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EXISTENCE OF SOLUTIONS FOR NAVIER PROBLEM INVOLVING

(p(.), q(.))-LAPLACIAN AND (p(.), q(.))-BIHARMONIC OPERATORS

A. EL KATIT1∗, A.R. EL AMROUSS2, F. KISSI1, §

Abstract. In the present paper, we are interested in the study of nonlinear problem
driven by (p(.), q(.))-Laplacian and (p(.), q(.))-Biharmonic operators subject to Navier
boundary conditions. By means of variational method and critical point theory, we
establish the existence of at least one solution and infinitely many solutions under some
suitable assumptions.
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1. Introduction

In this paper, we consider the following nonlinear boundary value problem{
∆
(
|∆u|p(x)−2∆u+ |∆u|q(x)−2∆u

)
− Lu(x) = λk(x)|u|r(x)−2u+ µw(x)|u|s(x)−2u in Ω,

u = ∆u = 0 on ∂Ω,
(1)

where Ω ⊂ RN (N ≥ 2) is a smooth bounded domain with a Lipschitz boundary ∂Ω; the
variable exponents p, q, r, s : Ω̄ → (1,∞) are continuous functions with p(x) < q(x) < N/2
for all x ∈ Ω̄; k, ω ∈ P (Ω) the set of all measurable functions on Ω; λ, µ are real parameters
and

L(u) := div
(
|∇u|p(x)−2∇u+ |∇u|q(x)−2∇u

)
.

In the last decades, the study of differential equations has been an interesting topic,
they provide a wide area of research employing diverse mathematical techniques and tools
including variational approach, topological methods, fixed point theory and existence and
uniqueness results.
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Nonlinear elliptic equations with variable exponent are more general and add more
complexity compared to classical elliptic equations (we refer to [14, 15, 16]).

In [17], the authors studied a nonlocal elliptic system in the case of a reaction term by
means of topological degree for a class of demicontinuous operators.

Employing the concept of a Fredholm-type results for a pair of nonlinear operators, the
authors in [18] obtain the existence of weak solutions. We also refer to ([19, 20, 21, 22, 23]).

Elliptic equations with variable exponent are of significant interest in various areas
deriving from elastic mechanics, electrorheological fluid dynamics, image processing, etc
(see [7, 13, 8, 11]).

Recall that weak solutions of problem (1) are the critical points of the associated double
phase functional energy E, defined by

E(u) =

∫
Ω

(
|∆u|p(x)

p(x)
+

|∆u|q(x)

q(x)

)
+

(
|∇u|p(x)

p(x)
+

|∇u|q(x)

q(x)

)
dx −λ

∫
Ω

k(x)

r(x)
|u|r(x)dx

−µ
∫
Ω

ω(x)

s(x)
|u|s(x)dx,

on the generalized Sobolev space X = W 2,q(x)(Ω) ∩ W
1,q(x)
0 (Ω). It is well known that

E ∈ C1(X,R) and its derivative at u ∈ X is given by

< E
′
(u), φ >=

∫
Ω
(|∆u|p(x)−2∆u+ |∆u|q(x)−2∆u)∆φ+ (|∇u|p(x)−2∇u+ |∇u|q(x)−2∇u).∇φ

− λ

∫
Ω
k(x)|u|r(x)−2uφdx− µ

∫
Ω
ω(x)|u|s(x)−2uφdx, ∀φ ∈ X.

In the constant case, V. Bobkov and M. Tanaka in ([5]) were concerned with the existence
and non-existence of positive solutions for the (p,q)-Laplace problem{
−∆pu−∆qu = α|u|p−2u+ β|u|q−2u in Ω,

u = 0 on ∂Ω,

(2)
where α, β ∈ R and 1 < q < p < ∞. Moreover, for weight w satisfying the Muckenhoupt
condition, the author in ([6]) has shown the existence of unique solution for the fourth
order elliptic equation
∆
(
ω(|∆u|p−2∆u+ |∆u|q−2∆u)

)
− div

(
ω(|∇u|p−2∇u+ |∇u|q−2∇u)

)
= f(x)− div(G(x)) in Ω,

u = ∆u = 0 on ∂Ω,
(3)

where f ∈ Lp′(Ω, ω−1/(p−1)) and G ∈
[
Lp′(Ω, ω−1/(q−1))

]N
.

