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INVERSE PROBLEM FOR A TWO-DIMENSIONAL WAVE EQUATION
WITH A FRACTIONAL RIEMANN-LIOUVILLE TIME DERIVATIVE

D. K. DURDIEV1,2, T. R. SUYAROV1,2,∗ AND H. H. TURDIEV1,2, §

Abstract. In this paper, we consider direct and inverse problems for a two-dimensional
fractional wave equation with the Riemann-Liouville time fractional derivative. The
direct problem is the initial-boundary problem for this equation with nonlocal boundary
conditions. In inverse problem it is required to find time variable coefficient at the lower
term of equation. Using the method of separation of variables, a classical solution of
direct problem was found in the form of a bi orthogonal series in terms of eigenfunctions
and associated functions. A nonlocal integral condition is used as the overdetermination
condition with respect to the direct problem solution. Using the Fourier method, direct
problem is reduced to equivalent integral equations. Then, using the estimates for Mittag-
Leffler function and the generalized singular Gronwall inequality, we obtain an a priori
estimate of the solution through an unknown coefficient, which we will need to study the
inverse problem. The inverse problem is reduced to a Volterra integral equation of the
second kind. Based on the unique solvability of this equation in the class of continuous
functions, theorems on the unique solvability of direct and inverse problems are proven.
Stability estimate is also obtained.

Keywords: wave equation, Riemann-Liouville fractional integral, inverse problem, spec-
tral method, stability, Banach fixed point theorem.

AMS Subject Classification: 34A08, 34K10, 34K37, 34M50, 35R11.

1. Introduction

In the recent years, fractional calculus has played a very important role in various
fields such as mechanics, electricity, chemistry, biology, economics, notably control the-
ory, and signal and image processing. Major directions include anomalous diffusion, vi-
bration and control, continuous time random walk, fractional Brownian motion, power
law, fractional derivative and fractals, computational fractional derivative equations, non-
local phenomena, biomedical engineering, fractional transforms, singularities analysis and
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integral represen-tations for fractional differential systems, special functions related to
fractional calculus, heat conduction, acoustic dissipation, geophysics, relaxation, creep,
viscoelasticity, rheology, fluid dynamics, and groundwater problems [1, 2, 3, 4, 5].

The identification of the right hand side and the order of time fractional derivative
equation in applied fractional modeling plays an important role. In the papers [6, 7,
8], inverse problems for determining these unknowns in a subdiffusion equation with an
arbitrary second order elliptic differential operator are considered. It is proved that the
additional information about the solution at a fixed time instant at a monitoring location,
as the observation data, identified uniquely the order of the fractional derivative.

Inverse problems for classical integro-differential equations of wave propa-gation have
been widely studied.

Nonlinear inverse coefficient problems with various types of overdetermination condi-
tions are often found in the literature (eg, [9, 10, 11, 12, 13, 14, 15, 16] and references
therein). In the works [17, 18, 19, 20, 21, 22], inverse problems of determining unknown
coefficients in the Cauchy problem for a fractional wave-diffusion equation were studied.
Local existence and global uniqueness are proved, and conditional stability estimates are
obtained.

In this paper, we study the local existence and global uniqueness of the inverse problem
of determining the non-stationary coefficient in a two-dimensional fractional-time wave
equation with initial, non local boundary and integral redefinition conditions.

In the domain Ω := D× (0, T ], D := {(x, y) : 0 < x, y < 1,} consider the time-fractional
wave equation(

Dα
0+tu

)
(x, y, t)−∆u+ q(t)u(x, y, t) = f(x, y, t), (x, y, t) ∈ Ω, (1)

with initial and boundary conditions

I
(2−α)
0+t u(x, y, t)

∣∣
t=0

= φ1(x, y),

∂

∂t

(
I
(2−α)
0+t u

)
(x, y, t)

∣∣
t=0

= φ2(x, y), (x, y) ∈ [0, 1]× [0, 1], (2)

u(0, y, t) = u(1, y, t), ux(1, y, t) = 0, (y, t) ∈ [0, 1]× [0, T ], (3)
u(x, 0, t) = u(x, 1, t) = 0, (x, t) ∈ [0, 1]× [0, T ]. (4)

Here the Riemann-Liouville fractional differential operator Dα
0+,t of the order 1 < α < 2

is defined as follows [[1], pp. 69-72,[23], pp. 62-65]

Dα
0+,tu(·, ·, t) =

∂2

∂t2

(
I
(2−α)
0+,t u

)
(·, ·, t),

Iγ0+,tu(x, y, t) =
1

Γ(γ)

∫ t

0

u(x, y, τ)

(t− τ)1−γ
dτ, γ ∈ (0, 1),

is the Riemann-Liouville fractional integral of the function u(x, y, t) with respect to t [1,
pp. 69-72], Γ(·) is the Euler’s Gamma function, ∆ is the Laplace operator.

Everywhere in this paper, functions f(x, y, t), φ1(x, y), φ2(x, y) are known functions.
We pose the inverse problem as follows: find the function q(t) ∈ C[0, T ] in (1), if the

solution of the initial-boundary problem (1)-(4) satisfies condition:∫ 1

0

∫ 1

0
w(x, y)u(x, y, t)dxdy = h(t), 0 ≤ t ≤ T. (5)

where w(x, y), h(t) are known functions.
Assume that throughout this article, given functions φ1, φ2, f, w and h satisfy the fol-

lowing conditions:
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A1) {φ1, φ2} ∈ C3([0, 1]× [0, 1]),
{
φ
(4)
1 , φ

(4)
2

}
∈ L2([0, 1]× [0, 1]); φ(0, y) = φ(1, y) = 0,

φx(0, y) = φx(1, y) = 0, φxx(0, y) = φxx(1, y) = 0, φ(x, 0) = φ(x, 1) = 0, φy(x, 0) =
φy(x, 1) = 0, φyy(x, 0) = φyy(x, 1) = 0.

A2) f(x, y, ·) ∈ C[0, T ], t ∈ [0, T ], f(·, ·, t) ∈ C3([0, 1] × [0, 1]), f (4)(·, ·, t) ∈ L2([0, 1] ×
[0, 1]) f(0, y, t) = f(1, y, t) = 0, fx(0, y, t) = fx(1, y, t) = 0, fxx(0, y, t) = fxx(1, y, t) =
0, f(x, 0, t) = f(x, 1, t) = 0, fy(x, 0, t) = fy(x, 1, t) = 0, fyy(x, 0, t) = fyy(x, 1, t) = 0.

A3) w(x, y) ∈ C2([0, 1] × [0, 1]);w(0, y) = 0, wx(0, y) = wx(1, y) = 0, wxx(0, y) =
wxx(1, y) = 0, and w(x, 1) = w(x, 0) = 0.

