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A STUDY ON BI-PARAMETRIC POTENTIALS: INVERSION

FORMULAS UTILIZING WAVELET-LIKE TRANSFORMATIONS IN

WEIGHTED LEBESGUE SPACES

G. YILDIZ1,∗, R. KAHRAMAN1, S. BAYRAKCI1, §

Abstract. We introduce a new family of wavelet-like transforms based on bi-parametric
semigroups associated with the Laplace-Bessel differential operator. Using these trans-
forms, we obtain new inversion formulas for bi-parametric potentials in the framework
of weighted Lebesgue spaces.
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1. Introduction

The classical Bessel potentials, an important integral operator in Fourier harmonic
analysis associated with the Laplace differential operator, are defined in terms of the
Fourier transform by

(J αφ)∧(x) = (1 + |x|2)−α/2(φ)∧(x), (x ∈ Rn, 0 < α <∞).

These potentials are interpreted as negative fractional powers of “the strictly positive”
differential operator (I −∆), (∆ is the Laplacian and I is the identity operator) that is,

J αφ = (I −∆)−α/2φ.

Moreover Bessel potentials have the following convulution-type integral representation:

(J αφ)(x) =

∫
Rn

gα (y)φ (x− y) dy, φ ∈ Lp (Rn) , (1 ≤ p <∞)
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where the kernel gα (y) = 2(2−n−α)/2

πn/2Γ(α/2)
|y|(α−n)/2K(α−n)/2 (|y|) and Kν (z) is known as

McDonald function ([9]). An interesting modification of the classical Bessel potentials ap-
pears in Fourier-Bessel harmonic analysis, which is associated with the Bessel or Laplace-
Bessel differential operators. The study of different versions of these differential opera-
tors in Fourier-Bessel harmonic analysis began with Delsarte and was further developed
by researchers such as Levitan, Kipriyanov, Lyakhov, Trimeche, Gadjiev, Aliev, Guliev,
Hasanov, Bayrakci, Sezer, Yıldız, Kahraman, and others ([4, 5, 6, 11, 12, 13, 16, 19, 21]).

One of the important problems concerning the Bessel potentials (in Fourier or Fourier-
Bessel harmonic analysis) is obtaining an explicit inversion formula. The hypersingular
integral technique, a very powerful tool for the inversion of potentials, was introduced
and studied by Stein, Lizorkin, Wheeden, Samko, Rubin, Aliev,([2, 14, 18, 20, 22]), and
references therein. An alternative approach to this problem has been introduced and
developed by Rubin. One should also mention the papers by Aliev and Rubin [3].

In this paper, a family of the bi-parametric potentials Bα
ν,β , (0 < α, β < ∞) that

generalize the Bessel and the modified Bessel potentials associated with the Laplace-Bessel
differential operator

∆B =
N∑
k=1

(
∂2

∂x2
k

+
2νk + 1

xk

∂

∂xk

)
+

n∑
k=N+1

∂2

∂x2
k

, (νk > −1/2; k = 1, · · · , N) (1)

are introduced. These potentials are defined in terms of the Fourier-Bessel transform

Fν(Bα
ν,βφ)(x) = (1 + |x|β)−α/βFν(φ)(x), (0 < α, β <∞)

and may be interpreted as negative fractional powers of order (−α/β) of the fractional

differential operator I + (−∆B)
β/2 ; that is, formally

Bα
ν,βφ =

(
I + (−∆B)

β/2
)−α/β

φ.

The rest of the paper is organized as follows: Section 2 provides necessary definitions
and auxiliary facts. Here, we introduce the concept of a bi-parametric semigroup and dis-
cuss its properties. Section3 defines bi-parametric potentials and wavelet-like transforms,
presenting the explicit inversion formulas for these potentials.

2. Preliminaries

Let

Rn
N,+ =

{
x = (x′, x′′) ∈ Rn, x′ ∈ RN , x′′ ∈ Rn−N , x1, x2, · · · , xN > 0

}
and define ν = (ν1, ν2, · · · , νN ) such that νk > −1/2 for k = 1, · · · , N and |ν| = ν1 + ν2 +
· · ·+ νN . For a measurable E ⊂ Rn

N,+,

|E|ν =

∫
E

(
x′
)2ν+1

dx;
(
x′
)2ν+1

dx = x2ν1+1
1 · · ·x2νN+1

N dx1 · · · dxn

is the Lebesgue measure. Let E (x, r) = {y ∈ Rn
N,+ : |x− y| < r}, denote the ball of radius

r > 0 centered at x ∈ Rn
N,+, and let S

(
Rn
N,+

)
represent the space of functions that are

restrictions to Rn
N,+ of the Schwartz test functions on Rn which are even in the variables

x1, · · · , xN .
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The weighted Lebesgue space of Lp,ν , (1 ≤ p <∞) Lebesgue measurable functions is
defined by

Lp,ν ≡ Lp,ν

(
Rn
N,+

)
=

f : ∥f∥p,ν =

 ∫
Rn
N,+

|f (x)|p
(
x′
)2ν+1

dx


1
p

<∞


where (x′)2ν+1 dx = x2ν1+1

1 · · ·x2νN+1
N dx1 · · · dxn.

