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ON A CERTAIN SUBCLASS OF ANALYTIC FUNCTIONS DEFINED

BY RABOTNOV FUNCTION

A. LAGAD1, R. N. INGLE2, P. THIRUPATHI REDDY3 AND B. VENKATESWARLU4,∗, §

Abstract. The study of the geometric properties of analytic functions and their nu-
merous applications in a variety of mathematical fields, including fractional calculus,
probability distributions, and special functions, has drawn significant and impressive
attention to Geometric Function Theory (GFT), one of the most prominent branches
of complex analysis, in recent years. The focus of this article is the introduction of a
new subclass of analytic functions involving Rabotnov function and obtained coefficient
inequalities, convex linear combination, radii properties, Integral means inequality and
neighborhood result for this class.

Keywords: analytic, convex, starlike, coefficient estimates, neighborhood.

AMS Subject Classification: 30C45; 30C50.

1. Introduction

Let A specify the category of analytical functions u represent on the unit disc U = {z :
|z| < 1} with normalization u(0) = 0 and u′(0) = 1, such a function has the extension of
the Taylor series on the origin in the form

u(z) = z +

∞∑
n=2

anz
n. (1)

Indicated by S, the subclass of A be composed of functions that are univalent in U.
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Then a u(z) function of A is known as starlike and convex of order ϑ if it delights the
pursing

ℜ
{
zu′(z)

u(z)

}
> ϑ, (z ∈ U), (2)

and

ℜ
{
1 +

zu′′(z)

u′(z)

}
> ϑ, (z ∈ U), (3)

for specific ϑ(0 ≤ ϑ < 1) respectively and we express by S∗(ϑ) and K(ϑ) the subclass of
A be expressed by aforesaid functions respectively. Also, indicate by T the subclass of A
made up of functions of this form

u(z) = z −
∞∑
n=2

anz
n, (an ≥ 0, z ∈ U) (4)

and let T ∗(ϑ) = T ∩S∗(ϑ), C(ϑ) = T ∩K(ϑ). There are interesting properties in the T ∗(ϑ)
and C(ϑ) classes and were thoroughly studied by Silverman [24] and others.
In [13], Goodman defined the class of uniformly convex functions, defined by UCV as
follows:

Definition 1.1. A function u ∈ A is said to be uniformly convex in U if u ∈ K and have
the property that for every circular arc ρ contained in U, with centre ζ, also in U, the arc
u(ρ) is convex.

Due to the analytic criterion for u ∈ UCV , given by Ronning [22].
A function u ∈ A is uniformly convex in U if and only if

R

{
1 +

zu′′(z)

u′(z)

}
>

∣∣∣∣zu′′(z)u′(z)

∣∣∣∣ , z ∈ U. (5)

The class of k− uniformly convex functions was introduced by Kanas and Wisniowska [14],
as a generalization of uniform convexity. The class of k− uniformly convex functions are
denoted by k − UCV . In [22], Ronning defined the classs of parabolic starlike functions
by the following way:

Sp :=
{
F ∈ S∗ | F (z) = zu′(z), u ∈ UCV

}
.

Definition 1.2. The class Sp of parabolic starlike functions consists of functions u ∈ A
satisfying

R

{
zu′(z)

u(z)

}
> k

∣∣∣∣zu′(z)u(z)

∣∣∣∣ , z ∈ U.

The class of k− parabolic starlike functions denoted by k − Sp are related to the class
k − UCV by well known Alexander equavalence.
For −1 < ρ ≤ 1 and k ≥ 0 a function u ∈ A is said to be in the class of k− parabolic
starlike functions of order ρ, denoted by k − Sp(ρ) if

R

{
zu′(z)

u(z)
− ρ

}
> k

∣∣∣∣zu′(z)u(z)
− 1

∣∣∣∣ , z ∈ U.

For the same conditions for the parameters ρ and k, the function u ∈ A is said to be in
the class of k− uniformly convex functions of order ρ if

R

{
1 +

zu′′(z)

u′(z)
− ρ

}
> k

∣∣∣∣zu′′(z)u′(z)

∣∣∣∣ , z ∈ U.