A4)
(
Dα

0+,th
)
(t) ∈ C[0, T ], |h(t)| ≥ h0 > 0, h0 is a given number:∫ 1

0

∫ 1

0
w(x, y)φ1(x, y)dxdy =

(
I
(2−α)
0+,t h

)
(t)t=0+,∫ 1

0

∫ 1

0
w(x, y)φ2(x, y)dxdy =

∂

∂t

(
I
(2−α)
0+,t h

)
(t)t=0+.

In section 2, we will provide some necessary preliminary informations.

2. Preliminaries

In this section, we present some useful definitions and results of fractional calculus.
The two parameter function Eα,β(z) is defined by the following series:

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
,

where α, β, z ∈ C with R(α) > 0, R(α)−denotes the real part of the complex number α.
The Mittag-Leffler function has been studied by many authors who have proposed and
studied various generalizations and applications.

Proposition 2.1. Let 0 < α < 2 and β ∈ R be arbitrary. We suppose that κ is such that
πα/2 < κ < min{π, πα}. Then there exists a constant C = C(α, β, κ) > 0 such that

|Eα,β(z)| ≤
C

1 + |z|
, κ ≤ |arg(z)| ≤ π.

For the proof, we refer to [[4].pp. 40-45], for example. We consider the weighted spaces
of continuous functions [[1].pp. 4-5, 162-163].

Cγ [a, b] := {g : (a, b] → R : (t− a)γ g(t) ∈ C[a, b], 0 ≤ γ < 1, },

Cα
γ (Ω) =

{
g(t) : Dα

0+,tg(t) ∈ Cγ(0, T ]; 1 < α ≤ 2,

}
,

C2,α
γ (Ω) =

{
u(x, y, t) : u(·, ·, t) ∈ C2(0, 1); t ∈ [0, T ]

and
Dα

0+,tu(x, y, ·) ∈ Cγ(0, T ]; x, y ∈ [0, 1], 1 < α ≤ 2,

}
,

C0
γ [a, b] = Cγ [a, b],

with the norms

∥f∥Cγ = ∥(t− a)γf(t)∥C , ∥f∥Cn
γ
=

n−1∑
k=0

∥f (k)∥C + ∥f (n)∥Cγ .
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Lemma 2.1. [[24],pp.188]. Suppose b ≥ 0, α > 0 and a(t) nonnegative function locally
integrable on 0 < t ≤ T (some T ≤ +∞) and suppose u(t) is nonnegative and locally
integrable on 0 < t ≤ T with

u(t) ≤ a(t) + b

t∫
0

(t− s)α−1u(s)ds

then

u(t) ≤ a(t) + bΓ(α)

t∫
0

(t− s)α−1Eα,α (bΓ(α)(t− s)α) a(s)ds.

Lemma 2.2. [[24],pp.189]. Suppose b ≥ 0, α > 0, γ > 0, α+γ > 1 and a(t) nonnegative
function locally integrable on 0 < t ≤ T and suppose tγ−1u(t) is nonnegative and locally
integrable on 0 < t ≤ T with

u(t) ≤ a(t) + b

t∫
0

(t− s)α−1sγ−1u(s)ds,

then
u(t) ≤ a(t)Eα,γ

(
(bΓ(α))

1
α+γ−1 t

)
,

where

Eα,γ(t) =

∞∑
m=0

cmt
m(α+γ−1), c0 = 1,

cm+1

cm
=

Γ(m(α+ γ − 1) + γ)

Γ(m(α+ γ − 1) + α+ γ)

for m ≥ 0. As t→ +∞, Eα,γ(t) = O
(
t
1
2

α+γ−1
α

−γ exp
(
α+γ−1

α t
α+γ−1

α

))
.

3. Investigation of the Spectral Problem

Consider the following equation(
Dα

0+,tu
)
(x, y, t) =

∂2u

∂x2
+
∂2u

∂y2
, (x, y, t) ∈ Ω. (6)

We will look for particular solutions to the problem (6), (3) - (4) in the form
u(x, y, t) = Z(x, y)v(t). (7)

Substituting this expression into equation (6) and boundary conditions (3), (4) and
separating the variables, we obtain the problem for finding the eigenfunctions

∂2Z/∂x2 + ∂2Z/∂y2 + µZ = 0, 0 < x, y < 1, (8)

Z(0, y) = Z(1, y),
∂Z(1, y)

∂x
= 0, (9)

Z(x, 0) = Z(x, 1) = 0, 0 ≤ x, y ≤ 1, (10)
here µ is the split parameter. Note that problem (8)-(9) is not self-adjoint in the sense of
the scalar product (ψ, ξ) =

∫ 1
0

∫ 1
0 ψ(x, y)ξ(x, y)dxdy. It is easy to verify that the problem

associated with it will be
∂2W/∂x2 + ∂2W/∂y2 + µW = 0, 0 < x, y < 1, (11)

W (0, y) = 0,
∂W (0, y)

∂x
=
∂W (1, y)

∂x
, (12)

W (x, 0) =W (x, 1) = 0, 0 ≤ x, y ≤ 1. (13)
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Let’s solve problem (8)-(10). To do this, we represent its solution in the form

Z(x, y) = X(x)Y (y). (14)

Substituting this expression into equation (8) and boundary conditions (9),(10), we arrive
at the problems

X ′′(x) + λX(x) = 0, 0 < x < 1, X(0) = X(1), X ′(1) = 0, (15)

Y ′′(y) + γY (y) = 0, 0 < y < 1, Y (0) = Y (1) = 0, (16)

where γ = µ− λ.
The solution to problem (16), as is known, has the form γk = (πk)2, Yk(y) =

√
2 sin(

√
γky)

k = 1, 2, . . .. Here and below, the constants for eigenfunctions and associated functions
are chosen from the normalization conditions.

The eigenvalues and the corresponding eigenfunctions of problem (15) were found in
[25];

X0 = 2, Xm(x) = 4 cos(2πmx), λm = (2πm)2, m = 1, 2, . . . .

Therefore, according to representation (7), the eigenvalues and eigenfunctions of problem
(8)-(9) have the form µmk = λm + γk = (2πm)2 + (πk)2, Zmk(x, y) = Xm(x)Yk(y), m =
0, 1, 2, . . . , k = 1, 2, . . .. Note that the collection of eigenfunctions Zmk(x, y) is incomplete
in the space L2([0, 1] × [0, 1]), therefore, by analogy with [26], we complete the set of
eigenfunctions with the associated functions Z̃mk(x, y),m = 0, 1, 2, . . . , k = 1, 2, . . ., which
are the solution to the problem

∂2Z̃mk/∂x
2 + ∂2Z̃mk/∂y

2 + µmkZ̃mk = pmZmk, 0 < x, y < 1,

Z̃mk(0, y) = Z̃mk(1, y), ∂Z̃mk(1, y)/∂x = 0, 0 ≤ y ≤ 1,

Z̃mk(x, 0) = Z̃mk(x, 1) = 0, 0 ≤ x ≤ 1, (17)

where pm ̸= 0 is some constant. For m = 0, k = 1, 2 . . . , this problem has no solution.
Setting pm = −2

√
λm, for m, k = 1, 2, . . ., we get

Z̃mk = 4
√
2(1− x) sin(2πmx) sin(πky).