Let T y denote the generalized translation operator associated with the Laplace-Bessel
differential operator ∆B, which acts according to the law

T yf (x) =

N∏
k=1

Γ (νk + 1)
√
πΓ

(
νk +

1
2

) π∫
0

· · ·
π∫

0

f
((
x′, y′

)
θ
, x′′ − y′′

)
dν (θ)

where (x′, y′)θ=
(
(x1, y1)θ1 , · · · , (xN , yN )θN

)
, (xk, yk)θk=

(
x2k − 2xkyk cos θk + y2k

)1/2
, k =

1, ..., N , and

x′′ − y′′ = (xk+1 − yk+1, ..., xn − yn) , dν (θ) =
k∏

i=1

sin2νi+1 θi dθi.

It is known (see e.g. [15]) that
∥T yf∥p,ν ≤ ∥f∥p,ν , ( 1 ≤ p ≤ ∞, y ∈ Rn

N,+)

∥T yf − f∥p,ν → 0, |y| −→ 0, ( 1 ≤ p ≤ ∞ ).
(2)

In (2), we identify L∞,ν with C0 ≡ C0(Rn
N,+), the space of continuous functions vanishing

at infinity.
The relevant Fourier-Bessel transform and its inverse are defined on S(Rn

N,+) by

Fν (f) (x) =

∫
Rn
N,+

f (y) e−i⟨x′′,y′′⟩
N∏
k=1

jνk (xkyk)
(
y′
)2ν+1

dy,

F−1
ν (f) (x) = cν,n,N (Fνf)

(
x′,−x′′

)
where ⟨x′′, y′′⟩ = xN+1yN+1 + · · ·+ xnyn. Also

cν,n,N = [(2π)n−N 22|ν|
N∏
k=1

Γ2 (νk+1)]
−1 (3)

and

jp (t) = 2pΓ (p+ 1) t−pJp (t) , jp (0) = 1, p > −1/2, 0 < t <∞ (4)

is the spherical Bessel function.

The generalized convolution operator is defined on S
(
Rn
N,+

)
by

(f ⊗ g) (x) =

∫
Rn
N,+

f (y) (T yg) (x)
(
y′
)2ν+1

dy, x ∈ Rn
N,+

which satisfies the following Young’s inequality:

∥φ⊗ ψ∥r,ν ≤ ∥φ∥p,ν ∥ψ∥q,ν , 1 ≤ p, q, r ≤ ∞,
1

p
+

1

q
=

1

r
+ 1,
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and Fν (f ⊗ g) = (Fνf) (Fνg) .
We will now derive the Abel-Poisson and Gauss-Weierstrass kernel generated by the

generalized translation operator associated with the Laplace-Bessel differential operator
∆B, as defined in (1). These kernels are defined as the Fourier-Bessel transformation of

the functions e−t|y| and e−t|y|2 , where y ∈ Rn
N,+ respectively. Namely, by considering the

formula

e−β =
1√
π

∞∫
0

e−z

√
z
e−β2/4zdz (see [20], p.6)

and Fubini’s theorem, for x ∈ Rn
N,+ we have

Fν

(
e−|y|

)
(x) =

∫
Rn
N,+

e−|y|e−i⟨x′′,y′′⟩
N∏
k=1

jνk (xkyk)
(
y′
)2ν+1

dy

=
1√
π

∫
Rn
N,+

 ∞∫
0

e−z

√
z
e−|y|2/4zdz

 e−i⟨x′′,y′′⟩
N∏
k=1

jνk (xkyk)
(
y′
)2ν+1

dy

=
1√
π

∞∫
0

e−z

√
z

 N∏
k=1

∞∫
0

e−y2k/4zjνk (xkyk) y
2νk+1
k dyk

×

×

 n∏
k=N+1

∫
R

e−y2k/4ze−ixkykdyk

 dz.