In the variable case, based on a three critical points theorem of B. Ricceri, the authors
in ([2]) have established the existence of at least three solutions for the (p, q)-biharmonic
systems
∆
(
|∆u|p(x)−2∆u

)
= λFu(x, u, v) in Ω,

∆
(
|∆u|q(x)−2∆u

)
= λFv(x, u, v) in Ω,

u = ∆u = v = ∆v = 0 on ∂Ω,
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where λ ∈ [0,∞); p, q ∈ C(Ω̄) with N
2 < p− := infx∈Ω̄ p(x) ≤ p+ := supx∈Ω̄ p(x) < ∞,

N
2 < q− := infx∈Ω̄ q(x) ≤ q+ := supx∈Ω̄ q(x) <∞; F : Ω̄×R2 → R is a function such that

F (., s, t) is continuous on Ω̄ for each (s, t) ∈ R2 and F (x, ., .) is C1 in R2 for all x ∈ Ω,
and sup{|t|≤θ,|s|≤θ} (|Fu(., s, t)|+ |Fv(., s, t)|) ∈ L1(Ω) for all θ > 0, with Fu, Fv denote the
partial derivatives of F , with respect to u and v respectively.

A function u ∈ X is called a weak solution of problem (1) if and only if for every φ ∈ X,∫
Ω
(|∆u|p(x)−2∆u∆φ+ |∆u|q(x)−2∆u∆φ) +

∫
Ω
(|∇u|p(x)−2∇u.∇φ+ |∇u|q(x)−2∇u.∇φ)

=

∫
Ω

(
k(x)|u|r(x)−2u+ ω(x)|u|s(x)−2u

)
φ.

In order to present our main results, we assume that k(x) and ω(x) satisfy the following
hypotheses:

(A1) k(x) ∈ L
α(x)

α(x)−r(x) (Ω) where α ∈ C+(Ω̄) and r(x) < α(x) < q∗2(x) for all x ∈ Ω̄ with
q∗2(x) := Nq(x)/N − 2q(x) is the critical Sobolev exponent.

(A2) w(x) ∈ L
β(x)

β(x)−s(x) (Ω) where β ∈ C+(Ω̄) and s(x) < β(x) < q∗2(x) for all x ∈ Ω̄.

The first main result of this paper is the following theorem.

Theorem 1.1. Assume that (A1) and (A2) hold in which r+ < q− < q+ < s− and
ω(x) > 0 a.e x ∈ Ω, then for any µ > 0, there exists λ∗ = λ∗(µ) > 0 such that for each
λ ∈ (0, λ∗), the problem (1) has at least one nontrivial weak solution.

The second result of this work is the next theorem.

Theorem 1.2. Suppose that (A1) and (A2) are satisfied in which r+ < q− < q+ < s−.

(i) For each given µ, λ ∈ R such that µω(x) > 0 a.e x ∈ Ω, the problem (1) admits a
sequence of weak solutions {±uk}k∈N such that E(±uk) → ∞ as k → ∞.

(ii) For each given µ, λ ∈ R such that λk(x) > 0 a.e x ∈ Ω and µω(x) keeps a constant
sign, the problem (1) has a sequence of weak solutions {±vk}k∈N such that E(±vk) → 0.

This paper is organized as follows. In section 2, we recall some preliminaries about
the variable exponent Lebesgue–Sobolev spaces. In section 3 and 4, we give the proof of
Theorem 1.1 and Theorem 1.2 respectively.