Let us redesignate the system of eigenfunctions and associated functions of problem
(8)-(10) as follows:

Z0k(x, y) = X0(x)Yk(y), Z2m−1k(x, y) = X2m−1(x)Yk(y), Z2mk(x, y) = Z̃mk. (18)

The eigenfunctions and associated functions of the adjoint problem (8) have the form

W0k(x, y) = xYk(y), W2mk(x, y) = sin(2πmx)Yk(y),

W2m−1k(x, y) = x cos(2πmx)Yk(y), m, k = 1, 2, . . . . (19)

Note that the sequences of functions (18), (19) form a biorthonormal relationship:
(Zmk,Wlp) = 1 for m = l, k = p, otherwise (Zmk,Wlp) = 0.
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4. Estimate for solving the direct problem.

According to (7), particular solutions to problem (8)-(10) have the form

u(x, y, t) =

∞∑
k=1

Z0k(x, y)v0k(t)+

+

∞∑
k=1

∞∑
m=1

(Z2m−1k(x, y)v2m−1k(t) + Z2mk(x, y)v2mk(t)) . (20)

The coefficients v0k(t), v2m−1k(t), v2m−1k(t) are to be found by making use of the or-
thogonality of the eigenfunctions. Namely, we multiply (1) by the eigenfunctions of (19)
and integrate over (0, 1). Recall that the scalar product in L2([0, 1]× [0, 1]) is defined by

(f, g) =

∫ 1

0

∫ 1

0
f(x, y)g(x, y)dxdy.

Let us note the expansion coefficients of f(x, y, t) and φ(x, y) in the eigenfunctions of
(19) for respectively by (f(x, y, t),W0k(x, y)) = f0k(t),

(f(x, y, t),W2m−1k(x, y)) = f2m−1k(t),
(f(x, y, t),W2mk(x, y)) = f2mk(t), (φi(x, y),W0k(x, y)) = φ0k,i,

(φi(x, y),W2m−1k(x, y)) = φ2m−1k,i,
(φi(x, y),W2mk(x, y)) = φ2mk,i,

i = 1, 2. (21)

We obtain in view of (1) and with (u(x, y, t),W0k(x, y)) = v0k(t), and first component
of (21), we may write{ (

Dα
0+,tv0k

)
(t) + γ2kv0k + q(t)v0k(t) = f0k(t),

I
(2−α)
0+,t v0k(t)

∣∣∣
t=0

= φ0k,1,
d
dt

(
I
(2−α)
0+,t v0k

)
(t)
∣∣∣
t=0

= φ0k,2.
(22)

Also, the linear fractional differential equations satisfied by (u(x, y, t),W2mk(x, y)) =
v2km(t), m, k ≥ 1; are{ (

Dα
0+,tv2mk

)
(t) + µ2mkv2mk(t) + q(t)v2mk(t) = f2mk(t),

I
(2−α)
0+,t v2mk(t)

∣∣∣
t=0

= φ2mk,1,
d
dt

(
I
(2−α)
0+,t v2mk

)
(t)
∣∣∣
t=0

= φ2mk,2.
(23)

For v2m−1k(t) = (u(x, y, t),W2m−1k(x, y)) ;m, k ≥ 1, in view of (1) we have{ (
Dα

0+,tv2m−1k

)
(t) + µ2mkv2m−1k + 2λmu2mk + q(t)v2m−1k(t) = f2m−1k(t),

I
(2−α)
0+,t v2m−1k(t)

∣∣∣
t=0

= φ2m−1k,1,
d
dt

(
I
(2−α)
0+,t v2m−1k

)
(t)
∣∣∣
t=0

= φ2m−1k,2.
(24)

We solve problems (22)-(24).
Based [[27], pp. 61-114], we have that the initial problem (22) is equivalent in the space

Cα
γ [0, T ] to the Volterra integral equation of the second kind

v0k(t) = tα−2Eα,α−1

(
−γ2ktα

)
φ0k,1 + tα−1Eα,α

(
−γ2ktα

)
φ0k,2+

+

∫ t

0
(t− τ)α−1Eα,α

(
−γ2k(t− τ)α

)
f0k(τ)dτ−

−
∫ t

0
(t− τ)α−1Eα,α

(
−γ2k(t− τ)α

)
q(τ)v0k(τ)dτ. (25)

We prove the following assertions for v0k(t) :
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Lemma 4.1. We have the estimates

tγ |v0k| ≤
(
tγ+α−2M1 |φ0k,1|+ tγ+α−1M2 |φ0k,2|+

+
∥f0k∥Cγ [0,T ] t

αB(α, 1− γ)M3

Γ(α+ 1)

)
Eα,γ

((
∥q∥C[0,T ]t

γ
) 1

α+γ−1 t
)
;

tγ
∣∣(Dα

0+,tv0k
)
(t)
∣∣ ≤ ∥f0k∥Cγ [0,T ] +

(
γ2k + ∥q∥C[0,T ]

)(
tγ+α−2M1 |φ0k,1|+

+tγ+α−1M2 |φ0k,2|+
∥f0k∥Cγ [0,T ] t

αB(α, 1− γ)M3

Γ(α+ 1)

)
Eα,γ

((
∥q∥C[0,T ]t

γ
) 1

α+γ−1 t
)
,

where 1 > γ > 2− α.

Proof. The solution of (22) is bounded in Cα,β
γ [0, T ] in view of A1), A2).

Multiplying the last equation (22) by tγ , we get
tγ |v0k| ≤ tγ+α−2M1 |φ0k,1|+ tγ+α−1M2 |φ0k,2|+

+
∥f0k∥Cγ [0,T ] t

αB(α, 1− γ)M3

Γ(α+ 1)
+

|q|C[0,T ]t
γ

Γ(α)

∫ t

0
(t− τ)α−1 |v0k(τ)| dτ, (26)

where B(α, 1− γ) is Euler’s beta function. Next, according to Lemma 2.2, we get

tγ |v0k| ≤
(
tγ+α−2M1 |φ0k,1|+ tγ+α−1M2 |φ0k,2|+

∥f0k∥Cγ [0,T ] t
αB(α, 1− γ)M3

Γ(α+ 1)

)
×

×Eα,γ

((
∥q∥C[0,T ]t

γ
) 1

α+γ−1 t
)
=: Ψ0k(t), t ∈ [0, T ]. (27)

We get the second part of the lemma 4.1, from the equation in problem (22) and the
first estimate of lemma 4.1:

tγ
∣∣(Dα

0+,tv0k
)
(t)
∣∣ ≤ ∥f0k∥Cγ [0,T ] +

(
γ2k + ∥q∥C[0,T ]

)(
tγ+α−2M1 |φ0k,1|+

+tγ+α−1M2 |φ0k,2|+
∥f0k∥Cγ [0,T ] t

αB(α, 1− γ)M3

Γ(α+ 1)

)
Eα,γ

((
∥q∥C[0,T ]t

γ
) 1

α+γ−1 t
)
.