We denote by k − Sp(ρ) the class of k−parabolic starlike functions of order ρ and k −
UCV (ρ) the class of k− uniformly convex functions of order ρ.
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In [14], the authors generalized the class of k− parabolic starlike, respectively k− uni-
formlly convex functions, of order ρ, for 0 ≤ ρ < 1.

For 0 ≤ µ < 1, 0 ≤ ρ < 1 and k ≥ 0 the function u ∈ A belongs to the class k−Sp(µ, ρ)
if

R

{
zu′(z)

(1− µ)u(z) + µzu′(z)
− ρ

}
> k

∣∣∣∣ zu′(z)

(1− µ)u(z) + µzu′(z)
− 1

∣∣∣∣ , z ∈ U. (6)

For the same conditions to the parameters µ, ρ and k, the function u ∈ A belongs to the
class k − UCV (µ, ρ) if

R

{
u′(z) + zu′′(z)

u′(z) + µzu′′(z)
− ρ

}
> k

∣∣∣∣ u′(z) + zu′′(z)

u′(z) + µzu′′(z)
− 1

∣∣∣∣ , z ∈ U. (7)

It is easily seen that, k − Sp(0, ρ) = k − Sp(ρ), k − Sp(0, 0) = k − Sp, k − UCV (0, ρ) =
k − UCV (ρ) and k − UCV (0, 0) = k − UCV, where 0 ≤ ρ < 1.
The Rabotnov function is used to model the time-dependent deformation of materials sub-
jected to constant stress, such as in creep testing or in the analysis of long-term structural
behavior under load. It provides a mathematical framework for understanding how mate-
rials deform over time, incorporating both instantaneous and time-dependent deformation
mechanisms.
The Rabotnov function finds applications primarily in the fields of materials science, me-
chanical engineering, and structural analysis, where understanding the time-dependent
behavior of materials under load is crucial. Rabotnov function plays a key role in un-
derstanding and predicting the time-dependent behavior of materials under load, with
applications ranging from materials characterization and testing to structural analysis
and design in various engineering disciplines. The Rabotnov function holds significant
importance in several areas of materials science, mechanical engineering, and structural
analysis due to its ability to model the time-dependent deformation of materials under
load.
It serves as a fundamental tool for engineers and scientists involved in materials research,
mechanical design, and structural analysis, enabling them to address the challenges as-
sociated with time-dependent deformation and ensure the reliability and performance of
engineered systems and components.
The aims of the Rabotnov function revolve around providing a quantitative framework for
understanding and predicting the time-dependent deformation of materials, with impli-
cations for material selection, design optimization, and structural analysis in engineering
applications.The scope of the Rabotnov function encompasses a wide range of applications
and disciplines, playing a crucial role in understanding, predicting, and mitigating the ef-
fects of time-dependent deformation in materials and structures across various engineering
fields.

In 1948, Yu. N. Rabotnov [20], who worked in solid mechanics included plasticity, creep
theory, hereditary mechanics, failure machanics, nonelastic stability, composites and shell
theory, introduced a special function applied in viscoelasticity. This function, known today
as the Rabotnov fractional exponential function or briefly Rabotnov function, is defined
as follows:

Φ℘,ς(z) = z℘
∞∑
n=0

(ς)nzn(1+℘)

Γ ((n+ 1)(1 + ℘))
, (℘, ς, z ∈ C). (8)

The convergence of this series at any values of the argument is evident. Noting that
for ℘ = 0 it reduces to the standard exponential exp (βz). The Rabotnov function is a
particular case of the familier Mittag-Lefflor [19] widely used in the solution of fractional
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order or fractional differential equations. The relation between the Rabotnov and Mittag-
Lefflor functions [19] can be written as follows:

Φ℘,ς(z) = z℘E1+℘,1+℘(ςz
1+℘),

where E is Mittag-Lefflor and ℘, ς, z ∈ C. Several sufficient conditions are established
for Mittag-Leffler functions to exhibit specific geometric properties, including univalence,
starlikeness, convexity, and close-to-convexity, as well as for integral operators within
the open unit disk. Additionally, subordination results, partial sums, and various other
properties of the generalized Mittag-Leffler function are discussed ( see [1, 2, 4, 5, 7, 11]) .
It is clear that the Rabotnov function Φ℘,ς(z) does not belong to A. Thus, it is natural
to consider the normalization of the Rabotnov function for ℘ ≥ 0 and ς > 0 defined by

R℘,ς(z) = z1/1+℘Γ(1 + ℘)Φ℘,ς(z
1/1+℘)

= z +
∞∑
n=2

ςn−1Γ(1 + ℘)

Γ ((1 + ℘)n)
zn, z ∈ U.

