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INTRODUCING A NOVEL SUBCLASS OF HARMONIC FUNCTIONS

WITH CLOSE-TO-CONVEX PROPERTIES

S. ÇAKMAK1∗, S. YALÇIN2, §

Abstract. In this paper, we introduce a new subclass of close-to-convex harmonic func-
tions. We present a sufficient coefficient condition for a function to be a member of this
class. Furthermore, we establish a distortion theorem. These results lay the groundwork
for extending the findings to function classes involving higher-order derivatives.
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1. Introduction

In the realm of harmonic functions, every function f belonging to the class SH0 can be
expressed as f = u+ v, where

u(z) = z +
∞∑

m=2

umzm, v(z) =
∞∑

m=2

vmzm (1)

with both functions being analytic in the open unit disk E = {z ∈ C : |z| < 1}. Provided
that |u′(z)| > |v′(z)| in E, f is locally univalent and sense-preserving in E. It’s noteworthy
that when v(z) is identically zero, SH0 contracts to class S.

The subclasses of S that map E onto starlike and close-to-convex domains, respectively,
are denoted by S∗ and K. Similarly, SH0,∗ and KH0 represent subclasses of SH0 that
map E onto their respective domains. (For further details, refer to [1, 3])

In 2005, Gao and Zhou [4] introduced the class

Ks =

{
u ∈ S : Re

{
z2u′(z)

−ϕ(z)ϕ(−z)

}
> 0 for z ∈ E

}
.

1 Istanbul Gelisim University, Faculty of Economics, Administrative and Social Sciences, Department
of Management Information Systems, Istanbul, Türkiye.
e-mail: secakmak@gelisim.edu.tr; ORCID: https://orcid.org/0000-0003-0368-7672.

2 Bursa Uludag University, Faculty of Arts and Sciences, Department of Mathematics, Görükle, Bursa,
Türkiye.
e-mail: syalcin@uludag.edu.tr; ORCID: https://orcid.org/0000-0002-0243-8263.

∗ Corresponding author.
§ Manuscript received: August 21, 2024; accepted:January 18, 2025.
TWMS Journal of Applied and Engineering Mathematics, Vol.15, No.9; © Işık University, Depart-
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In 2011, Şeker [5] introduced a class

K(k, γ) =

{
u ∈ S : Re

{
zku′(z)

ϕk(z)

}
> γ, 0 ≤ γ < 1 and z ∈ E

}
where k ∈ Z+, ϕ(z) = z+

∑∞
m=2 cmzm ∈ S∗ (k−1

k

)
and the definition of ϕk(z) is as follows:

ϕk(z) =
k−1∏
v=0

µ−vϕ(µvz) (µk = 1) (2)

with µ = e2πi/k.
The classes Ks and K(k, γ), introduced by Gao and Zhou [4] and Şeker [5], respectively,

focus solely on analytic functions and are independent of the variable z. This restriction
prevents the study of properties of harmonic functions that depend on the variable z.
This leads us to define a new function class that includes the co-analytic part of harmonic
functions.

Observe that if k = 2 in the class K(k, γ), the class K(γ) studied by Kowalczyk et al.
[2] is obtained. For k = 2 and γ = 0, the class Ks studied by Gao and Zhou [4] is obtained.
It is clear that the class K(k, γ) encompasses both classes. The class KH0(k, γ), which we
will define shortly, covers the class K(k, γ) since it is defined using harmonic conjugates
of analytic functions belonging to the classes K(k, γ). Therefore, the class KH0(k, γ) is a
generalization of the K(k, γ), Ks, and K(γ) classes.

This generalization allows for a broader investigation of geometric properties, such as
distortion bounds and close-to-convexity, for harmonic functions that depend on z.

Definition 1.1. The class KH0(k, γ) is defined as the collection of functions f = u+ v ∈
SH0 that adhere to the following inequality:

Re

{
zku′(z)

ϕk(z)
− γ

}
>

∣∣∣∣zkv′(z)ϕk(z)

∣∣∣∣ , (3)

where 0 ≤ γ < 1 and ϕk(z) is given by (2).