Taking into account (4) and the following formulas (see [9]):∫
R

e−y2/4ze−ixydy = 2
√
πze−zx2

and
∞∫
0

yν+1e−ty2Jν (βy) dy =
βν

(2t)ν+1 e
−β2/4t; Ret > 0, Reν > −1,

we get

Fν

(
e−|y|

)
(x) =

(√
cν,n,N

)−1
2|ν|+

n+N+1
2

1√
2π

Γ
(
|ν|+ N+n+1

2

)
(
1 + |x|2

)|ν|+N+n+1
2

where cν,n,N is defined by (3) . Also, by using the equality

Fν (f (λy)) (x) = λ−2|ν|−N−nFν (f (y))
(x
λ

)
, λ > 0,

we have

Fν(e
−t|y|) (x) =

(√
cν,n,N

)−1 2
|ν|+n+N+1

2

√
2π

Γ

(
|ν|+ N + n+ 1

2

)
t(

t2 + |x|2
)|ν|+N+n+1

2

.
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By taking into account the last equality, we define the Abel-Poisson kernel generated
by the generalized translation operator:

pν(x; t) =
√
cν,n,N

2|ν|+
n+N+1

2

√
2π

Γ

(
|ν|+ N + n+ 1

2

)
t

(t2 + |x|2)|ν|+
n+N+1

2

. (5)

It is easy to see that the following properties holds:

i) Fν (pν (·; t)) (x) = e−t|x|, x ∈ Rn
N,+, t > 0;

ii) ∥pν (·; t)∥1,ν = 1;

iii) pν (x; t+ s) = pν (x; t)⊗ pν (x; s) (semigroup property).

Similarly the Gauss-Weierstrass kernel generated by the generalized translation operator
is defined by

gν (x; t) =
√
cν,n,N2−

n+N+2|ν|
2 t−

n−N
2 e

−|x|2
4t , t > 0, x ∈ Rn

N,+. (6)

Furthermore, Fν (gν (·; t)) (x) = e−t|x|2 , ∥gν (x; t)∥1,ν = 1 and semigroup property obtained
easily.

Definition 2.1. Bi-parametric kernels w
(β)
ν (x; t) , x ∈ Rn

N,+, 0 < t < ∞, 0 < β < ∞
generated by generalized translation operator are defined by

w(β)
ν (x; t) = F−1

ν (e−t|y|β ) (x) = cn,ν,N

∫
Rn
N,+

e−t|y|βei⟨x
′′,y′′⟩

N∏
k=1

jνk (xkyk)
(
y′
)2ν+1

dy.

It can be seen that w
(1)
ν (|x| ; t) = pν (|x| ; t) is the Abel-Poisson kernel for β = 1 defined

in (5) and w
(2)
ν (|x| ; t) = gν (|x| ; t) is the Gauss-Weierstrass kernel for β = 2 defined in

(6). The main properties of the bi-parametric kernels are given by the following theorem.

Theorem 2.1. a) Let x ∈ Rn
N,+, 0 < t <∞, 0 < β <∞. Then

w(β)
ν

(
λ1/βx;λt

)
= λ−(2|ν|+n+N)/βw(β)

ν (x; t)

and for λ = 1/t

w(β)
ν (x; t) = t−(2|ν|+n+N)/βw(β)

ν

(
t−1/βx; 1

)
. (7)

b)For 0 < β ≤ 2

w(β)
ν (x; t) > 0, x ∈ Rn

N,+.

c) If β = 2k, (k ∈ N) then
w(β)
ν (x; t) ∈ S

(
Rn
N,+

)
.

d) ∥∥∥w(β)
ν (·; t)

∥∥∥
1,ν

= 1. (8)

provided that 0 < β ≤ 2 or β = 2k, (k ∈ N) .

Proof. a) By changing of the variable: y = λ1/βz, dy = λn/βdz we have

w(β)
ν

(
λ1/βx, λt

)
= cν,n,N

∫
Rn
N,+

e−tλβ |y|βei⟨λx
′′,y′′⟩

N∏
k=1

jνk (λxkyk)
(
y′
)2ν+1

dy

= λ−(2|ν|+n+N)/βw(β)
ν (x; t) .
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b)For the cases β = 1 and β = 2, the positivity of w
(β)
ν (x; t) follows immediately

from (5) and (6) . Let now 0 < β ≤ 2. According to the Bernstein’s theorem (see [7],
chapter18, see also [8], p.223) there is a non-negative finite measure µβ on [0,∞) so that
µβ ([0,∞)) = 1 and

e−zβ/2 =

∞∫
0

e−ξzdµβ (ξ) , z ∈ [0,∞).

Let z be replace by t2/β |y|2 in order to derive

e−t|y|β =

∞∫
0

e−t2/βξ|y|2dµβ (ξ) . (9)

Hence, owing to (6) , we obtain

w(β)
ν (x; t) = F−1

ν

(
e−t|y|β

)
(x) = F−1

ν

 ∞∫
0

e−t2/βξ|y|2dµβ (ξ)

 (x)

=

∞∫
0

F−1
ν

(
e−t2/βξ|y|2

)
(x) dµβ (ξ)

=
√
cν,n,N2−

n+N+2|ν|
2 t

−n−N
β

∞∫
0

ξ−
n−N

2 e
−|x|2
4ξ

t−2/β

dµβ (ξ) > 0.

c)Since Fν is an automorphizm of the space S
(
Rn
N,+

)
and e−|x|2k ∈ S

(
Rn
N,+

)
then its

follows that w
(2k)
ν (x; t) ∈ S

(
Rn
N,+

)
.

d) Let β = 2k, k ∈ N. Since e−|y|2k ∈ S
(
Rn
N,+

)
that is, F−1

ν

(
e−t|y|2k

)
(x) = w

(2k)
ν (|x| ; t) ∈

L1,ν

(
Rn
N,+

)
, then w

(2k)
ν (|x| ; t) is infinitely smooth and rapidly decreasing on Rn

N,+. So

Fν

(
w(2k)
ν (|x| ; t)

)
= e−t|y|2k .

