)+Φ(y)+

√
Φ(x)Φ(y)

3

⌋
, both Φ, Φ∗ are injective and

w(x) ̸= w(y) for any x, y ∈ V (K2,n) where w(x) =
∑

u∈N(x)

Φ∗(ux). We have to show that

if such a mapping Φ exists, then the induced edge mapping coincide for some edges. Let
X = {u, v} and Y = {u1, u2, . . . , un} be the partition of V (K2,n). Let e be any edge of
K2,n

Case 1. Φ∗(e) = 1.
Since Φ∗(e) = 1, one of the end points of e must receive the label 1.

We claim that Φ(u) ̸= 1 and Φ(v) ̸= 1.
If Φ(u) = 1, then there are n edges incident with the vertex u whose label can be one

of the values in the set {1, 2, . . . , 2n+1}. The largest possible value for a vertex is 2n+1.
Even when that label is assigned for a vertex, by part (1) of Lemma 3.1 the corresponding
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edge label is 1+2n+1+
√
2n+1

3 < 1+2n+1+n−5
3 < n−1 for all n ≥ 10. Hence it is impossible to

get n distinct labels for the edges incident with u and so Φ(u) > 1. Analogously, Φ(v) > 1.
Therefore there exists a vertex ui ∈ Y such that e = uui and Φ(ui) = 1. As Φ∗(e) = 1,

Φ(u) should have the label 2 or 3.
If Φ(u) = 2, the largest possible value is 2n + 1. But by part (2) of Lemma 3.1 the

corresponding edge label is, 2+2n+1+
√
4n+2

3 < 2+2n+1+n−6
3 < n− 1 for all n ≥ 14. Thus we

cannot distinctly label all the n edges incident with u.
If 10 ≤ n ≤ 13, there are n distinct labels for n edges incident with u. Since Φ(ui) = 1,

by part (1) of Lemma 3.1 we have Φ∗(vui) < n. But there exist a vertex uj such that
Φ∗(vui) = Φ∗(uuj). Thus the edges cannot be labeled distinctly.

If Φ(u) = 3, by part (3) of Lemma 3.1 and by a similar argument as above the edge
values of all the n edges cannot be distinct if n ≥ 18. For 10 ≤ n ≤ 12, we cannot label the
edges distinctly even if we have n+ 1 labels for n edges incident with u. Since Φ(ui) = 1,
by part (1) of Lemma 3.1 we have Φ∗(vui) < n. Suppose Φ∗(vui) ̸= Φ∗(uuj) for any uj .
Then there exist a vertex uk ∈ Y such that Φ∗(uuk) = 2, otherwise Φ∗(vui) = Φ∗(uuj) for
some uj ∈ Y . Since Φ∗(uuk) = 2 and Φ(u) = 3, we have Φ(uk) = 2. Now by applying part
(2) of Lemma 3.1 Φ∗(vuk) < n. Therefore Φ∗(vuk) = Φ∗(uut) and so the edges cannot
be distinctly labeled. For 13 ≤ n ≤ 17, the maximum edge value is n. But there exist a
vertex uk such that Φ∗(uuk) = Φ∗(vui), which is not possible.

Hence we arrive at a contradiction if Φ∗(e) = 1.
Case 2. Φ∗(e) ̸= 1.

Since Φ∗(e) ̸= 1, it follows that each edge must receive one of the value from the set
{2, 3, . . . , 2n+ 1}.

Let e, e′ be two edges such that Φ∗(e) = 2 and Φ∗(e′) = 2n+1 where e′ = uui. In order
to get an edge labeled 2n+1, one of the end points must receive 2n+1 and the other must
receive 2n. Then either Φ(ui) = 2n+ 1 and Φ(u) = 2n or Φ(u) = 2n+ 1 and Φ(ui) = 2n.
Without loss of generality, let Φ(u) = 2n+ 1 and Φ(ui) = 2n. Since Φ∗(e) = 2, e is never
incident with the vertex u. Let e = vuj and Φ(v) can be one of {2, 3, 4, 5} and Φ(uj)
can be one of {1, 2, 3, 4}. But by Case 1, we get a contradiction if Φ(v) = 2 or 3 and
Φ(ui) = 2n+ 1.

If Φ(v) = 4, then Φ(uj) must be either 1 or 2. By applying part (4) of Lemma 3.1, any
edge incident with v have the edge value Φ∗(vui) ≤ n− 1 for all n ≥ 17.

For n = 10, 11, the maximum edge label is n+ 2 and the minimum edge label is 2 and
so we have n + 1 labels for n edges incident with v. Since Φ(uj) = 1 or 2, by part (1)
or (2) of Lemma 3.1 we have Φ∗(uuj) ≤ n + 1. Since Φ∗(e) ̸= 1, there exist an edge ei
such that Φ∗(ei) = 3 and ei must be incident with the vertex v, otherwise Φ∗(ei) = 3 is
not possible. Let ei = vur. Then the possible vertex labels for ur can be one of {1, 2, 3}.
Now by part (1),(2) or (3) of Lemma 3.1, Φ∗(uur) ≤ n + 1. Then there exist a vertex
ui ∈ Y such that either Φ∗(vui) = Φ∗(uuj) or Φ∗(vui) = Φ∗(uur) and so the edges cannot
be distinctly labeled. For 12 ≤ n ≤ 16, the minimum edge label is 2 and maximum edge
value is n+ 1 and so we have n labels for n edges incident with v. Since Φ(uj) = 1 or 2,
by part (1) or (2) of Lemma 3.1 we have Φ∗(uuj) ≤ n + 1. Then there exist a vertex ui
such that Φ∗(vui) = Φ∗(uuj). Hence we cannot label the edges distinctly.

If Φ(v) = 5, by applying part (5) of Lemma 3.1, we get a similar contradiction as in
the above discussion. So, if Φ∗(e) ̸= 1, two edges receive the same edge label. Thus no
such function exists. Hence for n ≥ 10, the graph K2,n is not a Heronian mean anti-magic
graph. □
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4. Conclusion

In this paper, we have proved that Pn ⊙ 2K1, kCn, CLn are all Heronian mean anti-
magic and we have proved that the union of two trees of order at least 3 does not satisfy
the Heronian mean anti-magic labeling. Added to this, using the inequality method we
have also proved for n ≥ 10, K2,n is not a Heronian mean anti-magic graph. In this paper,
we propose the following open problem:

(1) Characterize for all positive integer m,n for which Km,n is not Heronian mean
anti-magic labeling
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