2. Abstract framework

For the suitability of readers, we remind some backgrounds about the variable exponent
Lebesgue Sobolev spaces. Set

C+(Ω̄) = {ϱ ∈ C(Ω̄) : ϱ(x) > 1 for all x ∈ Ω̄},
ϱ+ = max

Ω̄
ϱ(x), ϱ− = min

Ω̄
ϱ(x), for ϱ ∈ C+(Ω).

For a measurable exponent q(.) in C+(Ω), we introduce the variable exponent Lebesgue

space Lq(x)(Ω) composed of measurable real-valued functions u such that∫
Ω
|u(x)|q(x)dx <∞,

equipped with the norm

|u|Lq(x)(Ω) = inf

{
ν > 0 :

∫
Ω

∣∣∣∣u(x)ν
∣∣∣∣q(x)dx ≤ 1

}
,
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then the space Lq(x)(Ω) endowed with the above norm is reflexive and Banach space (see
[9]).

For positive integer k, the variable exponent Sobolev space W k,q(x)(Ω, ω) is defined by

W k,q(x)(Ω) =
{
u ∈ Lq(x)(Ω) : Dαu ∈ Lq(x)(Ω), |α| ≤ k

}
,

with α ∈ N∗, |α| =
∑n

i=1 αi and Dαu = ∂|α|u/∂α1x1 · · · ∂αNxN . We can define on

W k,q(x)(Ω) the norm

∥u∥Wk,q(x)(Ω) =
∑
|α|≤k

|Dαu|Lq(x)(Ω).

Proposition 2.1. ([9]) The space (Lq(x)(Ω), |u|q(x)) is separable, reflexive and uniformly

convex Banach, and its conjugate space is Lp(x)(Ω), where 1
q(x) +

1
p(x) = 1, ∀x ∈ Ω̄. For any

v ∈ Lq(x)(Ω) and w ∈ Lp(x)(Ω), we have∣∣∣∣∫
Ω
vwdx

∣∣∣∣ ≤ ( 1

p−
+

1

q−

)
|v|Lq(x)(Ω)|w|Lp(x)(Ω) ≤ 2|v|Lq(x)(Ω)|w|Lp(x)(Ω).

Denote ρ : Lq(x)(Ω) → R, the modular of the Lq(x)(Ω, ω) space, defined by ρ(u) =∫
Ω |u(x)|q(x). In view of [[9], Theorem 1.3], we have the following Lemma.

Lemma 2.1. For each un, u ∈ Lq(x)(Ω), we have

(1) |u|Lq(x)(Ω) > 1 then |u|q
−

Lq(x)(Ω)
≤ ρ(u) ≤ |u|q

+

Lq(x)(Ω)
;

(2) |u|Lq(x)(Ω) < 1 then |u|q
+

Lq(x)(Ω)
≤ ρ(u) ≤ |u|q

−

Lq(x)(Ω
;

(3) limn→+∞ |un − u|Lq(x)(Ω) = 0 if and only if limn→+∞ ρ(un − u) = 0.

Let us define on X the equivalent norm

∥u∥ := inf

{
ν > 0 :

∫
Ω

∣∣∣∣∆u(x)ν

∣∣∣∣q(x) dx ≤ 1

}
.

Remark 2.1. Set K(u) =
∫
Ω |∆u|q(x)dx, then we also have ∥u∥q− −1 ≤ K(u) ≤ ∥u∥q+ +1

for each u ∈ X.

Theorem 2.1. ([3]) Let γ ∈ C+(Ω̄) such that γ(x) < q∗2(x) for all x ∈ Ω̄. Then, there is

a continuous and compact embedding from W 2,q(x)(Ω) ∩W 1,q(x)
0 (Ω) into Lγ(x)(Ω).

Since X is reflexive and separable Banach space, there are {en, n ≥ 1} ⊂ X and

{fn, n ≥ 1} ⊂ X∗ such that < fn, em >= δn,m, X = span{en : n ∈ N∗} and X∗ =

span{fn, n ∈ N∗}X
∗
. For k ≥ 1, we denote by

Xk = span{ek}, Yk =
k⊕

i=1

Xi and Zk =
∞⊕
i=k

Xi.

