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OPTIMIZING QUEUEING SYSTEMS WITH METAHEURISTICS: A
COMPARATIVE ANALYSIS OF GENETIC ALGORITHMS AND
TRAFFIC FLOW INSPIRED OPTIMIZATION
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ABSTRACT. Queueing system inefficiencies present critical operational challenges in ser-
vice industries, particularly in healthcare where extended patient wait times and subop-
timal resource utilization directly impact service quality and operational costs. While
traditional analytical models (e.g., M/M/1, M/M/c) offer theoretical solutions, they fre-
quently fail to accommodate dynamic real-world complexities. This study comparatively
evaluates two metaheuristic approaches the established Genetic Algorithm (GA) and the
novel Traffic Flow Inspired Optimization Algorithm (TFIOA), which models adaptive be-
haviors observed in transportation systems to optimize physician scheduling at Baquba
Hospital’s Internal Medicine Clinic. Using empirical patient arrival and service time data
collected over three-hour operational windows, we implemented both algorithms across
three physician allocation scenarios (1-3 doctors). Performance was assessed through five
metrics: patient waiting time, physician idle time, convergence rate, computational cost,
and total operational expenditure. Results demonstrate TFIOA’s superior performance,
achieving a 9.96% improvement in optimal solutions, 11.02% reduction in average costs,
33.6% faster convergence, and 17.1% higher success rate compared to GA. The dual
objective cost function effectively balanced patient and physician time considerations,
enabling practical policy evaluation. While TFIOA shows significant promise for real-
time queue management, this study is limited by its single clinic focus and condensed
observation period. Future research should validate these findings across diverse health-
care settings and extended timeframes. Keywords: Queueing Optimization, Genetic

Algorithm (GA), Traffic Flow Inspired Optimization (TFIOA), Healthcare Scheduling,
Metaheuristic Algorithms.
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1. INTRODUCTION

Queueing systems represent fundamental operational components across service indus-
tries, exerting substantial influence on resource utilization, customer satisfaction, and
economic efficiency (Gross et al. 2011). Healthcare environments exemplify critical ap-
plications where suboptimal queue management directly compromises patient outcomes
through prolonged wait times while simultaneously increasing operational costs due to
resource underutilization (Newell 2013). Traditional analytical frameworks like M/M/1
and M/M/c queueing models, despite their mathematical elegance, suffer from restric-
tive assumptions of Poisson arrivals and exponential service times that rarely align with
real world healthcare dynamics (Hirbod et al. 2023; Hidayana and Yohandoko 2024).
These limitations become particularly pronounced in complex, stochastic systems requir-
ing adaptive optimization under dynamic constraints (Xie et al. 2024). Metaheuristic
algorithms have emerged as powerful alternatives for navigating such combinatorial opti-
mization problems where classical methods falter (Maiti et al. 2025). Genetic Algorithms
(GAs), inspired by evolutionary principles, have demonstrated effectiveness in scheduling
applications through global search capabilities (D&€™Angelo and Palmieri 2021). How-
ever, their computational intensity and premature convergence risks necessitate explo-
ration of novel approaches (Pham et al. 2021). Recent bio-inspired methodologies have
shown promise in modeling complex adaptive behaviors, with traffic flow systems offer-
ing particularly relevant analogies to human centric queueing environments through their
inherent self organization and congestion management mechanisms (Katoch, Chauhan,
and Kumar 2021). GAs excel at solving nonlinear, multimodal problems with discrete
variables and have demonstrated efficacy in optimizing resource allocation, server config-
uration, and customer routing in queueing networks (Pham et al. 2021; Saleh, Zainudin,
and Aziz 2024). However, conventional GAs exhibit three critical constraints in dynamic
queueing contexts: (1) susceptibility to premature convergence in complex solution spaces,
(2) slow adaptation to rapidly changing system conditions, and (3) dependency on static
genetic operators that limit responsiveness to real-time congestion patterns (Li, Wu, and
Sun 2023; Alfa and Ghazaleh 2025). To address these limitations, we introduce the Traffic
Flow Inspired Optimization Algorithm (TFIOA), a metaheuristic framework that trans-
lates emergent behaviors from transportation networks to queueing optimization. TFIOA
agents dynamically reroute service requests based on real-time congestion feedback, emu-
lating vehicular navigation in urban traffic systems (Walraven, Spaan, and Bakker 2016).
This biologically inspired approach enables; Adaptive decision-making through continuous
environmental feedback, Collective intelligence via decentralized agent coordination, and
Dynamic exploration-exploitation balance during optimization (Hu, Gu, and Li 2025). Re-
cent advances substantiate the promise of traffic responsive optimization. Elastic Routing
Frameworks (Ahmadi 2021; YiAYit and Lazarevska 2025; Zhang 2025; DinA§ et al. 2025;
Chen, Wang, and Chen 2025) and deep reinforcement learning approaches (Lv, Wang,
and Ma 2025) have demonstrated significant improvements in congestion-aware naviga-
tion. Similarly, graph convolutional networks (Chen, Wang, and Chen 2025) and swarm
intelligence methods (Agrawal and Arafat 2024) have enhanced prediction and routing in
stochastic environments. These developments align with our conceptualization of queueing
systems as dynamic flow networks requiring continuous adaptation. This research makes
three primary contributions:

(1) Proposes TFIOA as a novel bio-inspired optimization framework integrating congestion-

responsive mechanisms from traffic flow theory
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(2) Conducts comprehensive benchmarking against GA and classical methods across
single/multi-server configurations with variable demand-service regimes

(3) Develops a cost-optimization model quantifying tradeoffs between patient waiting
time, doctor idle time, and operational expenditure.

We validate TFIOA’ s performance through rigorous simulation of healthcare delivery
scenarios, demonstrating 33.6% faster convergence, 17.1% higher solution reliability, and
11.02% better objective minimization compared to state-of-the-art GA implementations
(Pirozmand et al. 2021). The algorithma€™s architecture enables scalable deployment in
diverse service environments including hospital systems, logistics networks, and telecom-
munication infrastructures where dynamic resource allocation is critical. The subsequent
sections present: Section 2-methodology and TFIOA formulation; Section 3-result and
discussion; Section 4-conclusions. 2 Methodology

2. METHODOLOGY

2.1. Queueing Model. Queueing theory provides a foundational mathematical frame-
work for analyzing service systems where entities (e.g., customers, data packets) arrive at
limited resources for service. Classical models such as M/M/1, M/M/c and G/G/c are

are defined by:

Arrival process;

Service time distribution;
Number of servers (c);
Quene discipline;

System capaciity.

This study focuses on the M /M /c model where:

e Arrivals follow a Poisson process with rate A;
e Service times are exponentially distributed with rate u;
e There are ¢ parallel servers.

The steady-state probability Py (system empty probability) is given by:

-1

c—1 /\ n )\ c
Fo= Z:;)( iL'L'L) * c!<(1//i)p)

where p = ﬁ is the utilization factor.
Key performance measures are derived as follows:

Po(M\w)p
e (1-p)
Lq

Average waiting time: W, = Y

Average quene length: L, =

A
Average customers in system: L, = Lg + —

=

1
Average system time: Wy = W, + —
1

These equations require p < 1 for system stability. For systems with unpredictable arrivals,
analytical solutions may be infeasible, justifying metaheuristic optimization.
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2.2. Genetic Algorithms (GA). GAs utilize evolutionary principles to evolve solution
populations. Introduced by John Holland (Sampson 1976; Alhijawi and Awajan 2024),
they efficiently solve complex, nonlinear problems with large solution spaces. In queueing
systems, GAs optimize waiting times, resource allocation, and overall performance where
traditional methods fail due to stochasticity or complexity. The flowchart id displayed in
figure

Chromosone Encoding. Solutions are encoded as chromosomes representing system con-
figurations. For multi-server queues, a chromosome X € R™ can be

X = (1,69, ...,Cp)
where ¢; represents service channels at station 1.

2.2.1. Objective Function and Fitness Fvaluation. Solution fitness is evaluated using per-
formance metrics. A minimization objective function is:

fX)=a-Wy+p-Le+7v-C

where

Wy Average queue waiting time;

L, : Expected queue length;

C' : Operational cost (e.g., server count);
a, 3,y € RT : Priority weights.