Note that some special cases of R℘,ς(z) are:

R0, 1
3
(z) = ze−z/3,

R1, 1
2
(z) =

√
2z sinh

√
z

2
,

R1,− 1
4
(z) = 2

√
z sin

√
z

2
,

R1,1(z) =
√
z sinh

√
z,

R1,2(z) =

√
2z sinh

√
2z

2
.

Geometric properties including starlikeness, convexity, close-to-convexity for the nor-
malized Rabotnov function R℘,ς(z) were investigated by Eker and Ece in [8] and also see
[15, 16, 21] .

∆ς
℘u(z) = R℘,ς(z) ∗ u(z) = z +

∞∑
n=2

ςn−1Γ(1 + ℘)

Γ ((1 + ℘)n)
anz

n, z ∈ U

= z +

∞∑
n=2

Θ(n, ℘, ς)anz
n (9)

where Θ(n, ℘, ς) = ςn−1Γ(1+℘)
Γ((1+℘)n) and ℘ ≥ 0, ς > 0.

Now we define the following new subclass motivated by Amourah et al. [3], Eker et al.
[8, 9], Frasin [10], Thirupathi Reddy and Venkateswarlu [27].

Definition 1.3. The function u(z) of the form (1) is in the class Ως
℘(µ, γ, k), if it satisfies

the inequality

ℜ
{

z(∆ς
℘u(z))

′

(1− µ)z + µ∆ς
℘u(z)

− γ

}
> k

∣∣∣∣ z(∆ς
℘u(z))

′

(1− µ)z + µ∆ς
℘u(z)

− 1

∣∣∣∣
for 0 ≤ µ ≤ 1, 0 ≤ γ ≤ 1and k ≥ 0.

Further we define TΩς,k
℘ (µ, γ, k) = Ως

℘(µ, γ, k) ∩ T.
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The aim of present paper is to study the coefficient bounds, radii of close-to-convex and
starlikeness convex linear combinations and integral means inequalities of the TΩς

℘(µ, γ, k).

2. Coefficient bounds

Theorem 2.1. Let the function u(z) of the form (1) be in Ως
℘(µ, γ, k). Then

∞∑
n=2

[n(1 + k)− µ(γ + k)]Θ(n, ℘, ς)|an| ≤ 1− γ (10)

where 0 ≤ µ ≤ 1, 0 ≤ γ ≤ 1, k ≥ 0 and Θ(n, ℘, ς) is given by (9).

Proof. It suffices to show that

k

∣∣∣∣ z(∆ς
℘u(z))

′

(1− µ)z + µ∆ς
℘u(z)

− 1

∣∣∣∣−ℜ
{

z(∆ς
℘u(z))

′

(1− µ)z + µ∆ς
℘u(z)

− 1

}
≤ 1− γ.

We have

k

∣∣∣∣ z(∆ς
℘u(z))

′

(1− µ)z + µ∆ς
℘u(z)

− 1

∣∣∣∣−ℜ
{

z(∆ς
℘u(z))

′

(1− µ)z + µ∆ς
℘u(z)

− 1

}
≤(1 + k)

∣∣∣∣ z(∆ς
℘u(z))

′

(1− µ)z + µ∆ς
℘u(z)

− 1

∣∣∣∣
≤
(1 + k)

∞∑
n=2

(n− µ)Θ(n, ℘, ς)|an||z|n−1

1−
∞∑
n=2

µΘ(n, ℘, ς)|an||z|n−1

≤
(1 + k)

∞∑
n=2

(n− µ)Θ(n, ℘, ς)|an|

1−
∞∑
n=2

µΘ(n, ℘, ς)|an|
.

The last expression is bounded above by (1− γ), if

∞∑
n=2

[n(1 + k)− µ(γ + k)]Θ(n, ℘, ς)|an| ≤ 1− γ

and the proof is complete. □

Theorem 2.2. Let 0 ≤ µ ≤ 1, 0 ≤ γ ≤ 1 and k ≥ 0. Then a function u of the form (4)
to be in the class TΩς

℘(µ, γ, k) if and only if

∞∑
n=2

[n(1 + k)− µ(γ + k)]Θ(n, ℘, ς)|an| ≤ 1− γ (11)

where Θ(n, ℘, ς) is given by (9) .