Specifically, when v(z) ≡ 0, the class KH0(k, γ) reduces to the class K(k, γ). Also,
by setting v(z) ≡ 0, k = 2 and γ = 0, we obtain KH0(2, 0) = Ks. The inclusion of

the co-analytic term v(z) extends these classes, providing a more general framework that
accommodates both analytic and co-analytic components. Additionally, when ϕ(z) = z,
and by appropriately selecting the parameters, the class KH0(k, γ) can be reduced to
several well-known subclasses of harmonic functions, as outlined below.

i KH0(k, 0) = PH0 [6].
ii KH0(k, γ) = PH0(γ) [7, 8].
ii KH0(k, 0) = WH0(0) ([9]).
iv KH0(k, γ) = WH0(0, γ) ([10]).
v KH0(k, γ) = AH0(1, 0, γ) ([11]).
vi KH0(k, 0) = RH0(0, 0) ([12]).

For further details on harmonic function classes defined by differential inequality, see
[13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23].

In this work, we investigate the distortion theorems and coefficient bounds for functions
in the class KH0(k, γ) and demonstrate that functions within this class exhibit close-to-
convex behavior.
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2. Examples of Functions in the Class KH0(k, γ)

Example 2.1. Let f = u+ v = z + 1−γ
m zm and ϕ(z) = z. For 0 ≤ γ < 1 and |z| < 1, we

have

Re

{
zku′(z)

ϕk(z)
− γ

}
= 1− γ > (1− γ) |z|m−1 =

∣∣∣∣zkv′(z)ϕk(z)

∣∣∣∣ .
Hence, f ∈ KH0(k, γ).

The following examples can be given for the special case of the parameters in Example
2.1.

Example 2.2. Let f = z + 99
200z

2, γ = 1
100 and ϕ(z) = z. Then f ∈ KH0(k, 33

100). The unit
disk is mapped to a starlike region by the function f . The depiction in Figure 1 showcases
the image of the set E under the transformation defined by f(z) = z + 99

200z
2.

Figure 1. Under the map f = z + 99
200z

2, the image of the unit disk.

Example 2.3. Let f = z + 1
10z

2, γ = 4
5 , and ϕ(z) = z. Then f ∈ KH0(k, 45). The unit

disk is mapped to a convex region by the function f . The depiction in Figure 2 showcases
the image of the set E under the transformation defined by f = z + 1

10z
2.
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Figure 2. Under the map f = z + 1
10z

2, the image of the unit disk.

Example 2.4. Let f = z + 33
100z

3, γ = 1
100 and ϕ(z) = z. Then f ∈ KH0(k, 33

100). The unit
disk is mapped to a starlike region by the function f . The depiction in Figure 3 showcases
the image of the set E under the transformation defined by f = z + 33

100z
3.

Figure 3. Under the map f = z + 33
100z

3, the image of the unit disk.

Example 2.5. Let f = z + 1
15z

3, γ = 4
5 and ϕ(z) = z. Then f ∈ KH0(k, 45). The unit disk

is mapped to a convex region by the function f . The depiction in Figure 4 showcases the
image of the set E under the transformation defined by f = z + 1

15z
3.
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Figure 4. Under the map f = z + 1
15z

3, the image of the unit disk.

Example 2.6. Let f = z + 99
500z

5, γ = 1
100 and ϕ(z) = z. Then f ∈ KH0(k, 99

500). The unit
disk is mapped to a starlike region by the function f . The depiction in Figure 5 showcases
the image of the set E under the transformation defined by f = z + 99

500z
5.

Figure 5. Under the map f = z + 99
500z

5, the image of the unit disk.