Fitness is computed as:

Fitness (X) = X+

with € > 0 preventing division by zero.

2.2.2. Selection Operator. Selection mechanisms determine which chromosomes are chosen

for reproduction. Standard methods include Roulette Wheel Selection:
F;
P=——
' Z?:l 13

where Fj is is fitness of individual ¢ . Tournament Selection,where the best individual among
a random subset is chosen.
2.3. Crossover Operator. Crossover combines two parents to create offspring. For nu-

merical representations, arithmetic crossover is suitable:

Child; = X - Parent; + (1 — \) - Parents

Childg = (1 — A) - Parent; + \ - Parents
where A € [0, 1] is the blending parameter.

2.4. Mutation Operator. Mutation introduces diversity by randomly altering chromo-
some components. For real-valued encoding:

leutated _ Xz +N (0,0_2)

where N (0, 02) is Gaussian-distributed noise with mean 0 and variance o
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Figure 1. Flowchart of Genetic Algorithm (GA) optimization process

2.5. Traffic Flow Inspired Optimization Algorithm (TFIOA). TFIOA draws inspi-
ration from adaptive behaviors in transportation systems, modeling solutions as vehicles
navigating a service network. This approach effectively addresses queueing system chal-
lenges where traditional metaheuristics struggle with dynamic conditions. The flowchart
is in figure while traffic flow inspired optimization algorithm (TFIOA) in .

2.5.1. Network Representation. A queueing network is modeled as a directed graph:
G = (N,E)
where N is the set of service nodes (queues) and FE represents paths connecting these

nodes.

2.5.2. Congestion Measurement. Traffic intensity at node j :
Aj
CjHy

where \; = arrival rate, yu; = service rate per server, ¢; = number of servers.

Pj =

2.5.3. Path Attractiveness. Attractiveness of path ¢ to node j :
1
T
Wy +e

where W, = estimated waiting time at node j, € > 0 prevents division by zero.

A
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2.5.4. Routing Probability. Probability of agent choosing path j :
ZZ:1 Aig
2.5.5. Updated attractiveness with congestion penalty:

dated —5-ps
A?jpae :Aij-e 0pj

P =

where § > 0 is the congestion sensitivity coefficient.
Graph G = (N, E), population size (M), max iterations ("), parameters (e, J).
Best solution found (z*).
Initialize (M) agents (vehicles) with random routes {:pl}zj\i 1
Evaluate objective f (x;) for each agent (i)
Set <:):* « argminf (x;)
(2
FORt=1toT
FOR each agent ¢ =1 to M
Let current node be (u); let N (u) be its outgoing neighbors
FOR each neighbor j € A (u)
Compute waiting time (ij) at node j
Compute attractiveness

R |
Azg - ij Te
Compute congestion intensity
)\.
Pi = o

ik
Adjust attractiveness
Ai]’ — Al’je_é'pj
ENDFOR
Normalize to get routing probabilities

A. .
P = ij
U Y RN () Aik

Sample next node (v) according to {F;;}

Move agent (i) to node (v) and update its route (x;)

Optionally apply local improvement (e.g., swap, insert) on (z;)

Evaluate f (z;)

IF f(xi) < f (z7)

(x* +— ;) ENDIF

ENDFOR

STATE Optionally re-initialize worst agents or inject randomness

ENDFOR

RETURN (z*)

This biologically-inspired approach enables agents to adaptively avoid congestion, yield-
ing faster convergence and lower solution variance compared to traditional methods.

3. RESULT AND DISCUSSION

For testing the algorithms, we examined data about arrival, service and wait times
for patients at Baquba Hospital’s Internal Medicine Consultation Clinic in Diyala Gover-
norate, Iraq. Three different scenarios were set up for several patients, with the assumption
that case one is treated by just one doctor table , case two by two doctors table , and
case three by three doctors tables and , all treating similar numbers. According to the
findings of these initial scenarios, we ran both the Genetic Algorithm (GA) and the Traffic
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Flow Inspired Optimization Algorithm (TFIOA). Over a three-hour period (from 9:00 AM
to 12:00 PM), researchers collected the data, matching the typical workday of physicians
in the consultation clinic. Time was divided into nine parts, each lasting 20 minutes, so
that its role corresponds to a chromosome in the genetic algorithm and the flow segment
in TFIOA and each part of time corresponds to a gene or traffic node. The number of

doctors in each gene or node is recorded during a single period.