Proof. In view of Theorem 2.1, we need only to prove the necssity. If u ∈ TΩς
℘(µ, γ.k) and

z is real, then

ℜ


1−

∞∑
n=2

nΘ(n, ℘, ς)anz
n−1

1−
∞∑
n=2

µΘ(n, ℘, ς)anzn−1

− γ

 > k

∣∣∣∣∣∣∣∣
∞∑
n=2

(n− µ)Θ(n, ℘, ς)anz
n−1

1−
∞∑
n=2

µΘ(n, ℘, ς)anzn−1

∣∣∣∣∣∣∣∣ .
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Letting z → 1 along the real axis, we obtain the desired inequality
∞∑
n=2

[n(1 + k)− µ(γ + 1)]Θ(n, ℘, ς)|an| ≤ 1− γ.

□

Corollary 2.1. If u(z) ∈ TΩς
℘(µ, γ, k), then

|an| ≤
1− γ

[n(1 + k)− µ(γ + k)]Θ(n, ℘, ς)
(12)

where 0 ≤ µ ≤ 1, 0 ≤ γ ≤ 1, k ≥ 0 and Θ(n, ℘, ς) is given by (9). Equality holds for the
function

u(z) = z − 1− γ

[n(1 + k)− µ(γ + k)]Θ(n, ℘, ς)
zn. (13)

Theorem 2.3. Let u1(z) = z and

un(z) = z − 1− γ

[n(1 + k)− µ(γ + k)]Θ(n, ℘, ς)
zn, n ≥ 2. (14)

Then u(z) ∈ TΩς
℘(µ, γ, k) if and only if it can be expressed in the form

u(z) =
∞∑
n=1

wnun(z), wn ≥ 0,
∞∑
n=1

wn = 1. (15)

Proof. Suppose u(z) can be written as in (15). Then

u(z) = z −
∞∑
n=2

wn
1− γ

[n(1 + k)− µ(γ + k)]Θ(n, ℘, ς)
zn.

Now,
∞∑
n=2

wn
(1− γ)[n(1 + k)− µ(γ + k)]Θ(n, ℘, ς)

(1− γ)[n(1 + k)− µ(γ + k)]Θ(n, ℘, ς)

=
∞∑
n=2

wn = 1− w1 ≤ 1.

Thus u(z) ∈ TΩς
℘(µ, γ, k).

Conversely, let u(z) ∈ TΩς
℘(µ, γ, k). Then by using (12), we get

wn =
[n(1 + k)− µ(γ + k)]Θ(n, ℘, ς)

(1− γ)
an, n ≥ 2

and w1 = 1 −
∞∑
n=2

wn. Then we have u(z) =
∞∑
n=1

wnun(z) and hence this completes the

proof of theorem. □

Theorem 2.4. The class TΩς
℘(µ, γ, k) is a convex set.

Proof. Let the function

uj(z) = z −
∞∑
n=2

an,jz
n, an,j ≥ 0, j = 1, 2 (16)

be in the class TΩς
℘(µ, γ, k). It is sufficient to show that the function h(z) defined by

h(z) = ξu1(z) + (1− ξ)u2(z), 0 ≤ ξ < 1,
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in the class TΩς
℘(µ, γ, k). Since

h(z) = z −
∞∑
n=2

[ξan,1 + (1− ξ)an,2]z
n.

An easy computation with the aid of Theorem 2.2 gives

∞∑
n=2

[n(1 + k)− µ(γ + k)]ξΘ(n, ℘, ς)an,1 +
∞∑
n=2

[n(1 + k)− µ(γ + k)](1− ξ)Θ(n, ℘, ς)an,2

≤ ξ(1− γ) + (1− ξ)(1− γ)

≤ (1− γ)

which implies that h ∈ TΩς
℘(µ, γ, k).

Hence TΩς
℘(µ, γ, k) is convex.

□

3. Radii of Close-to-Convexity, Starlikeness and Convexity

In this section, we obtain the radii of close-to-convexity, starlikeness and convexity for
the class TΩς

℘(µ, γ, k).