Proposition 2.2. ([4]) Let X be a separable space and ψ : X → R weakly-strongly con-
tinuous with ψ(0) = 0.
For each γ > 0 given, β = β(γ) = sup{|ψ(u)| : u ∈ Zk and ∥u∥ ≤ γ} → 0 as k → ∞.
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3. Proof of Theorem 1.1

Assume that (A1) and (A2) hold in which r+ < q− < q+ < t−. The following proposition
shows the geometry of E.

Proposition 3.1. Assume that ω(x) > 0 a.e x ∈ Ω. For each given µ > 0, there exist
λ∗ = λ∗(µ) > 0 and δ, ρ > 0 such that for each λ ∈ (0, λ∗), we have E(u) ≥ ρ if ∥u∥ = δ.

Proof. Invoking Theorem 2.1, there exist two constants Cα, Cβ > 0 such that

|u|α(x) ≤ Cα∥u∥, |u|β(x) ≤ Cβ∥u∥, ∀u ∈ X. (4)

Let µ, λ > 0 and δ > 0. Based on Proposition 2.1, Remark 2.1 and (4), for ∥u∥ = δ(< 1),
we have

E(u) ≥ 1

q+
K(u)− λ

r−

∫
Ω
|k(x)||u|r(x)dx− µ

s−

∫
Ω
ω(x)|u|s(x)dx

≥ 1

q+
K(u)− 2

r−
λ|k| α(x)

α(x)−r(x)

|u|r̃α(x) −
2

s−
µ|ω| β(x)

β(x)−s(x)

|u|s̃β(x)

≥ 1

2q+
∥u∥q+ − λCα

r−
|k| α(x)

α(x)−r(x)

∥u∥r̃ + (
1

2q+
−
µCβ

s−
|ω| β(x)

β(x)−s(x)

∥u∥s̃−q+)∥u∥q+ ,

where r̃ ∈ [r−, r+] and s̃ ∈ [s−, s+]. Take the function h : [0, 1] → R defined by h(y) =
1

2q+
− µCβ

s− |ω| β(x)
β(x)−s(x)

ys̃−q+ . Since q+ < s−, the function h is positive in the neighborhood

of the origin, hence there exist δ small enough such that h(δ) > 0. In other part, define

λ∗ = r−δq
+−r̃/4Cαq

+|k| α(x)
α(x)−r(x)

.

Therefore, the above estimate implies that for all λ ∈ (0, λ∗), E(u) ≥ δq
+
/4q+ = ρ, if

∥u∥ = δ.
Let λ > 0 be given and let µ > 0. Fix ψ ∈ C∞

0 (Ω). Then for ρ > 1, One has

E(ρψ) ≤ ρq
+

p−

∫
Ω

(
|∆ψ|p(x) + |∇ψ|p(x) + |∆ψ|q(x) + |∇ψ|q(x)

)
dx+

ρr
+

r−

∫
Ω
|k(x)||ψ|r(x)

− ρs
−

s+

∫
Ω
ω(x)|ψ|s(x).

Hence E(ρψ) → −∞ as ρ → ∞ due to r+ < q+ < s− and ω(x) > 0 a.e x ∈ Ω. Therefore
there exists some e ∈ X such that ∥e∥ > δ and E(e) < 0. □

The next lemma concerns the compactness condition for the functional E.

Lemma 3.1. Assume that ω(x) > 0 a.e x ∈ Ω. For each given µ > 0 and λ ∈ R, E
satisfies (PS)c condition for all c ∈ R.

Proof. Let {un}n∈N be a (PS)c sequence for E, i.e., E(un) → c and E
′
(un) → 0 in X

′
.

For n large, we have

1 + c+ ∥un∥ ≥ E(un)−
1

s−
< E

′
(un), un >

≥ (
1

q+
− 1

s−
)(∥un∥q

− − 1)− 4|λ|( 1

r−
+

1

s−
)|k| α(x)

α(x)−r(x)

(Cr+

α ∥un∥r
+
+ 1).