3.1. Results. Table 1. Patient Distribution with One Doctor

Patient| Arrival | Service | End Doctor Patient | Patient Waiting
Time Time Treat- Waiting | Waiting
ment

1 1 2 1 3 1 0

2 2 3 3 6 0 1

3 3 2 6 8 0 3

4 4 1 8 9 0 4

5 5 2 9 11 0 4

6 6 2 11 13 0 5

7 6.7 1 13 14 0 6.3

8 7.4 1 14 15 0 6.6

9 8.1 2 15 17 0 6.9

10 8.8 1 17 18 0 8.2
Total 1 45

Table 2. Patient Distribution with Two Doctors
Patient| Arrival | Service| Begin | End Doctor | End Doctor | Doctor | Patient
Time | Time | Treat- | Treat- | Wait- | Treat- | Wait- | Wait- | Wait-
ment | ment |ing ment | ing ing ing
1 1 2 2 1 2
1 1 2 1 3 - - 1 - 0
2 2 3 - - 2 5 - 2 0
3 3 2 3 ) - - 0 - 0
4 4 1 - - 5 6 - 0 1
5 ) 2 5 7 - - 0 - 0
6 6 2 - - 6 8 - 0 0
7 6.7 1 7 8 - - 0 - 0.3
8 7.4 1 - - 8 9 - 0 0.6
9 8.1 2 8.1 10.1 - - 0.1 - 0
10 8.8 1 - - 9 10 - 0 0.2
Total Doctor | 3.1 Patient| 2.1
Wait- Wait-
ing ing

Table 3. Patient Distribution with Three Doctors (a)
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Patient| Arrival | Service | Begin End Begin | End Treatmen 2
Time Time Treat- Treat- Treat-

men men men

1 1 1
1 1 2 1 3 - -
2 2 3 - - 2 5
3 3 2 - - - -
4 4 1 4 5 - -
) 5 2 - - - -
6 6 2 - - 6 8
7 7.4 1 7.4 8.4 - -
8 8.1 1 - - - -
9 8.8 2 - - 8.8 10.8
10 9.5 1 9.5 10.5 - -

Table 4. Patient Distribution with Three Doctors (b)

Patient| End Doctor | Doctor | Doctor Patient Waiting
Treat- | Wait- Waiting | Waiting
ment ing 2 3
1
1 3 1 - - 0
2 - - 2 - 0
3 5 - - 3 0
4 - 1 - - 0
5 - - - 0 0
6 7 - 1 - 0
7 8 24 - - 0
8 - - - 1.1 0
9 9.1 - 0.8 - 0
10 10.8 1.1 - - 0
- 5.5 3.8 4.1 0
Total Doctor |13.4 Patient 0
Wait- Waiting
ing

3.2. Cost Analysis. This analysis evaluates waiting costs under three staffing configu-
rations, using a patient waiting cost of 0.07 dinars per minute and a doctor cost of 0.20
dinars per minute (based on monthly salary of 10,000 dinars).). Single-doctor scenario:
When one doctor provides care, patients experience an average waiting time (PW) of
45 minutes. This results in a patient waiting cost of 3.15 dinars per patient (45x0.07).
Doctors exhibit negligible idle time except for the initial patient encounter. Two-doctor
scenario: Under dual-doctor staffing, patient waiting time reduces to 2.1 minutes. The
corresponding waiting cost is 0.147 dinars per patient (2.1x0.07). After initial patient
intake, doctors experience minimal idle time during operational periods. Three-doctor
scenario: This configuration introduces significant inefficiency through doctor idle time.
Each doctor experiences 13.4 minutes of unproductive waiting (DW), generating an idle
cost of 2.68 dinars per doctor (13.41x0.20). Patient waiting costs are minimized at the
expense of substantial physician downtime.
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3.3. Comparative Results Analysis. Table 4 presents a comparative evaluation of
three distinct physician scheduling methodologies, quantifying performance through pa-
tient waiting time, physician idle time, and associated operational costs. The single-
physician configuration yields a patient waiting time of 45 minutes, resulting in a per-
patient waiting cost of 3.15 dinars. While physician utilization remains high in this sce-
nario, the aggregate cost represents the least efficient configuration due to substantial
patient delay penalties. The dual-physician approach demonstrates significantly enhanced
efficiency, reducing patient waiting time to 2.1 minutes with corresponding physician idle
time of 3.1 minutes. This configuration achieves the optimal total cost of 0.767 dinars,
establishing it as the most cost-effective solution while maintaining service quality stan-
dards. Contrastingly, the three-physician model eliminates patient waiting time entirely
but incurs substantial physician idle time (13.4 minutes per practitioner), resulting in
suboptimal resource allocation. Comparative analysis confirms that the dual-physician
scheduling strategy optimally balances resource utilization and operational efficiency while
minimizing total costs.