Theorem 3.1. Let the function u(z) defined by (4) belong to the class TΩς
℘(µ, γ, k). Then

u(z) is close-to-convex of order δ(0 ≤ δ < 1) in the disc |z| < r1, where

r1 = inf
n≥2

(1− δ)
∞∑
n=2

[n(1 + k)− µ(γ + k)]Θ(n, ℘, ς)

n(1− γ)


1/n−1

, n ≥ 2. (17)

The result is sharp with the external function u(z) is given by (14).

Proof. Given u ∈ T and u is close-to-convex of order δ, we have

|u′(z)− 1| < 1− δ. (18)

For the left hand side of (18), we have

|u′(z)− 1| ≤
∞∑
n=2

nan|z|n−1.

The last expression is less than 1− δ

∞∑
n=2

n

1− δ
an|z|n−1 ≤ 1.

Using the fact, that u(z) ∈ TΩς
℘(µ, γ, k) if and only if

∞∑
n=2

[n(1 + k)− µ(γ + k)]Θ(n, ℘, ς)

1− γ
an ≤ 1.

We can see that (18) is true, if

n

1− δ
|z|n−1 ≤ [n(1 + k)− µ(γ + k)]Θ(n, ℘, ς)

1− γ



A. LAGAD et al.: ON A CERTAIN SUBCLASS OF ANALYTIC FUNCTIONS ... 2135

or, equivalently

|z| ≤
{
(1− δ)[n(1 + k)− µ(γ + k)]Θ(n, ℘, ς)

n(1− γ)

}1/n−1

which completes the proof. □

Theorem 3.2. Let the function u(z) defined by (4) belong to the class TΩς
℘(µ, γ, k). Then

u(z) is starlike of order δ(0 ≤ δ < 1) in the disc |z| < r2, where

r2 = inf
n≥2

(1− δ)
∞∑
n=2

[n(1 + k)− µ(γ + k)]Θ(n, ℘, ς)

(n− δ)(1− γ)


1/n−1

. (19)

The result is sharp with external function u(z) is given by (14).

Proof. Given u ∈ T and u is starlike of order δ, we have∣∣∣∣zu′(z)u(z)
− 1

∣∣∣∣ < 1− δ. (20)

For the left hand side of (20), we have∣∣∣∣zu′(z)u(z)
− 1

∣∣∣∣ ≤ ∞∑
n=2

(n− 1)an|z|n−1

1−
∞∑
n=2

an|z|n−1

.

The last expression is less than 1− δ if
∞∑
n=2

n− δ

1− δ
an|z|n−1 < 1.

Using the fact that u(z) ∈ TΩς
℘(µ, γ, k) if and only if

∞∑
n=2

[n(1 + k)− µ(γ + k)]Θ(n, ℘, ς)

1− γ
an ≤ 1.

We can say (20) is true, if

∞∑
n=2

n− δ

1− δ
|z|n−1 ≤ [n(1 + k)− µ(γ + k)]Θ(n, ℘, ς)

1− γ

or equivalently

|z|n−1 ≤ (1− δ)[n(1 + k)− µ(γ + k)]Θ(n, ℘, ς)

(n− δ)(1− γ)

which yields the starlikeness of the family. □

4. Integral Means Inequalities

In [24], Silverman found that the function u2(z) = z − z2

2 is often extremal over the
family T. He applied this function to resolve his integral means inequality conjunctured
[25] and setteled in [26], that

2π∫
0

|u(reiφ)|τdφ ≤
2π∫
0

|u2(reiφ)n|τdφ
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for all u ∈ T , τ > 0 and 0 < r < 1. In [26], he also proved his conjuncture for the
subclasses T ∗(α) and C(α) of T.

Now, we prove Silverman’s conjecture for the class of functions TΩς
℘(µ, γ, k).

We need the concept of subordination between analytic functions and a subordination
theorem of Littlewood [18].

Two functions u and v, which are analytic in U, the function u is said to be subordinate
to v in U, if there exists a function w analytic in U with w(0) = 0, |w(z)| < 1, (z ∈ U) such
that u(z) = v(w(z)), (z ∈ U). We denote this subordination by u(z) ≺ v(z), (≺ denote
subordination).