Example 2.7. Let f = z + 1
25z

5, γ = 4
5 and ϕ(z) = z. Then f ∈ KH0(k, 45). The unit disk

is mapped to a convex region by the function f . The depiction in Figure 6 showcases the
image of the set E under the transformation defined by f = z + 1

25z
5.

3. Geometric Properties of the class KH0(k, γ)

First, we give a result that establishes a sufficient condition for f ∈ SH0 to be close-to-
convex, which comes from Clunie and Sheil-Small [1].
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Figure 6. Under the map f = z + 1
25z

5, the image of the unit disk.

Lemma 3.1. Let u and v be analytic functions in E, such that |v′(0)| < |u′(0)|, and for
each ε (|ε| = 1), Fε = u+ εv is close-to-convex. Then, f = u+ v is close-to-convex in E.

The result we will present now establishes a connection between the KH0(k, γ) harmonic
function class and the K(k, γ) analytic function class.

Theorem 3.1. f = u + v ∈ KH0(k, γ) if and only if Fε = u + εv ∈ K(k, γ) for each
ε (|ε| = 1).

Proof. Assume f = u+ v ∈ KH0(k, γ). For each ε (|ε| = 1), we have

Re

{
zkFε

′(z)

ϕk(z)

}
= Re

{
zku′(z)

ϕk(z)

}
+ εRe

{
zkv′(z)

ϕk(z)

}
> Re

{
zku′(z)

ϕk(z)

}
−
∣∣∣∣zkv′(z)ϕk(z)

∣∣∣∣ > γ (z ∈ E) .

Hence, Fε ∈ K(k, γ) for each ε (|ε| = 1).
Conversely, suppose Fε = u+ εv ∈ K(k, γ). Then,

Re

{
zku′(z)

ϕk(z)

}
> Re

[
−ε

zkv′(z)

ϕk(z)

]
+ γ (z ∈ E) .

Choosing an appropriate ε (|ε| = 1) yields

Re

{
zku′(z)

ϕk(z)
− γ

}
>

∣∣∣∣zkv′(z)ϕk(z)

∣∣∣∣ (z ∈ E) ,

and thus f ∈ KH0(k, γ). □

We will now demonstrate that harmonic functions belonging to the class KH0(k, γ) map
the open unit disk onto a close-to-convex region. To this end, we first state the following
lemma and subsequently establish that functions in the class K(k, γ) are close-to-convex
within the open unit disk.
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Lemma 3.2. [4] Let ϕ(z) = z +
∑∞

m=2 cmzm ∈ S∗ (k−1
k

)
for k ≥ 1. Then,

Φk(z) =
ϕk(z)

zk−1
= z +

∞∑
m=2

Cmzm ∈ S∗ (4)

where ϕk(z) is given by (2).

Theorem 3.2. If F is a function in the class K(k, γ), then F is close-to-convex of order
γ in the region E.

Proof. Let F ∈ K(k, γ). We have

Re

{
zkF ′(z)

ϕk(z)

}
= Re

{
zF ′(z)

Φk(z)

}
> γ,

where Φk(z) is given by (4). Therefore, the function F is close-to-convex of order γ since
Φk(z) ∈ S∗. □

Theorem 3.3. Every function in the class KH0(k, γ) is close-to-convex within the region
E.

Proof. Let f = u + v belong to class KH0(k, γ). Then by Theorem 3.1 the function
Fε = u + εv belongs to class K(k, γ) and by Theorem 3.2 also close to convex in E.
Therefore, by Lemma 3.1, f = u+ v ∈ KH0(k, γ) is also close to convex in E. □

In the following result, we derive a coefficient bound for functions belonging to the class
KH0(k, γ).

Theorem 3.4. Let f = u+ v ∈ KH0(k, γ). For m ≥ 2, the following inequalities hold:

|um|+ |vm| ≤ γ +m(1− γ).

For the function f(z) = z + [γ +m(1 − γ)]zm, every outcome is sharp and every equality
is holds.