3.3.1. Algorithmic Performance Benchmarking. Table 5 quantitatively compares the Ge-
netic Algorithm (GA) and proposed Traffic Flow Inspired Optimization Algorithm (TFIOA)
across four key performance metrics:

. Best Solution (BS, dinars)

. Average Solution (AS, dinars)

o Convergence Time (CT, seconds)

. Success Rate (SR, %)

TFIOA demonstrates statistically superior performance across all evaluation criteria.
The algorithm achieves a BS of 0.651 dinars, representing a 9.96% improvement over
GA’s 0.723 dinars. Solution quality consistency is evidenced by an 11.02% enhancement
in AS values. Computational efficiency is significantly improved, with TFIOA requiring
only 8.3 seconds convergence time 33.6% faster than GA’s 12.5 seconds. Reliability is
further substantiated by TFIOA’s 89% success rate, exceeding GA’s 76% benchmark by
17.1%. These results collectively establish TFIOA as a more efficient, reliable, and higher-
performing optimization methodology for clinical scheduling applications.

Table 5. Baseline Cost Analysis

Scenario | PWT | DID | PC | DC | TC
Doctor 1 45 0 3.15 0 3.15
Doctor 2 2.1 3.1 10.147 | 0.62 | 0.767
Doctor 3 0 13.4 0 2.68 | 2.68

PWT: Patient Waiting Time (min), DID: Doctor Idle Time (min) PC: Patient Cost
(dinars), DC: Doctor Cost (dinars), TC: Total Cost (dinars)

Table 6. Algorithm Performance Comparison

Algorithm BS AS CT | SR(%)
GA 0.723 0.834 12.5 76
TFIOA 0.651 0.742 8.3 89

Improvement | +9.96% | +11.02% | +33.6% | +17.1%

BS: Best Solution (dinars), AS: Average Solution (dinars),
CT: Convergence Time (min), and SR: signifies Success Rate (%)
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3.4. Discussion.

3.4.1. Interpretation of Key Findings. This study demonstrates that the Traffic Flow In-
spired Optimization Algorithm (TFIOA) significantly outperforms Genetic Algorithms
(GA) in optimizing physician scheduling within queueing systems. The 9.96% improve-
ment in optimal solution quality (0.651 vs. 0.723 dinars) and 33.6% faster convergence fun-
damentally stem from TFIOA’s intrinsic feedback mechanisms, which dynamically reroute
computational agents away from congestion points mirroring real-time traffic avoidance
behaviors. Unlike GA’s blind crossover/mutation operations, TFIOA’s path attractive-

ness function A;; = ﬁ system state data, enabling adaptive responses to stochastic
9

patient arrivals. This explains its 17.1% higher success rate across operational scenar-
ios, particularly during peak arrival bursts where traditional optimization falters. The
identified cost-optimal configuration (two physicians, total cost: 0.767 dinars) reveals a
critical resource allocation threshold. Below this threshold (single physician), queuing
delays dominate costs (patient waiting: 45 min); above it (three physicians), physician
idle time becomes the primary cost driver (13.4 min). This aligns with queueing theory’s
law of diminishing returns in multi-server systems but provides empirical quantification
previously absent in healthcare literature.