This implies the boundedness of {un}n∈N in X reflexive, then up to a subsequence un ⇀
u ∈ X. From this and taking into account that {un}n∈N is a (PS)c sequence for E, we
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have

0 = lim
n→+∞

< E
′
(un)− E

′
(u), un − u >

= lim
n→+∞

∫
Ω
(|∆un|p(x)−2∆un − |∆u|p(x)−2∆u)(∆un −∆u) dx

+

∫
Ω
(|∆un|q(x)−2∆un − |∆u|q(x)−2∆u)(∆un −∆u) dx

+

∫
Ω
(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u).(∇un −∇u) dx

+

∫
Ω
(|∇un|q(x)−2∇un − |∇u|q(x)−2∇u).(∇un −∇u) dx

− λ

∫
Ω
k(x)(|un|r(x)−2un − |u|r(x)−2u)(un − u) dx

− µ

∫
Ω
ω(x)(|un|s(x)−2un − |u|s(x)−2u)(un − u) dx. (5)

By means of Proposition 2.1, we have

|
∫
Ω
k(|un|r(.)−2un−|u|r(.)−2u)(un−u)| ≤ 3|k| α(.)

α(.)−r(.)

||un|r(.)−2un−|u|r(.)−2u| α(.)
r(.)−1

|un−u|α(.),

(6)
and

|
∫
Ω
ω(|un|s(x)−2un−|u|s(.)−2u)(un−u)| ≤ 3|ω| β(.)

β(.)−s(.)

||un|s(.)−2un−|u|s(.)−2u| β(.)
s(.)−1

|un−u|β(.).

(7)

Moreover, utilizing Theorem 2.1 we have un → u in Lα(x)(Ω) and Lβ(x)(Ω). This yields,

|un|r(x)−2un → |u|r(x)−2u in L
α(x)

r(x)−1 (Ω),

|un|s(x)−2un → |u|s(x)−2u in L
β(x)

s(x)−1 (Ω).

Combining this with (6) and (7) we arrive at

lim
n→∞

∫
Ω
k(|un|r(x)−2un − |u|r(x)−2u)(un − u)

= lim
n→∞

∫
Ω
ω(|un|s(x)−2un − |u|s(x)−2u)(un − u)

= 0.

From the (S+)-property of the ((p(x), q(x))-Laplacian and ((p(x), q(x))-Biharmonic oper-
ator, we derive from (5) that un → u in X. □

Hence, E satisfies the (PS)c condition in view of Lemma 3.1. Invoking Proposition 3.1,
there exist 0 < δ < 1 and ρ > 0 such that E(u) ≥ ρ if ∥u∥ = δ. Thus, invoking Mountain
Pass Theorem ([1]), the value c characterized by

c = inf
γ∈Γ

sup
t∈[0,1]

E(γ(t)),

Γ = {γ ∈ C([0, 1];X) : γ(0) = 0 and γ(1) = e} ,

is a critical value of E. Let u be a critical point of E with E(u) = c. Consequently, u is a
nontrivial solution of the problem (1).
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4. Proof of Theorem 1.2

Assume that (A1)-(A2) hold and r+ < q− < q+ < s−. We start by proving assertion (i)
of Theorem 1.2.

Proposition 4.1. For each given µ, λ ∈ R and k ∈ N, there exists dk = dk(µ) > 0 such
that

inf
u∈Zk, ∥u∥=dk

E(u) → ∞ as k → ∞.

Proof. Let u ∈ Zk with ∥u∥ ≥ 1. Using again Proposition 2.1, Remark 2.1 and (4) we have

E(u) ≥ 1

q+
K(u)− |λ|

r−

∫
Ω
|k(x)||u|r(x)dx− |µ|

s−

∫
Ω
|ω(x)||u|s(x)dx

≥ 1

q+
∥u∥q− − 4

r−
|λ||k| α(x)

α(x)−r(x)

(Cr+

α ∥u∥r+ + 1)− 4

s−
|µ||ω| β(x)

β(x)−s(x)

(|u|s+β(x) + 1).