From the last two inequalities we immediately obtain the estimates of lemma 4.1 for
any t ∈ [0, T ]. Lemma 4.1 proven. □

In view of [[27], pp. 61-114], we have that the initial problems (23), (24) are equivalent
in the space Cα

γ [0, T ] to the Volterra integral equations of the second kind

v2mk(t) = tα−2Eα,α−1

(
−µ2mkt

α
)
φ2mk,1 + tα−1Eα,α

(
−µ2mkt

α
)
φ2mk,2+

+

∫ t

0
(t− τ)α−1Eα,α

(
−µ2mk(t− τ)α

)
f2mk(τ)dτ−

−
∫ t

0
(t− τ)α−1Eα,α

(
−µ2mk(t− τ)α

)
q(τ)v2mk(τ)dτ, (28)

v2m−1k(t) = tα−2Eα,α−1

(
−µ2mkt

α
)
φ2m−1k,1 + tα−1Eα,α

(
−µ2mkt

α
)
φ2m−1k,2+

+

∫ t

0
(t− τ)α−1Eα,α

(
−µ2mk(t− τ)α

)
f2m−1k(τ)dτ−

−2λm

∫ t

0
(t− τ)α−1Eα,α

(
−µ2mk(t− τ)α

)
v2mk(τ)dτ−
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−
∫ t

0
(t− τ)α−1Eα,α

(
−µ2mk(t− τ)α

)
q(τ)v2m−1k(τ)dτ. (29)

Estimating the integral equation (25), analogous, we get estimates for equations (28),
(29).

tγ |v2mk| ≤
(
tγ+α−2M1 |φ2mk,1|+ tγ+α−1M2 |φ2mk,2|+

+
∥f2mk∥Cγ [0,T ] t

αB(α, 1− γ)M3

Γ(α+ 1)

)
Eα,γ

((
∥q∥C[0,T ]t

γ
) 1

α+γ−1 t
)
=: Ψ2m(t), t ∈ [0, T ],

tγ |v2m−1k| ≤
(
tγ+α−2M1 |φ2m−1k,1|+ tγ+α−1M2 |φ2m−1k,2|+

+2λm
Ψ2mk(t)t

αB(α, 1− γ)

Γ(α+ 1)
+

∥f2m−1k∥Cγ [0,T ] t
αB(α, 1− γ)M3

Γ(α+ 1)

)
×

×Eα,γ

((
∥q∥C[0,T ]t

γ
) 1

α+γ−1 t
)
=: Ψ2m−1k(t), t ∈ [0, T ], (30)

and

tγ
∣∣(Dα

0+,tv2mk

)
(t)
∣∣ ≤ ∥f2mk∥Cγ [0,T ] +

(
µ2m + ∥q∥C[0,T ]

)(
tγ+α−2)M1 |φ2mk,1|+

+tγ+α−1)M2 |φ2mk,2|+
∥f2mk∥Cγ [0,T ] t

αB(α, 1− γ)M3

Γ(α+ 1)

)
×

×Eα,γ

((
∥q∥C[0,T ]t

γ
) 1

α+γ−1 t
)
=: Ψ̄2mk(t), t ∈ [0, T ],

tγ
∣∣(Dα

0+,tv2m−1k

)
(t)
∣∣ ≤ ∥f2m−1k∥Cγ [0,T ] + 2λm |u2mk|Cγ [0,T ]+

+
(
µ2m + ∥q∥C[0,T ]

)(
tγ+α−2M1 |φ2m−1k,1|+ tγ+α−1M2 |φ2m−1k,2|+

+
∥f2m−1k∥Cγ [0,T ] t

αB(α, 1− γ)M3

Γ(α+ 1)
+ 2λm

Ψ̄2mk(t)t
αB(α, 1− γ)

Γ(α+ 1)

)
×

×Eα,γ

((
∥q∥C[0,T ]t

γ
) 1

α+γ−1 t
)
, t ∈ [0, T ], (31)

where 1 > γ > 2− α.
From the last two inequalities we obtain the estimates of lemma 4.1 for any t ∈ [0, T ].

Formally, from (20) by term-by-term differentiation we compose the series(
Dα

0+,tu
)
(x, y, t) = 2

√
2

∞∑
k=1

(
Dα

0+,tv0k
)
(t) sin (γky)+

+4
√
2

∞∑
k=1

∞∑
m=1

(
Dα

0+,tv2m−1k

)
(t) cos (λmx) sin (γky)+

+4
√
2(1− x)

∞∑
k=1

∞∑
m=1

(
Dα

0+,tv2mk

)
(t) sin (λmx) sin (γky) , (32)

uxx(x, y, t) = −4
√
2

∞∑
k=1

∞∑
m=1

λ2mv2m−1k(t) cos (λmx) sin (γky)−

−8
√
2

∞∑
k=1

∞∑
m=1

λmv2mk(t) cos (λmx) sin (γky)−
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−4
√
2(1− x)

∞∑
k=1

∞∑
m=1

λ2mv2mk(t) sin (λmx) sin (γky) , (33)

uyy(x, y, t) = −2
√
2

∞∑
k=1

γ2kv0k(t) sin (γky)−

−4
√
2

∞∑
k=1

∞∑
m=1

γ2kv2m−1k(t) cos (λmx) sin (γky)−

−4
√
2(1− x)

∞∑
k=1

∞∑
m=1

γ2kv2mk(t) sin (λmx) sin (γky) . (34)

Let us prove the uniform convergence of series (20), (32)-(34) in the domain Ω̄. This
series for any (x, y, t) ∈ Ω̄ is majorized as follows

2

∞∑
k=1

Ψ0k(T ) + 4
√
2

∞∑
k=1

∞∑
m=1

Ψ2m−1k(T ) + 4
√
2

∞∑
k=1

∞∑
m=1

Ψ2mk(T ),

2
√
2

∞∑
k=1

(
∥f0k∥Cγ [0,T ] +

(
γ2k + ∥q∥C[0,T ]

)
Ψ0k(T )

)
+

+4
√
2

∞∑
k=1

∞∑
m=1

(
∥f2m−1k∥Cγ [0,T ] + 2λmΨ2mk(T ) +

(
µ2mk + ∥q∥C[0,T ]

)
Ψ2m−1k(T )

)
+

+4
√
2

∞∑
k=1

∞∑
m=1

(
∥f2mk∥Cγ [0,T ] +

(
µ2mk + ∥q∥C[0,T ]

)
Ψ2mk(T )

)
,

4
√
2

∞∑
k=1

∞∑
m=1

λ2mΨ2m−1k(T ) + 4
√
2

∞∑
k=1

∞∑
m=1

(
λ2m + 2λm

)
Ψ2mk(T ),

2
√
2

∞∑
k=1

γ2kΨ0k(T ) + 4
√
2

∞∑
k=1

∞∑
m=1

γ2kΨ2m−1k(T ) + 4
√
2

∞∑
k=1

∞∑
m=1

γ2kΨ2mk(T ),

where Ω̄ := {(x, t) : 0 ≤ x, y ≤ 1, 0 ≤ t ≤ T}.