Lemma 4.1. If the function u and v are analytic in U with u(z) ≺ v(z), then for τ > 0
and z = reiφ, 0 < r < 1

2π∫
0

|v(reiφ)|τdφ ≤
2π∫
0

|u(reiφ)|τdφ.

Now, we discuss the integral means inequalities for functions u in TΩς
℘(µ, γ, k).

Theorem 4.1. u ∈ TΩς
℘(µ, γ, k), 0 ≤ µ < 1, 0 ≤ γ < 1 and u2(z) be defined by

u2(z) = z − 1− γ

ϕ(2)
z2(ϕ(2)), (21)

where ϕ(n) = [n(1 + k)− µ(γ + 1)]Θ(n, ℘, ς).

Proof. For u(z) = z −
∞∑
n=2

anz
n, (21) is equivalent to

2π∫
0

∣∣∣∣∣1−
∞∑
n=2

anz
n−1

∣∣∣∣∣
τ

dφ ≤
2π∫
0

∣∣∣∣1− 1− γ

ϕ(2)
z

∣∣∣∣τ dφ.
By Lemma 4.1, it is enough to prove that

1−
∞∑
n=2

anz
n−1 ≺ 1− 1− γ

ϕ(2)
z.

Assuming

1−
∞∑
n=2

anz
n−1 = 1− 1− γ

ϕ(2)
w(z)

and using (11), we obtain

|w(z)| =

∣∣∣∣∣
∞∑
n=2

ϕ(n)

1− γ
anz

n−1

∣∣∣∣∣ ≤ |z|
∞∑
n=2

ϕ(n)

1− γ
an ≤ |z| < 1,

where

ϕ(n) = [n(1 + k)− µ(γ + 1)]Θ(n, ℘, ς).

This completes the proof. □
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5. Neighborhood Property

Following the earlier investigations by Darwish et al. [6], Goodman [12], Kazimogulu
[17] and Ruscheweyh [23], and others. We define the (n, δ)- neighborhood of a function
u(z) ∈ T by

Nδ(u) =

{
g ∈ T : g(z) = z −

∞∑
n=2

bnz
n and

∞∑
n=2

n |an − bn| ≤ δ

}
. (22)

In particular, if e(z) = z, we have

Nδ(e) =

{
g ∈ T : g(z) = z −

∞∑
n=2

bnz
n and

∞∑
n=2

n |bn| ≤ δ

}
. (23)

Now we determine the neighborhood for each of the class TΩς
℘(µ, γ, k) which we define

as follows.
A function u ∈ T is said to be in the class TΩς

℘(µ, γ, k, ξ) if there exists a function
g ∈ TΩς

℘(µ, γ, k) such that∣∣∣∣u(z)g(z)
− 1

∣∣∣∣ ≤ 1− ξ, (z ∈ U, 0 ≤ ξ < 1). (24)

Theorem 5.1. If g ∈ TΩς
℘(µ, γ, k) and

ξ = 1− δ[2(1 + k)− µ(γ + 1)]Θ(2, ℘, ς)

2[(2(1 + k)− µ(γ + k))− (1− γ)]
(25)

then Nδ(g) ⊂ TΩς
℘(µ, γ, k, ξ).

Proof. Suppose u(z) ∈ Nδ(g). We find from (2.1) that

∞∑
n=2

n|an − bn| ≤ δ

which implies that
∞∑
n=2

|an − bn| ≤
δ

2
, (n ∈ N). (26)

Next, since g(z) ∈ TΩς
℘(µ, γ, k), we have

∞∑
n=2

|bn| ≤
1− γ

[2(1 + k)− µ(γ + k)]Θ(2, ℘, ς)
(27)

so that ∣∣∣∣u(z)g(z)
− 1

∣∣∣∣ <
∞∑
n=2

|an − bn|

1−
∞∑
n=2

|bn|

≤ δ

2

[
[2(1 + k)− µ(γ + k)]Θ(2, ℘, ς)

[2(1 + k)− µ(γ + k)]Θ(2, ℘, ς)− (1− γ)

]
≤ 1− ξ,

provided that ξ is given by (25) . Thus, u(z) ∈ TΩς
℘(µ, γ, k, ξ) for ξ given by (25). This

completes the proof of the Theorem. □
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