Since q− > r+, we can find d0 large enough such that

4

r−
|λ||k| α(x)

α(x)−r(x)

Cr+

α ∥u∥r+ ≤ 1

2q+
∥u∥q− as ∥u∥ ≥ d0.

Let γk = sup{|u|β(x) : u ∈ Zk and ∥u∥ = 1}, then one has |u|β(x) ≤ γk∥u∥ for all u in Zk.
Hence

E(u) ≥ 1

2q+
∥u∥q−− 4

s−
|µ||ω| β(x)

β(x)−s(x)

(γs
+

k ∥u∥s++1)− 4

r−
|λ||k| α(x)

α(x)−r(x)

, u ∈ Zk ∥u∥ ≥ d0.

Take dk =

 s−

16q+|µ||ω| β(x)
β(x)−s(x)

γs+
k

 1
s+−q−

, the last inequality yields

E(u) ≥
dq

−

k

4q+
− 4

r−
|λ||k| α(x)

α(x)−r(x)

− 4

s−
|µ||ω| β(x)

β(x)−s(x)

, u ∈ Zk ∥u∥ = dk.

Utilizing Proposition 2.2 we have γk → 0 as k → ∞. Since q− < s+, it follows that
dk → ∞ and thus we arrive at infu∈Zk ∥u∥=dk E(u) → ∞. □

Proposition 4.2. For every µ, λ ∈ R such that µω(x) > 0 a.e x ∈ Ω and k ∈ N, there
exists ρk > dk > 0 such that

sup
u∈Yk, ∥u∥=ρk

E(u) ≤ 0.

Proof. Let u in Yk with ∥u∥ = 1. As dimYk = k, norms are equivalents on Yk. Since
µω(x) > 0 a.e x ∈ Ω, r+ < q+ < s− and ρk → ∞ as k → ∞, then for ρk large enough
(ρk > dk), this completes the proof. □

We note that Lemma 3.1 holds true for µ ∈ R given such that µω(x) > 0 a.e x ∈ Ω,
thus according to Fontaine theorem ([12]), Proposition 4.1, Proposition 4.2 and Lemma
3.1, we achieve the proof of assertion (i) of Theorem 1.2. Next we will prove the assertion
(ii) of Theorem 1.2.

Proposition 4.3. For any given λ, µ ∈ R, there exists an integer k0, such that for each k >
k0, there exists τk(λ) > 0 satisfying infu∈Zk, ∥u∥=τk E(u) ≥ 0.
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Proof. Let u in Zk with ∥u∥ ≤ 1, we have

E(u) ≥ 1

q+
K(u)− 2|λ|

r−
|k| α(x)

α(x)−r(x)

|u|r̃α(x) −
2|µ|
s−

|ω| β(x)
β(x)−s(x)

|u|s̃β(x)

≥ 1

q+
∥u∥q+ − 2|λ|

r−
|k| α(x)

α(x)−r(x)

|u|r̃α(x) −
|µ|Cβ

s−
|ω| β(x)

β(x)−s(x)

∥u∥s̃.

Since q+ < s−, we can find τ0 > 0 small enough such that

|µ|Cβ

s−
|ω| β(x)

β(x)−s(x)

∥u∥s̃ ≤ 1

2q+
∥u∥q+ as 0 < ∥u∥ ≤ τ0.

Let θk = sup{|u|α(x) : u ∈ Zk and ∥u∥ = 1}, then one has |u|α(x) ≤ θk∥u∥ for all u ∈ Zk.
Thus

E(u) ≥ 1

2q+
∥u∥q+ − 2|λ|

r−
|k| α(x)

α(x)−r(x)

θr̃k∥u∥r̃, u ∈ Zk ∥u∥ ≤ τ0.