Lemma 4.2. If conditions A1), A2) are satisfied, then the equalities

φ0k,i =
φ
(0,4)
0k,i

γ4k
, φ2m−1k,i =

φ
(2,2)
2m−1k,i

γ2k (λ
2
m + 2λm)

, φ2mk,i =
φ
(2,2)
2mk,i

λ2mγ
2
k

, i = 1, 2,

f0k(t) =
f
(0,4)
0k (t)

γ4k
, f2m−1k(t) =

f
(2,2)
2m−1k(t)

γ2k (λ
2
m + 2λm)

, f2mk(t) =
f
(2,2)
2mk (t)

λ2mγ
2
k

, (35)

here φ(0,4)
0k,i , φ

(2,2)
2m−1k,i, φ

(2,2)
2mk,i , f (0,4)0k , f

(2,2)
2m−1k, f

(2,2)
2mk − expansion coefficients of the functions

φ(x, y), f(x, y, t) in a Fourier series with the following estimates:∑
k≥1

∣∣∣φ(0,4)
0k,i

∣∣∣ ≤ ∫∫
D
(φyyyy,i(x, y))

4 dxdy, 0 ≤ x, y ≤ 1,

∑
m,k≥1

∣∣∣φ(2,2)
2m−1k,i

∣∣∣4 ≤ ∫∫
D
(φxxyy,i(x, y))

4 dxdy, 0 ≤ x, y ≤ 1,

∑
m,k≥1

∣∣∣φ(2,2)
2mk,i

∣∣∣4 ≤ ∫∫
D
(φxxyy,i(x, y))

4 dxdy, 0 ≤ x, y ≤ 1,
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k≥1

∣∣∣f (0,4)0k

∣∣∣4 ≤ ∫∫
D
(fyyyy(x, y, t))

4 dxdy, 0 ≤ t ≤ T,

∑
m,k≥1

∣∣∣f (2,2)2m−1k

∣∣∣4 ≤ ∫∫
D
(fxxyy(x, y, t))

4 dxdy, 0 ≤ t ≤ T,

∑
m,k≥1

∣∣∣f (2,2)2mk

∣∣∣4 ≤ ∫∫
D
(fxxyy(x, y, t))

4 dxdy, 0 ≤ t ≤ T. (36)

If the functions φ(x, y), f(x, y, t) satisfy the conditions of lemma 4.2, then, due to repre-
sentations (35) and (36), series (20), (32)-(34) converge uniformly in the rectangle Ω̄, so
the function u(x, y, t) satisfies relations (1)-(4).

Using the above results, we obtain the following assertion.

Theorem 4.1. Let q(t) ∈ C[0, T ], A1), A2) hold, then there exists a unique solution to
the direct problem (1)–(4) u(x, y, t) ∈ C2,α

xy,t(Ω̄).

5. Continuous Dependence on the Data

We use the topological product of Banach spaces K = Cα
γ [0, T ]×Cα

γ [0, T ]×Cα
γ [0, T ] with

its norm to prove the existence and uniqueness of a solution in this form (v0k(t), v2mk(t),
v2m−1k(t)) ∈ K. Define an operator A on K formula

A (v0k(t), v2mk(t), v2m−1k(t)) = (P0kv0k(t), P2mkv2mk(t), P2m−1kv2m−1k(t))

where the operators P0k, P2mk, P2m−1k are defined on Cα
γ [0, T ] by the right-hand side of

(25),(28) and (29), respectively. In view of (27), (30) , (31) A : K → K.
Prove that A is a constraint on K. So for each

((v0k(t), v2m−1k(t), v2mk(t)) ; (ṽ0k(t), ṽ2m−1k(t), ṽ2mk(t))) ∈ K

we have
∥A (v0k, v2mk, v2m−1k)−A (ṽ0k, ṽ2mk, ṽ2m−1k)∥K ≤

≤ max

{
∥P0kv0k − P0kṽ0k∥Cα

γ [0,T ] ,

∥P2mkv2mk − P2mkṽ2mk∥Cα
γ [0,T ] , ∥P2m−1kv2m−1k − P2m−1kṽ2m−1k∥Cα

γ [0,T ]

}
.

First, we easily get

∥P0kv0k(t)− P0kṽ0k(t)∥Cα
γ
≤

∥q∥C[0,T ]t
γ

Γ(α)

∫ t

0
(t− τ)α−1 |v0k(τ)− ṽ0k(τ)| dτ ≤

≤
∥q∥C[0,T ]T

αB(α, 1− γ)

Γ(α)
∥v0k − ṽ0k∥Cα

γ [0,T ] .

For P2mk we have for every t ∈ [0, T ]

∥P2mkv2mk − P2mkṽ2mk∥Cα
γ [0,T ] ≤

∥q∥C[0,T ]T
γB(α, 1− γ)

Γ(α)
∥v2mk − ṽ2mk∥Cα

γ [0,T ]

where m, k ≥ 1.
Similarly, for each t ∈ [0, T ]

∥P2m−1kv2m−1k(t)− P2m−1kṽ2m−1k(t)∥Cα
γ [0,T ] ≤

2λmt
αB(α, 1− γ)

Γ(α+ 1)
×
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×∥v2mk − ṽ2mk∥Cγ [0,T ] +
∥q∥C[0,T ]t

γ

Γ(α)

∫ t

0
(t− τ)α−1 |v2m−1k(τ)− ṽ2m−1k(τ)| dτ ≤

≤ 2λmT
αB(α, 1− γ)

Γ(α+ 1)
∥v2mk − ṽ2mk∥Cα

γ [0,T ]+

+
∥q∥C[0,T ]T

γB(α, 1− γ)

Γ(α)
∥v2m−1k − ṽ2m−1k∥Cα

γ [0,T ]

which gives for m, k ≥ 1.
As a result

∥A (v0k, v2mk, v2m−1k)−A (ṽ0k, ṽ2mk, ṽ2m−1k)∥K ≤

≤ max

{∥q∥C[0,T ]T
αB(α, 1− γ)