Setting x = (0, · · · , 0) , we have∫
Rn
N,+

w(2k)
ν (|x| ; t)

(
x′
)2ν+1

dx = 1.

Now, let 0 < β < 2. By applying (9) and Fubini’s theorem, we have∫
Rn
N,+

w(β)
ν (|x| ; t) (x′)2ν+1dx =
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=

∫
Rn
N,+

 ∫
Rn
N,+

e−t|y|βei⟨x
′′,y′′⟩

N∏
k=1

jνk (xkyk)
(
y′
)2ν+1

dy

 (x′)2ν+1dx

=

∫
Rn
N,+

 ∫
Rn
N,+

 ∞∫
0

e−t2/βξ|y|2dµβ (ξ)

 ei⟨x
′′,y′′⟩

N∏
k=1

jνk (xkyk)
(
y′
)2ν+1

dy

 (x′)2ν+1dx

=

∞∫
0

 ∫
Rn
N,+

 ∫
Rn
N,+

e−t2/βξ|y|2ei⟨x
′′,y′′⟩

N∏
k=1

jνk (xkyk)
(
y′
)2ν+1

dy

 (x′)2ν+1dx

 dµβ (ξ)

=

∞∫
0

 ∫
Rn
N,+

w(2)
ν

(
|x| ; t2/βξ

)
(x′)2ν+1dx

 dµβ (ξ) =

∞∫
0

dµβ (ξ) = 1.

□

Definition 2.2. The bi-parametric semigroups (integral) generated by the generalized
translation operator are define by

W
(β)
ν,t f (x) =

(
w(β)
ν (·; t)⊗ f

)
=

∫
Rn
N,+

w(β)
ν (|y| ; t)T yf (x)

(
y′
)2ν+1

dy. (10)

It is not difficult to verify that this convolution-type integral satisfies the semigroup
property by using the Fourier-Bessel transform:

W
(β)
ν,r+sf =W (β)

ν,r W
(β)
ν,s . (11)

The following theorem presents some properties of the bi-parametric semigroups defined
in (10).

Theorem 2.2. Let f ∈ Lp,ν

(
Rn
N,+

)
, 1 ≤ p ≤ ∞, β = 2k, k ∈ N or 0 < β ≤ 2. Then

a) ∥∥∥W (β)
ν,t f

∥∥∥
p,ν

≤ c (β) ∥f∥p,ν (12)

where c (β) =
∫

Rn
N,+

∣∣∣w(β)
ν (x, 1)

∣∣∣ (x′)2ν+1 dx.

b)

lim
t→0+

(
W

(β)
ν,t f

)
(x) = f (x)

where the limit is understood in the Lp-norm or pointwise for almost all x ∈ Rn
N,+ . In

case of f ∈ C0, the convergence uniform.
c)

sup
t>0

∣∣∣(W (β)
ν,t f

)
(x)

∣∣∣ ≤ c (Mνf) (x) (13)

where Mνf is the modified Hardy-Littlewood maximal operator

(Mνf) (x) = sup
r>0

1

rn+N+2|ν|ω (n, ν,N)

∫
E(0,r)

T yf (x)
(
x′
)2ν+1

dx
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which is strong-(Lp,ν , Lp,ν) , (1 < p ≤ ∞) and weak-(L1,ν , L1,ν), (see [10]).
d)

sup
x∈Rn

N,+

∣∣∣(W (β)
ν,t f

)
(x)

∣∣∣ ≤ t
−n+N+2|ν|

pβ c ∥f∥p,ν , 1 ≤ p <∞.

Proof. a) By using generalized Minkowski inequality, and taking into account (2) we have

∥∥∥W (β)
ν,t f

∥∥∥
p,ν

≤
∫

Rn
N,+

∣∣∣w(β)
ν (|y| ; t)

∣∣∣
 ∫
Rn
N,+

|T yf (x)|p
(
x′
)2ν+1

dx


1
p (
y′
)2ν+1

dy

= sup
y∈Rn

N,+

∥T yf∥p,ν
∫

Rn
N,+

∣∣∣w(β)
ν (|y| ; t)

∣∣∣ (y′)2ν+1
dy, (set y = t

1
β z, dy = t

1
β dz)

= sup
y∈Rn

N,+

∥T yf∥p,ν t
−n+N+2|ν|

β t
n
β t

2|ν|+N
β

∫
Rn
N,+

∣∣∣w(β)
ν (|z| ; 1)