Proof. Suppose that f = u+v ∈ KH0(k, γ). Fε = u+εv ∈ K(k, γ) for ε (|ε| = 1), according
to Theorem 3.1. With respect to every ε (|ε| = 1), we possess

Re

{
zkFε

′(z)

ϕk(z)

}
= Re

{
zFε

′(z)

Φk(z)

}
= Re

{
z (u′(z) + εv′(z))

Φk(z)

}
> γ.

for z ∈ E. On the other hand, there is an analytic function P(z) = 1 +
∞∑

m=1
pmzm in E

whose real part is positive, satisfying

z (u′(z) + εv′(z))

Φk(z)
= γ + (1− γ)P(z). (5)

or
z
(
u′(z) + εv′(z)

)
= [γ + (1− γ)P(z)] Φk(z). (6)

Upon comparing the coefficients in (6), it can be observed that

m(um + εvm) = Cm + (1− γ)pm−1 + (1− γ)p1Cm−1 + · · ·+ (1− γ)pm−2C2. (7)

Since Φk(z) is starlike, we have |Cm| ≤ m, and since Re{P(z)} > 0, we have |pm| ≤ 2 for
m ≥ 1. Hence, by equation 7, we have

m |um + εvm| ≤ m [γ +m(1− γ)] . (8)

Since ε (|ε| = 1) is arbitrary, it follows that the proof is concluded. The function f(z) = z+
[γ +m(1− γ)]zm, demonstrates the sharpness of inequality. □
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Now, we provide the necessary coefficient condition for a harmonic function to belong
to the class KH0(k, γ).

Theorem 3.5. Let f = u + v ∈ SH0 with the series expansions given by (1). If the
following inequality holds:

∞∑
m=2

2m (|um|+ |vm|) +
∞∑

m=2

(|1− 2γ|+ 1) |Cm| ≤ 2(1− γ), (9)

then f ∈ KH0(k, γ).

Proof. Consider u and v as functions with series expansions given by (1). Let Fε = u+ εv
for each ε (|ε| = 1). Define the functions ϕk(z) and Φk(z) as given by (2) and (4),
respectively. Then we can express A as

A =

∣∣∣∣zF ′
ε −

ϕk(z)

zk−1

∣∣∣∣− ∣∣∣∣zF ′
ε +

(1− 2γ)ϕk(z)

zk−1

∣∣∣∣
=

∣∣z(u+ εv)′ − Φk(z)
∣∣− ∣∣z(u+ εv)′ + (1− 2γ)Φk(z)

∣∣
=

∣∣∣∣∣
∞∑

m=2

m(um + εvm)zm −
∞∑

m=2

Cmzm

∣∣∣∣∣
−

∣∣∣∣∣(2− 2γ)z +
∞∑

m=2

m(um + εvm)zm + (1− 2γ)
∞∑

m=2

Cmzm

∣∣∣∣∣
≤

∞∑
m=2

m |um + εvm| |z|m +
∞∑

m=2

|Cm| |z|m

−

(
(2− 2γ) |z| −

∞∑
m=2

m |um + εvm| |z|m − |1− 2γ|
∞∑

m=2

|Cm| |z|m
)

<

{
−2(1− γ) +

∞∑
m=2

2m |um + εvm|+ (|1− 2γ|+ 1)

∞∑
m=2

|Cm|

}
|z|

Since ε (|ε| = 1) is arbitrary, and from the inequality (9), we obtain that A < 0. This
implies that Fε = u + εv belongs to the class K(k, γ), and consequently, according to
Theorem 2, it shows that f = u+ v belongs to the class KH0(k, γ). □

The result we present now provides the distortion bounds for functions in the class
KH0(k, γ).

Theorem 3.6. Assuming f = u+ v ∈ KH0(k, γ), the following inequalities hold for all z:

|z|+
∞∑

m=2

(−1)m−1[m(1− γ) + γ] |z|m ≤ |f(z)| ≤ |z|+
∞∑

m=2

[m(1− γ) + γ] |z|m .