Γ(α)
∥v0k − ṽ0k∥Cα

γ [0,T ] ,

∥q∥C[0,T ]T
γB(α, 1− γ)

Γ(α)
∥v2mk − ṽ2mk∥Cα

γ [0,T ] ,

2λmT
αB(α, 1− γ)

Γ(α+ 1)
∥v2mk − ṽ2mk∥Cα

γ [0,T ]+

+
∥q∥C[0,T ]T

γB(α, 1− γ)

Γ(α)
∥v2m−1k − ṽ2m−1k∥Cα

γ [0,T ]

}
≤

≤ max

{∥q∥C[0,T ]T
αB(α, 1− γ)

Γ(α)
+

2λmT
αB(α, 1− γ)

Γ(α+ 1)

}
×

×∥(v0k, v2mk, v2m−1k)− (ṽ0k, ṽ2mk, ṽ2m−1k)∥Cα
γ [0,T ]

If
max

{∥q∥C[0,T ]T
αB(α, 1− γ)

Γ(α)
+

2λmT
αB(α, 1− γ)

Γ(α+ 1)

}
< 1

then, A is a contraction on K and has a unique fixed point which is the coefficients v0k(t),
v2mk(t), v2m−1k(t) of the solution (20). Then, there exists a unique solution of (1)-(4) for
arbitrary q(t) in C[0, T ].

6. Study of the inverse problem (1)-(5).

Multiply (1) by w(x, y) and integrate in x, y from 0 to 1. As a result we have∫ 1

0

∫ 1

0
w(x, y)

{(
Dα

0+,tu
)
(x, y, t)−∆u+ q(t)u(x, y, t)

}
dxdy =

=

∫ 1

0

∫ 1

0
w(x, y)f(x, y, t)dxdy. (37)

The future after simple transformations, taking into account A3), we get(
Dα

0+,th
)
(t) + q(t)h(t)−

∫ 1

0

∫ 1

0
∆wu(x, y, t)dxdy =

∫ 1

0

∫ 1

0
w(x, y)f(x, y, t)dxdy,

which gives

q(t) =
1

h(t)

(∫ 1

0

∫ 1

0
w(x, y)f(x, y, t)dxdy −

(
Dα

0+,th
)
(t)

)
+

+
1

h(t)

∫ 1

0

∫ 1

0
∆w

( ∞∑
k=1

Z0k(x, y)v0k(t) +
∞∑
k=1

∞∑
m=1

Z2m−1k(x, y)v2m−1k(t) +
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+
∞∑
k=1

∞∑
m=1

Z2mk(x, y)v2mk(t)

)
dxdy.

The functions umk(t) depend on q(t), i.e., umk(t; q). After a simple transformation, we
obtain the following integral equation for determining q(t) :

q(t) = q0(t) +
1

h(t)

( ∞∑
k=1

w0kv0k(t; q) +

+
∞∑
k=1

∞∑
m=1

w2m−1kv2m−1k(t; q) +
∞∑
k=1

∞∑
m=1

w2mkv2mk(t; q)

)
, (38)

where
q0(t) =

1

h(t)

(∫ 1

0

∫ 1

0
w(x, y)f(x, y, t)dxdy −

(
Dα

0+,th
)
(t)

)
,

w0k =

∫ 1

0

∫ 1

0
∆wZ0k(x, y)dxdy, w2m−1k =

∫ 1

0

∫ 1

0
∆wZ2m−1k(x, y)dxdy,

w2mk =

∫ 1

0

∫ 1

0
∆wZ2mk(x, y)dxdy,

v0k, v2m−1k, v2mk are determined by the right-hand sides of (25), (28), (29), respectively.
Let us introduce the operator F , which defines it by the right side of (38):

F [q](t) = q0(t) +
1

h(t)

( ∞∑
k=1

w0kv0k(t; q) +

+

∞∑
k=1

∞∑
m=1

w2m−1kv2m−1k(t; q) +

∞∑
k=1

∞∑
m=1

w2mkv2mk(t; q)

)
. (39)

Then equation (39) can be written in a more convenient form as
F [q](t) = q(t). (40)

Let
q00 := max

t∈[0;T ]
|q0(t)| =

∥∥∥∥ 1

h(t)

(∫ 1

0

∫ 1

0
wf(t)dxdy −

(
Dα

0+,th
)
(t)

)∥∥∥∥
C[0,T ]

.

We fix a number ρ > 0 and consider the ball
B (q0, ρ) := {q(t) ∈ C[0, T ]; ∥q − q0∥ ≤ ρ} .

Theorem 6.1. Let A1)-A4) be satisfied. Then there exists a number T ∗ ∈ (0, T ) such
that there exists a unique solution q(t) ∈ C [0, T ∗] of the inverse problem (1)-(5).

Proof. First we prove that for sufficiently small T > 0 the operator F maps the ball
B (q0, ρ) and implies that F [q](t) ∈ B (q0, ρ). Indeed, for any continuous function q(t),
the function F [q](t) calculated by formula (40) will be continuous. At the same time,
estimating the norm of differences, we find that

∥F [q](t)− q0(t)∥ ≤ w0

h0

∞∑
k=1

(
T γ+α−2M1 |φ0k,1|+ T γ+α−1M2 |φ0k,2|+

+
∥f0k∥Cγ [0,T ] T

αB(α, 1− γ)M3

Γ(α+ 1)

)
Eα,γ

((
∥q∥C[0,T ]T

γ
) 1

α+γ−1 T
)
+
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+
w0

h0

∞∑
k=1

∞∑
m=1

(
T γ+α−2M1 |φ2m−1k,1|+ T γ+α−1M2 |φ2m−1k,2|+

+
∥f2m−1k∥Cγ [0,T ] T

αB(α, 1− γ)M3

Γ(α+ 1)
+

+2λm
Ψ2mk(T )T

αB(α, 1− γ)

Γ(α+ 1)

)
Eα,γ

((
∥q∥C[0,T ]T

γ
) 1

α+γ−1 T
)
+

+
w0

h0

∞∑
k=1

∞∑
m=1

(
T γ+α−2M1 |φ2mk,1|+ T γ+α−1M2 |φ2mk,2|+

+
∥f2mk∥Cγ [0,T ] T

αB(α, 1− γ)M3

Γ(α+ 1)

)
Eα,γ

((
∥q∥C[0,T ]T

γ
) 1

α+γ−1 T
)
.