∣∣∣ (z′)2ν+1
dz

≤ c (β) ∥f∥p,ν .

b) By applying the generalized Minkowski inequality and using the equality (8), we obtain
for f ∈ Lp,ν , 1 ≤ p ≤ ∞ that∥∥∥W (β)

ν,t f − f
∥∥∥
p,ν

≤
∫

Rn
N,+

∣∣∣w(β)
ν (|y| , t)

∣∣∣ ∥T yf − f∥p,ν
(
y′
)2ν+1

dy

=

∫
Rn
N,+

∣∣∣w(β)
ν (|z| , 1)

∣∣∣ ∥∥∥T t−1/βzf − f
∥∥∥
p,ν

(
z′
)2ν+1

dy.

Now, by taking into account (2) we have
∥∥∥T t−1/βzf − f

∥∥∥
p,ν

≤ 2 ∥f∥p,ν and

lim
α→0+

∥∥∥T t−1/βzf − f
∥∥∥
p,ν

= 0, (1 ≤ p ≤ ∞) ([15]). Then, Lebesgue-dominanted convergence

theorem yields

lim
α→0+

∥∥∥W (β)
ν,t f − f

∥∥∥
p,ν

= 0, 1 ≤ p ≤ ∞.

Here L∞,ν ≡ C0 and in this case convergence is uniform.
c) In the article by Aliev and Bayrakci [1], utilizing Theorem 2.1, if φ ∈ L1,ν has a
decreasing, positive, and radial majorant ψ(|x|) that satisfies∫

Rn
N,+

ψ(|x|)(x′)2ν+1dx <∞,

then for every f ∈ Lp,ν

(
Rn
N,+

)
, (1 ≤ p ≤ ∞) and φε(x) = ε−(n+N+2|ν|)φ(xε ) we obtain

sup
ε>0

|(φε ⊗ f)(x)| ≤ ∥ψ∥1,ν (Mνf)(x). (14)

By setting ψ(|x|) = w
(β)
ν (|x|; 1), ε = t1/β in the last equation and taking into account the

equations (7), (14) we derive

sup
t>0

∣∣∣(W (β)
ν,t f

)
(x)

∣∣∣ ≤ c (Mνf) (x)
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where

c =

∫
Rn
N,+

∣∣∣w(β)
ν (|x|; 1)

∣∣∣ (x′)2ν+1dx <∞.

d) By using the Hölder inequality, we obtain

sup
x∈Rn

N,+

∣∣∣(W (β)
ν,t f

)
(x)

∣∣∣ =
∥∥∥w(β)

ν (·; t)⊗ f
∥∥∥
∞,ν

≤ ∥f∥p,ν
∥∥∥w(β)

ν (|x| ; t)
∥∥∥
q,ν

;
1

p
+

1

q
= 1

(7)
= t

−n+N+2|ν|
pβ ∥f∥p,ν

∥∥∥w(β)
ν (|·| ; 1)

∥∥∥
q,ν

= c t
−n+N+2|ν|

pβ ∥f∥p,ν .

□

3. Main Definitions and Theorems

The main definitions and corresponding results are presented in this section

Definition 3.1. The bi-parametric potentials generated by the generalized translation op-
erator associated with Laplace-Bessel differential operator ∆B are defined by

Bα
ν,βf(x) =

1

Γ(α/β)

∞∫
0

tα/βe−tW
(β)
ν,t f (x)

dt

t
(15)

where the operators
{
W

(β)
ν,t f

}
t≥0

are bi-parametric semigroups, defined in (10).

Bi-parametric potentials Bα
ν,β are interpreted as the fractional powers of order (−α/β)

of the fractional differential operator
(
I + (−∆B)

β/2
)
, i.e. formally,

Bα
ν,βf =

(
I + (−∆B)

β/2
)−α/β

f, f ∈ S
(
Rn
N,+

)
.

Note that these potentials coincide with the Bessel potentials for β = 1 and the modified
Bessel potentials β = 2 respectively, generated by the generalized translation operator,
(see [2]). The following theorem gives some basic properties of the bi-parametric potentials
Bα
ν,βf defined in (15) .