These are sharp inequality for the function f(z) = z +
∞∑

m=2
[m(1− γ) + γ]zm.

Proof. Let f = u+v ∈ KH0(k, γ). Then using Theorem 3.1, Fε = u+εv ∈ K(k, γ) for each
ε (|ε| = 1). Additionally, from Theorem 3.4 in [5], we obtain

1− (1− 2γ) |z|
(1 + |z|)3

≤
∣∣F ′

ε(z)
∣∣ ≤ 1 + (1− 2γ) |z|

(1− |z|)3
(10)
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Since ∣∣F ′
ε(z)

∣∣ =
∣∣u′(z) + εv′(z)

∣∣
≤ 1 +

∞∑
m=2

m[m(1− γ) + γ] |z|m−1

and ∣∣F ′
ε(z)

∣∣ =
∣∣u′(z) + εv′(z)

∣∣
≥ 1 +

∞∑
m=2

(−1)m−1m[m(1− γ) + γ] |z|m−1 ,

in particular, we get∣∣u′(z)∣∣+ ∣∣v′(z)∣∣ ≤ 1 +
∞∑

m=2

m[m(1− γ) + γ] |z|m−1

and ∣∣u′(z)∣∣− ∣∣v′(z)∣∣ ≥ 1 +

∞∑
m=2

(−1)m−1m[m(1− γ) + γ] |z|m−1 .

Assume Γ is the radial segment extending from 0 to z, so

|f(z)| =

∣∣∣∣∣∣
∫
Γ

∂f

∂z
dz+

∂f

∂z̄
dz̄

∣∣∣∣∣∣ ≤
∫
Γ

(∣∣u′(z)∣∣+ ∣∣v′(z)∣∣) |dz|
≤

|z|∫
0

(
1 +

∞∑
m=2

m[m(1− γ) + γ] |ρ|m−1

)
dρ

= |z|+
∞∑

m=2

[m(1− γ) + γ] |z|m ,

and

|f(z)| ≥
∫
Γ

(∣∣u′(z)∣∣− ∣∣v′(z)∣∣) |dz|
≥

|z|∫
0

(
1 +

∞∑
m=2

(−1)m−1m[m(1− γ) + γ] |ρ|m−1

)
dρ

= |z|+
∞∑

m=2

(−1)m−1[m(1− γ) + γ] |z|m .

□

Theorem 3.7. The class KH0(k, γ) is closed under convex combinations.

Proof. Suppose fα = uα + vα ∈ KH0(k, γ) for α = 1, 2, ..., p and
p∑

α=1
sα = 1 (0 ≤ sα ≤ 1).

The convex combination of functions fα (α = 1, 2, ..., p) can be expressed as:

f(z) =

p∑
α=1

sαfα(z) = u(z) + v(z),



2190 TWMS J. APP. ENG. MATH. V.15, N.9, 2025

where

u(z) =

p∑
α=1

sαuα(z) and v(z) =

p∑
α=1

sαvα(z).

Both u and v are analytic within the open unit disk E, satisfying initial conditions u(0) =
v(0) = u′(0)− 1 = v′(0) = 0 and

Re

[
zku′(z)

ϕk(z)
− γ

]
= Re

[
p∑

α=1

sα

(
zku′α(z)

ϕk(z)
− γ

)]
>

p∑
α=1

sα

∣∣∣∣zkv′α(z)ϕk(z)

∣∣∣∣ = ∣∣∣∣zkv′(z)ϕk(z)

∣∣∣∣
showing that f ∈ KH0(k, γ). □

4. Conclusions

In this paper, we introduced a new class of harmonic functions denoted by KH0(k, γ).
We established a relationship between KH0(k, γ) and K(k, γ). We demonstrated that
KH0(k, γ) is close-to-convex. For functions in the KH0(k, γ) class, we derived coefficient
bounds and distortion theorems. Finally, we proved that KH0(k, γ) is closed under con-
volution.
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