Here we have used the estimate for v0k, v2m−1k, v2mk given in (25), (28), (29). In view of
the above lemmas, the last series is a convergent series. Note that the function occurring
on the right-hand side of this inequality is monotone increases with T , and the fact that the
function q(t) belongs to the ball B (q0, ρ) implies the inequality |q∥ ≤ ∥q0∥+ρ. Therefore,
we only strengthen the inequality if we replace ∥q∥ in this inequality with the expression
∥q∥+ ρ. Performing these replacements, we obtain the estimate

∥F [q](t)− q0(t)∥ ≤ w0

h0

∞∑
k=1

(
T γ+α−2M1 |φ0k,1|+ T γ+α−1M2 |φ0k,2|+

+
∥f0k∥Cγ [0,T ] T

αB(α, 1− γ)M3

Γ(α+ 1)

)
Eα,γ

(
((∥q0∥+ ρ)T γ)

1
α+γ−1 T

)
+

+
w0

h0

∞∑
k=1

∞∑
m=1

(
T γ+α−2M1 |φ2m−1k,1|+ T γ+α−1M2 |φ2m−1k,2|+

+
∥f2m−1k∥Cγ [0,T ] T

αB(α, 1− γ)M3

Γ(α+ 1)
+

+2λm
Ψ2mk(T )T

αB(α, 1− γ)

Γ(α+ 1)

)
Eα,γ

(
((∥q0∥+ ρ)T γ)

1
α+γ−1 T

)
+

+
w0

h0

∞∑
k=1

∞∑
m=1

(
T γ+α−2M1 |φ2mk,1|+ T γ+α−1M2 |φ2mk,2|+

+
∥f2mk∥Cγ [0,T ] T

αB(α, 1− γ)M3

Γ(α+ 1)

)
Eα,γ

(
((∥q0∥+ ρ)T γ)

1
α+γ−1 T

)
=: s1(T ).

Let T1 be the positive root of the equation. Therefore, if we denote by T1 the positive root
of the equation (for T ), then ∥F [q](t)− q0(t)∥ ≤ ρ for T ≤ T1; those F [q](t) ∈ B (q0, ρ). □

Now we take any functions q(t), q̃(t) ∈ B (q0, ρ) and estimate the distance between
their images F [q](t) and F [q̃](t) in the space C[0, T ]. The function vmk(t) = ṽmk(t)
corresponding to q̃(t) satisfies integral equations (25), (28) and (29) for φmk,i = φ̃mk,i,
and fmk = f̃mk.

Compiling the difference F [q](t)−F [q̃](t) using equations (22)-(24) and then estimating
its norm, we obtain

∥F [q](t)− F [q̃](t)∥ ≤
w0∥q∥C[0,T ]T

γ

h0Γ(α)

[ ∞∑
k=1

(
T γ+α−2M1 |φ0k,1|+ T γ+α−1M2 |φ0k,2|+



2096 TWMS J. APP. ENG. MATH. V.15, N.8, 2025

+
∥f0k∥Cγ [0,T ] T

αB(α, 1− γ)M3

Γ(α+ 1)

)
Eα,γ

((
∥q∥C[0,T ]T

γ
) 1

α+γ−1 T
)
+

+

∞∑
k=1

∞∑
m=1

(
T γ+α−2M1 |φ2m−1k,1|+ T γ+α−1M2 |φ2m−1k,2|+

+
∥f2m−1k∥Cγ [0,T ] T

αB(α, 1− γ)M3

Γ(α+ 1)
+

+2λm
Ψ2mk(T )T

αB(α, 1− γ)

Γ(α+ 1)

)
Eα,γ

((
∥q∥C[0,T ]T

γ
) 1

α+γ−1 T
)
+

+

∞∑
k=1

∞∑
m=1

(
T γ+α−2M1 |φ2mk,1|+ T γ+α−1M2 |φ2mk,2|+

+
∥f2mk∥Cγ [0,T ] T

αB(α, 1− γ)M3

Γ(α+ 1)

)
Eα,γ

((
∥q∥C[0,T ]T

γ
) 1

α+γ−1
T
)]

∥q − q̃∥C[0,T ]. (41)

The functions q(t) and q̃(t) belong to the ball B (q0,ρ), so for each of these functions, we
have the inequality ∥q∥ ≤ ∥q0∥+ ρ. Note that the function on the right side of inequality
(41) with the multiplier ∥q∥−∥q̃∥ monotonically increases with ∥q∥ ,∥q̃∥ and T . Therefore,
replacing ∥q∥ and ∥q̃∥ in inequality (41) with ∥q∥+ ρ will only strengthen the inequality.
This, we have

∥F [q](t)− F [q̃](t)∥ ≤
w0∥q∥C[0,T ]T

γ

h0Γ(α)

[ ∞∑
k=1

(
T γ+α−2M1 |φ0k,1|+

+T γ+α−1M2 |φ0k,2|+
∥f0k∥Cγ [0,T ] T

αB(α, 1− γ)M3

Γ(α+ 1)

)
×

×Eα,γ

((
∥q∥C[0,T ]T

γ
) 1

α+γ−1 T
)
+

∞∑
k=1

∞∑
m=1

(
T γ+α−2M1 |φ2m−1k,1|+

+T γ+α−1M2 |φ2m−1k,2|+
∥f2m−1k∥Cγ [0,T ] T

αB(α, 1− γ)M3

Γ(α+ 1)
+

+2λm
Ψ2mk(T )T

αB(α, 1− γ)

Γ(α+ 1)

)
Eα,γ

((
∥q∥C[0,T ]T

γ
) 1

α+γ−1 T
)
+

+

∞∑
k=1

∞∑
m=1

(
T γ+α−2M1 |φ2mk,1|+ T γ+α−1M2 |φ2mk,2|+

+
∥f2mk∥Cγ [0,T ] T

αB(α, 1− γ)M3

Γ(α+ 1)

)
Eα,γ

((
∥q∥C[0,T ]T

γ
) 1

α+γ−1 T
)
∥q − q̃∥C[0,T ].

Therefore, if T2 is a positive root of the equation (for T )
w0∥q∥C[0,T ]T

γ

h0Γ(α)

[ ∞∑
k=1

(
T γ+α−2M1 |φ0k,1|+ T γ+α−1M2 |φ0k,2|+

+
∥f0k∥Cγ [0,T ] T

αB(α, 1− γ)M3

Γ(α+ 1)

)
Eα,γ

(
((∥q0∥+ ρ)T γ)

1
α+γ−1 T

)
+

+
∞∑
k=1

∞∑
m=1

(
T γ+α−2M1 |φ2m−1k,1|+ T γ+α−1M2 |φ2m−1k,2|+
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+
∥f2m−1k∥Cγ [0,T ] T

αB(α, 1− γ)M3

Γ(α+ 1)
+

+2λm
Ψ2mk(T )T

αB(α, 1− γ)

Γ(α+ 1)

)
Eα,γ

(
((∥q0∥+ ρ)T γ)

1
α+γ−1 T

)
+

+
∞∑
k=1

∞∑
m=1

(
T γ+α−2M1 |φ2mk,1|+ T γ+α−1M2 |φ2mk,2|+

+
∥f2mk∥Cγ [0,T ] T

αB(α, 1− γ)M3

Γ(α+ 1)

)
Eα,γ

(
((∥q0∥+ ρ)T γ)

1
α+γ−1 T

)]
= 1,

then for T ∈ (0, T2) the operator F shortens the distance between the elements q(t), q̃(t) ∈
B (q0, ρ). Therefore, if we choose T ∗ < min (T1, T2), then the operator F is a contraction
in the ball B (q0, ρ). However, in accordance with the Banach theorem [[28], p. 87-97], the
operator F has a unique fixed point in the ball B (q0, ρ), i.e., there is a unique solution to
Eq. (40). Theorem 6.1 is proven.