Theorem 3.1. Let 1 ≤ p ≤ ∞ and f ∈ Lp,ν , (L∞,ν ≡ C0), 0 < α, β <∞. Then
a) ∥∥Bα

ν,βf
∥∥
p,ν

≤ c (β) ∥f∥p,ν
where c (β) = 1 for 0 < β ≤ 2 .
b) Bi-parametric potentials Bα

ν,β are an convolution-type operators. Namely,

Fν

(
Bα
ν,βf

)
(x) =

(
1 + |x|β

)−α/β
Fν (f) , f ∈ S

(
Rn
N,+

)
. (16)

c) The operator Bα
ν,β are an automorphism in S

(
Rn
N,+

)
.

d)For a fixed β > 0, the family
{
Bα

ν,β

}
α≥0

have the following semigroup property:

Bα1+α2
ν,β = Bα1

ν,βB
α2
ν,β ,

where B0
ν,β = E is the identity operator and f ∈ Lp,ν , 1 ≤ p ≤ ∞, 0 ≤ α1, α2 <∞.
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Proof. a) By applying generalized Minkowski inequality and taking into account (12) we
have

∥∥Bα
ν,βf

∥∥
p,ν

≤
∥∥∥W (β)

ν,t f (x)
∥∥∥
p,ν

1

Γ (α/β)

∞∫
0

tα/β−1e−tdt =
∥∥∥W (β)

ν,t f (x)
∥∥∥
p,ν

≤ c (β) ∥f∥p,ν .

b)By using Fubini’s theorem for f ∈ S
(
Rn
N,+

)
we obtain

Fν

(
Bα
ν,βf

)
(x) =

1

Γ (α/β)

∞∫
0

tα/β−1e−tFν

(
W

(β)
ν,t f (y)

)
(x) dt

=
1

Γ (α/β)

∞∫
0

tα/β−1e−tFν

(
w(β)
ν (|y| ; t)⊗ f (y)

)
(x) dt

=
1

Γ (α/β)

∞∫
0

tα/β−1e−te−t|x|β (Fνf) (x) dt

=
(
1 + |x|β

)−α/β
(Fνf) (x).

c) Since Fν : S
(
Rn
N,+

)
→ S

(
Rn
N,+

)
is an automorphism, then the statement easily follow

from (16).

d) The identity is obvious in Fourier-Bessel terms for functions f ∈ S
(
Rn
N,+

)
. The general

Lp,ν-case is the consequence of the density of Schwartz space S
(
Rn
N,+

)
. □

Lemma 3.1. Let 1 ≤ p ≤ ∞ and f ∈ Lp,ν , (L∞,ν ≡ C0) , 0 < α, β < ∞. The operators

Bα
ν,β and W

(β)
ν,t are commutative:

Bα
ν,βW

(β)
ν,t f =W

(β)
ν,t Bα

ν,βf.

Proof. The equality Bα
ν,βW

(β)
ν,t φ = W

(β)
ν,t Bα

ν,βφ is straightforward for φ ∈ S
(
Rn
N,+

)
and

follows from using the Fourier-Bessel transform. The general case follows from the density

of the class S
(
Rn
N,+

)
in Lp,ν . □

We now define a wavelet-like transform generated by bi-parametric semigroups defined
in (10). This transform will be used for inversion of the bi-parametric potentials. The
wavelet-like transforms are a class of continuous wavelet transforms generated by two
components, namely, a kernel function and a wavelet. Both are in our disposal. These
transforms are known composite wavelet transform in literature and introduced by Aliev,
Rubin, [3].

Definition 3.2. Let µ be a wavelet measure on [0,∞), that is a finite Borel measure
on [0,∞) and µ{[0,∞)} = 0. A wavelet transform generated by wavelet measure µ and
bi-parametric semigroups is defined by(

A(β)
µ φ

)
(x, t) = µ ({0})φ (x) +

∞∫
0

e−st
(
W

(β)
ν,stφ

)
(x) dµ (s) (17)
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where W
(β)
ν,t φ, are the bi-parametric semigroups and x ∈ Rn

N,+, 0 < t <∞ and

b∫
a

(· · · ) dµ (s) =
∫

[a,b)

(· · · ) dµ (s) .

It is easy to see that the wavelet transform A(β)
µ is well defined for φ ∈ Lp,ν , 1 ≤ p ≤ ∞.

That is, by the generalized Minkowski inequality we have∥∥∥A(β)
µ φ (·, s)

∥∥∥
p,ν

≤
∞∫
0

e−st
∥∥∥W (β)

ν,stφ
∥∥∥
p,ν
d |µ| (t) ≤ c (β) ∥µ∥ ∥φ∥p,ν

where ∥µ∥ =
∞∫
0

d |µ| (t) <∞. The following Lemma is of great importance for us which is

a special case of the Rubin Lemma in [17].

Lemma 3.2. (cf. Lemma 1.3 from [17]) Let µ be a finite signed Borel measure on [0,∞)
and

Kθ (s) =
1

s

(
Iθ+1µ

)
(s) , (18)

where (
Iθ+1µ

)
(s) =

1

Γ (θ + 1)

s∫
0

(s− t)θ dµ (t) , (s > 0, θ > 0)

is the Riemann-Liouville fractional integral of order (θ + 1) of the measure µ. Suppose that
µ satisfies the following conditions:

∞∫
1

tγd |µ| (t) <∞ for some γ > θ, (19)

∞∫
0

tjdµ (t) = 0; j = 0, 1, 2, 3, · · · , [θ] , (the integral part θ). (20)

Then Kθ (s) has decreasing integrable majorant and

Cθ,µ ≡
∞∫
0

Kθ (s) ds =


Γ (−θ)

∞∫
0

zθdµ (z) , if θ ̸= 1, 2, 3, · · ·

(−1)θ+1 1
θ!