3.4.2. Theoretical Implications. Our findings challenge conventional wisdom in three key
areas:

(1) Bio-inspired superiority: TFIOA’s traffic flow paradigm proves more effective
than evolutionary approaches for human-centric queueing systems, contradict-
ing prior assumptions about GA’s versatility. The congestion penalty mechanism

( A;‘jpdated = A - 6_5'p1> provides a mathematically rigorous framework for mod-

eling behavioral adaptation in service systems.

(2) Dual-objective validation: The cost function (f (X) =« - W, + - Ly +7 - C) suc-
cessfully balances competing hospital priorities, resolving the theoretical tension
between patient experience and operational efficiency.

(3) Convergence behavior: TFIOA’s exponential convergence (8.3s vs. GA’s 12.5s)
suggests metaheuristics modeling local interactions outperform population-based
methods in dynamic environments, supporting complex adaptive systems theory.

3.4.3. Practical Applications. For healthcare administrators, TFIOA offers implementable
solutions with measurable impacts:

° Cost reduction: 75.7% operational cost savings versus single-physician deployment

. Staffing guidance: Identifies inflection points where additional resources increase
idle costs

. Real-time adaptability: The algorithm’s 33.6% faster convergence enables near-

real-time schedule adjustments during clinic hours

Hospital systems could integrate TFIOA into appointment scheduling software, poten-
tially saving an estimated 3.15 dinars per 3-hour clinic session translating to >15.000
dinars annually per physician in high-volume settings.

3.4.4. Limitations and Methodological Considerations. While robust, this study presents
limitations requiring acknowledgment:

. Geographical constraint: Validation at a single Iraqi hospital limits generalizabil-
ity to diverse healthcare systems
. Temporal scope: The 3-hour observation window may not capture full daily vari-

ation in patient flows
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° Simplified cost model: Physician skill heterogeneity and patient acuity levels were
not incorporated
. Algorithmic constraints: TFIOA’s routing decisions assume perfect system state

knowledge potentially optimistic in chaotic environments

The physician idle cost calculation (0.20 dinars/min) warrants particular scrutiny, as it
assumes constant opportunity costs regardless of idle duration an aspect needing refine-
ment in future economic models.

3.4.5. Future Research Trajectories. Building on these findings, four prioritized research
directions emerge:

1. Multi-center validation: Testing TFIOA across diverse healthcare settings (emer-
gency departments, surgical units) to establish transferability

2. Machine learning integration: Coupling TFIOA with LSTM networks to predict
arrival patterns for proactive scheduling

3. Extended cost modeling: Incorporating physician competency gradients and pa-
tient severity indexes into optimization constraints
4. Real-world implementation: Conducting randomized controlled trials measuring

TFIOA’s impact on patient satisfaction scores and physician burnout rates

Theoretically, TFIOA’s framework shows promise for adaptation to other stochastic
service systems including call center staffing, cloud computing resource allocation, and
transportation logistics.

4. CONCLUSION

This study has introduced and rigorously evaluated the Traffic Flow Inspired Opti-
mization Algorithm (TFIOA) for physician scheduling in a healthcare queueing context,
using Baquba Hospital’s Internal Medicine Clinic as a case study. Across three staffing
scenarios, TFIOA consistently outperformed a benchmark Genetic Algorithm, deliver-
ing nearly 10 % better solution quality, an 11 % reduction in average cost, 34 % faster
convergence, and a 17 % higher success rate. Our analysis identified the two-physician
configuration as the cost-optimal balance, cutting total operational costs by over 75% rel-
ative to a single-physician setup, while maintaining acceptable patient wait and physician
idle times. Despite these promising results, the study is limited by its single site validation,
short observation window, and the assumption of homogeneous physician skills. Future
work should extend testing to multiple facilities, incorporate predictive arrival modeling,
account for varying clinician competencies and patient acuity, and explore live deploy-
ment impacts on clinical workflows. Demonstrating that traffic-flow principles can be
effectively repurposed for stochastic service systems, this research establishes TFIOA as
a new state-of-the-art metaheuristic, offers the first empirical evidence of its applicability
in healthcare, and delivers a practical scheduling framework that can substantially reduce
costs without sacrificing service quality.

Acknowledgement. The authors thank physicians and administrative staff at Baquba
General Hospital for their cooperation during data collection. Their operational insights
were invaluable to this research.
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