Let T− be a positive fixed number. Consider the set Dµ0 of given functions (φ1, φ2, h, f)
for which all conditions from A1)-A4) are satisfied and

max
{
∥φ1∥C4[0,1] , ∥φ2∥C4[0,1] , ∥h∥Cα

γ [0,T ], ∥f∥C4
γ(Ω̄)

}
≤ µ0

Denote by Gv1 the set of functions q(t) that for some T > 0 satisfy the following
condition ∥q∥C[0,T ] ≤ µ1, µ1 > 0.

Theorem 6.2. Let (φ1, φ2, h, f) ∈ Dv0 ,
(
φ̃1, φ̃2, h̃, f̃

)
∈ Dµ0 and q, q̃ ∈ Gµ4 Then the

following estimate holds for the solution of the inverse problem (1)-(4) sustainability:

∥q − q̃∥C[0,T ] ≤ r

[
∥φ1 − φ̃1∥C4[0,1] + ∥φ2 − φ̃2∥C4[0,1] + ∥h− h̃∥Cα

γ [0,T ] + ∥f − f̃∥C4
γ(Ω̄)

]
where the constant ρ depends only on µ0, µ1, T, α, β and Γ(α), B(α, 1− γ).

Proof. To prove this theorem, using (38), we write out the equations for q̃(t) and compose
the difference q̂ = q(t)−q̃(t). Then after evaluating this expression and using the estimates
vn(t), v̂n(t), we obtain the following estimates

∥q − q̃∥C[0,T ] ≤ max
0≤t≤T

∣∣∣∣∣ 1

h(t)

(∫ 1

0

∫ 1

0
w(x, y)f(x, y, t)dxdy −

(
Dα

0+,th
)
(t)+

+

∫ 1

0

∫ 1

0
∆w

( ∞∑
k=1

Z0k(x, y)v0k(t) +

∞∑
k=1

∞∑
m=1

Z2m−1k(x, y)v2m−1k(t)+

+
∞∑
k=1

∞∑
m=1

Z2mk(x, y)v2mk(t)

)
dxdy

)
−

− 1

h̃(t)

(∫ 1

0

∫ 1

0
w(x, y)f̃(x, y, t)dxdy −

(
Dα

0+,th̃
)
(t)

)
−

− 1

h̃(t)

∫ 1

0

∫ 1

0
∆W

( ∞∑
k=1

Z0k(x, y)ṽ0k(t) +

∞∑
k=1

∞∑
m=1

Z2m−1k(x, y)ṽ2m−1k(t)+

+
∞∑
k=1

∞∑
m=1

Z2mk(x, y)ṽ2mk(t)

)
dxdy

∣∣∣∣∣ ≤
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≤ max
0≤t≤T

{
w0

h20

∣∣∣∣∣
∫ 1

0

∫ 1

0
[h(t)(f(x, y, t)− f̃(x, y, t))− f̃(x, y, t)(h(t)− h̃(t))]dxdy+

h̃(t)
((
Dα

0+,th
)
(t)−

(
Dα

0+,th̃
)
(t)
)
+
(
Dα

0+,th̃
)
(t)(h(t)− h̃(t))

∣∣∣∣∣
}
+

+ max
0≤t≤T

{
w0

h20

∣∣∣∣∣
∫ 1

0

∫ 1

0
2
√
2
[
h(t) (v0k(t)− ṽ0k(t))− ṽ0k(t)(h(t)− h̃(t))

]
dxdy+

+4
√
2
[
h(t) (v2m−1k(t)− ṽ2m−1k(t))− ṽ2m−1k(t)(h(t)− h̃(t))

]
+

+4
√
2
[
h(t) (v2mk(t)− ṽ2mk(t))− ṽ2mk(t)(h(t)− h̃(t))

] ∣∣∣∣∣
}

≤

≤ r0

(
∥φ1 − φ̃1∥C4[0,1] + ∥φ2 − φ̃2∥C4[0,1] + ∥f − f̃∥C4

γ(Ω̄) +
∥∥∥(Dα

0+,th
)
−
(
Dα

0+,th̃
)∥∥∥+

+∥h− h̃∥Cα
γ [0,T ]

)
+ r1

∫ t

0
(t− τ)α−1∥q(τ)− q̃(τ)∥C[0,T ]dτ, t ∈ [0, T ], (42)

where r0, r1 depends only on µ0, µ1, T, α and Γ(α), B(α, 1 − γ. From (41), using lemma
2.1, we obtain the estimate

∥q − q̃∥C[0,T ] ≤ r0

(
∥φ1 − φ̃1∥C4[0,1] + ∥φ2 − φ̃2∥C4[0,1] + ∥f − f̃∥C4

γ(Ω̄)+

∥h− h̃∥Cα
γ [0,T ]

)
Eα,1 (r1Γ(α)t

α) , t ∈ [0, T ]. (43)

where Ω̄ = D̄ × [0, T ].
Estimate (41) follows from this inequality if we set r = r0Eα,1 (r1Γ(α)t

α). □

From theorem 6.2 also implies the following statement about the uniqueness of the
solution of the inverse problem as a whole.

Theorem 6.3. Let the functions φ1, φ2, h, f and φ̃1, φ̃2, h̃, f̃ have the same meaning , as
in theorem 6.2 and conditions A1)-A4). Moreover, if φ1 = φ̃1, φ2 = φ̃2, h = h̃, f = f̃ , for
t ∈ [0, T ], then q(t) = q̃(t), t ∈ [0, T ].

7. Conclusion

In this paper, we study the solvability of a nonlinear inverse problem for a two-
dimensional wave equation with a fractional Riemann-Liouville time derivative with initial
non-local boundary and integral redefinition conditions. The problem is replaced by the
equivalent of the integral equation in the form of Volterra.The local existence and global
uniqueness of the solution to the stability of the direct problem is proved. Non-local
boundary conditions, the fractional Riemann-Liouville derivative, and the control coeffi-
cient complicated our task. Existence conditions, uniqueness and continuous dependence
on the data of the problem were established using the Fourier method with some biorthog-
onal system, the Riemann-Liouville fractional derivative associated with it, containing the
initial data, and the Banach fixed point theorem for the product of Banach spaces.
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