∞∫
0

zθ ln zdµ (z) , if θ = 1, 2, 3, · · ·

 . (21)

In addition, if
∼
µ =

∞∫
0

e−tzdµ (z) is the Laplace transform of µ, then

Cθ,µ ≡
∞∫
0

t−1−θ∼µ (t) dt. (22)

Remark 3.1. In particular case, when 0 < θ < 1, the conditions (19), (20) and (21) have
the following simple form respectively:

∞∫
1

tγd |µ| (t) <∞ ;

∞∫
0

dµ (t) = 0; Cθ,µ =

∞∫
0

Kθ (s) ds = Γ (−θ)
∞∫
0

sθdµ (s) .
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Lemma 3.3. (see [9], No:3.238(3)) Let γ > 1 , 0 < α, β <∞. Then

γ∫
1

t−α/β−1 (γ − t)α/β−1 dt =
Γ (α/β)

Γ (1 + α/β)

1

γ
(γ − 1)α/β .

The main result of the paper is the following theorem, where the inversion formula for
the bi-parametric potentials Bα

ν,β generated by the generalized translation operator are

obtained by using the wavelet transform Aβ
µ defined as in (17). It should be noted that

the proof of the theorem is based on general technique developed by Aliev and Rubin [3].

Theorem 3.2. Let Aβ
µ, β > 0 be the wavelet transform and Bα

ν,β , α > 0 bi-parametric

potentials of the function f ∈ Lp,ν

(
Rn
N,+

)
, (1 ≤ p ≤ ∞) . Suppose that µ is a finite Borel

measure on [0,∞) satisfying the conditions (19) and (20) . Then

∞∫
0

t−α/β
(
A(β)

µ Bα
ν,βf

)
(x, t)

dt

t
≡ lim

h→0

∞∫
h

t−α/β(A(β)
µ Bα

ν,βf) (x, t)
dt

t
= Cf (23)

where C ≡ Cα
β
,µ is defined as (21)-(22) . The limit is to be understood in the Lp,ν ,

(1 ≤ p <∞) norm or pointwise a.e. on Rn
N,+. If f ∈ C0, then the convergence is uniform.

Proof. Let f ∈ Lp,ν . By using Lemma 3.1 we have

(
A(β)

µ Bα
ν,βf

)
(x, t) =

∞∫
0

e−stW
(β)
ν,stBα

ν,βf (x) dµ (s) =

∞∫
0

e−stBα
ν,βW

(β)
ν,stf (x) dµ (s)

(15)
=

∞∫
0

e−st

 1

Γ (α/β)

∞∫
0

hα/βe−hW
(β)
ν,hW

(β)
ν,stf (x)

dh

h

 dµ (s)

(11)
=

1

Γ (α/β)

∞∫
0

e−st

 ∞∫
0

hα/β−1e−hW
(β)
ν,h+stf (x) dh

 dµ (s) .

By substituting h with h− st in the last equation, we get(
A(β)

µ Bα
ν,βf

)
(x, t) =

=
1

Γ (α/β)

∞∫
0

e−st

 ∞∫
st

(h− st)α/β−1 e−h+stW
(β)
ν,h−st+stf (x) dh

 dµ (s)

=
1

Γ (α/β)

∞∫
0

 ∞∫
0

(h− st)
α/β−1
+ e−hW

(β)
ν,h f (x) dh

 dµ (s)

where

(h− st)
α/β−1
+ =

{
(h− st)α/β−1 , h− st > 0

0 , h− st ≤ 0

}
. (24)
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Now, considering Fubini’s theorem, the definition in (24) for a given δ > 0, and then
taking into account Lemma 3.3 we have

∞∫
δ

t−α/β−1
(
A(β)

µ Bα
ν,βf

)
(x, t) dt

=
1

Γ (α/β)

∞∫
0

 ∞∫
0

e−hW
(β)
ν,h f (x)

 ∞∫
δ

t−α/β−1 (h− st)
α/β−1
+ dt

 dh

 dµ (s)

=
1

Γ (α/β)

∞∫
0

e−hW
(β)
ν,h f (x)

 ∞∫
0

sα/β−1

 ∞∫
δ

t−α/β−1

(
h

s
− t

)α/β−1

+

dt

 dµ (s)

 dh

=
1

Γ (α/β)

∞∫
0

e−hW
(β)
ν,h f (x)


h
δ∫

0

sα/β−1


h
s∫

δ

t
−α

β
−1

(
h

s
− t

)α/β−1

dt

 dµ (s)

 dh

=
1

Γ (α/β)