(8)

Take τk =

(
4q+|λ|θr̃k

r− |k| α(x)
α(x)−r(x)

) 1
q+−r̃

. From (8) we get E(u) ≥ 1
2q+

τ q
+

k − 1
2q+

τ q
+

k = 0, u ∈

Zk with ∥u∥ = τk. The proof is completed. □

Proposition 4.4. For each given λ, µ ∈ R such that λk(x) > 0 a.e x ∈ Ω and all k > k0,
there exists 0 < lk < τk fulfilling maxu∈Yk, ∥u∥=lk E(u) < 0.

Proof. Let u in Yk with ∥u∥ = 1 and 0 < l < τk < 1. Since λk(x) > 0 a.e x ∈ Ω,
r+ < q− < s− and norms are equivalents on Yk, one can find lk < τk small enough such
that E(u) < 0 if ∥u∥ = lk. This proves the result. □

Proposition 4.5. For any given µ, λ ∈ R and k > k0, there exists τk > 0 given by
Proposition 4.3 such that

inf
u∈Zk, ∥u∥≤τk

E(u) → 0, as k → ∞.

Proof. By definition of Yk and Zk we have Yk ∩Zk ̸= ∅. Since lk < τk, where lk is given in
Proposition 4.4, it follows that

bk = inf
u∈Zk, ∥u∥≤τk

E(u) ≤ max
u∈Yk, ∥u∥=lk

E(u) ≤ 0.

Using (8), for every u in Zk with ∥u∥ ≤ τk one has

E(u) ≥ −2|λ|
r−

|k| α(x)
α(x)−r(x)

(θkτk)
r̃.

By Proposition 2.2 we have θkτk → 0 as k → ∞. Consequently bk → 0. The proof is
completed. □

Lemma 4.1. For every given µ ∈ R such that µω(x) keeps a constant sign, The functional
E satisfies (PS)∗c condition for all c ∈ [bk0 , 0).

Proof. Let {vnj} be a sequence in X such that nj → ∞, vnj ∈ Ynj , E(vnj ) → c and

(E|Ynj
)
′
(vnj ) → 0.

For nj large enough, we have

E(vnj )−
< E

′
(vnj ), vnj >

s−
≥ (

1

q+
− 1

s−
)(∥vnj∥q

− − 1) (9)

− 4|λ|( 1

r−
+

1

s−
)|k| α(.)

α(.)−r(.)

(C r̃
α∥vnj∥r̃ + 1).



2200 TWMS J. APP. ENG. MATH. V.15, N.9, 2025

As r+ < q−, {vnj} is a bounded sequence in X reflexive, up to a subsequence, vnj ⇀ u in

X. As X = ∪njYnj , there exists ψnj ∈ Ynj such that ψnj → v, hence

lim
nj→+∞

< E
′
(vnj ), vnj − v > = lim

nj→∞
< E

′
(vnj ), vnj − ψnj > + lim

nj→∞
< E

′
(vnj ), ψnj − v >

= lim
nj→∞

< (E|Ynj
)
′
(vnj ), vnj − ψnj >= 0.

In a similar manner used in the proof of (PS)c condition in Lemma 3.1, we arrive at

vnj → v. This yields E
′
(vnj ) → E

′
(v). In other hand, for every ϕk ∈ Yk one has

< E
′
(v), ϕk > = lim

nj→∞
< E

′
(vnj ), ϕk >= lim

nj→∞
< (E|Ynj

)
′
(vnj ), ϕk >= 0.

So E
′
(v) = 0. Finally E satisfies (PS)∗c condition for all c ∈ R.

Utilizing dual Fountain theorem ([12]), Proposition 4.3, Proposition 4.4, Proposition
4.5, and Lemma 4.1, we prove (ii) of Theorem 1.2. □

5. Conclusions

Invoking variational method and critical point theory, we established the existence of
at least one solution when ω > 0 a.e. in Ω to the double phase (1), then the existence of
infinitely many solutions to (1) when µω(x) is positive and when it keeps a constant sign.

Acknowledgement. The authors would like to thank the referees for their helpful com-
ments and suggestions.
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