∞∫
0

e−δhW
(β)
ν,δhf (x)

 h∫
0

sα/β−1


h
s∫

1

t
−α

β
−1

(
h

s
− t

)α/β−1

dt

 dµ (s)

 dh

=
1

Γ (α/β)

∞∫
0

e−δhW
(β)
ν,δhf (x)

 h∫
0

sα/β−1 Γ (α/β)

Γ (α/β + 1)

s

h

(
h

s
− 1

)α/β

dµ (s)

 dh

=
1

Γ (α/β + 1)

∞∫
0

e−δhW
(β)
ν,δhf (x)

 h∫
0

1

h
(h− s)α/β dµ (s)

 dh

=

∞∫
0

e−δhW
(β)
ν,δhf (x)Kα/β (h) dh (25)

where Kα/β (h) =
1
h

1
Γ(α/β+1)

h∫
0

(h− s)
α
β dµ (s) from (18). We will continue the technique of

the approximation to the identity. Namely, taking into account the notation C ≡ Cα/β,µ =
∞∫
0

Kα/β (h) dh (see (21), (22)) we get

∞∫
δ

t−α/β−1
(
A(β)

µ Bα
ν,βf

)
(x, t) dt− Cf (x) =

∞∫
0

(
e−δhW

(β)
ν,δhf (x)− f (x)

)
Kα/β (h) dh

=

∞∫
0

e−δh
(
W

(β)
ν,δhf (x)− f (x)

)
Kα/β (h) dh+ f (x)

∞∫
0

(
1− e−δh

)
Kα/β (h) dh.
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By using the generalized Minkowski inequality, we obtain for 1 ≤ p ≤ ∞∥∥∥∥∥∥
∞∫
δ

t−α/β−1
(
A(β)

µ Bα
ν,βf

)
(·, t) dt− Cf

∥∥∥∥∥∥
p,ν

≤
∞∫
0

e−δh
∥∥∥W (β)

ν,δhf − f
∥∥∥
p,ν

∣∣Kα/β (h)
∣∣ dh+ ∥f∥p,ν

∞∫
0

(
1− e−δh

) ∣∣Kα/β (h)
∣∣ dh.

Finally, the Lebesgue-domineted convergence theorem yields that

lim
δ→0

∥∥∥∥∥∥
∞∫
δ

t−α/β−1
(
A(β)

µ Bα
ν,β

)
(·, t) dt− Cf

∥∥∥∥∥∥
p,ν

= 0 (26)

where for L∞,ν ≡ C0 the convergence is uniform.
Now let us prove the pointwise (a.e.) convergence in (23). From the following inequali-

ties

sup
δ>0

∣∣∣∣∣∣
∞∫
δ

t−α/β−1
(
A(β)

µ Bα
ν,β

)
(x, t) dt

∣∣∣∣∣∣ (25)
= sup

δ>0

∣∣∣∣∣∣
∞∫
0

e−δhW
(β)
ν,δhf (x)Kα/β (h) dh

∣∣∣∣∣∣
≤ sup

t>0

∣∣∣W (β)
ν,t f (x)

∣∣∣ ∞∫
0

∣∣Kα/β (h)
∣∣ dh (13)

≤ c (Mνf) (x)

it follows that the maximal operator

sup
δ>0

∣∣∣∣∣∣
∞∫
δ

t−α/β−1
(
A(β)

µ Bα
ν,β

)
(x, t) dt

∣∣∣∣∣∣ , (x ∈ Rn
N,+

)
is weak-(L1,ν , L1,ν) and strong-(Lp,ν , Lp,ν), 1 ≤ p ≤ ∞. Since the convergence in (26) is
pointwise (in fact uniformly) for any f ∈ C0 ∩Lp,ν , (1 < p ≤ ∞) and this class is dense in
Lp,ν , (1 ≤ p ≤ ∞) , it follows that

lim
δ→0

∞∫
δ

t−α/β−1
(
A(β)

µ Bα
ν,βf

)
(x, t) = Cf (x)

pointwise for a.e. x ∈ Rn
N,+, (see [20], p.60). □
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ucation in Antalya from 2011 to 2015. She completed her undergraduate stud-
ies in the Department of Mathematics at Akdeniz University from 2015 to 2019.
Subsequently, she obtained her master’s degree in Mathematics at Akdeniz Univer-
sity between 2019 and 2021. In 2022, she commenced her PhD in the Depart-
ment of Mathematics at Akdeniz University, where she is currently continuing her
research.

Recep Kahraman was born in Bursa, Turkey. He completed her undergraduate
studies in the Department of Mathematics at Akdeniz University from 2017 to 2021.
Subsequently, he obtained his master’s degree in Mathematics at the same institution
between 2021 and 2023.



G. YILDIZ et al.: A STUDY ON BI-PARAMETRIC POTENTIALS: INVERSION FORMULAS... 2155
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