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CHARACTERIZATION FOR ADDITIVE WEIBULL DISTRIBUTION
BASED ON PROGRESSIVE FIRST FAILURE CENSORING

A. M. SHARAWY', R. M. EL-SAGHEER?>?**, §

ABSTRACT. In this article, we establish recurrence relations (RR) for single and prod-
uct moments based on progressive first failure censoring (PFFC). Characterizations for
additive Weibull distribution (AWD) using the relation between the probability den-
sity function and distribution function and using the RR of single and product moments
based on PFFC are also obtained. Further, the results are specialized to the progressively
type-II right censored order statistics (PTIIRCOS).
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1. INTRODUCTION

In life testing and reliability analysis, certain items in the study may not experience
failure during the observation period (referred to as censored samples) or may be with-
drawn from testing before they fail. This process of censoring arises when the precise
lifetimes of only a portion of the tested items are established. One primary rationale
for removing items prematurely from the experiment is to preserve them for future use,
thereby reducing the expenses and time associated with ongoing testing efforts. In prac-
tical terms, the study typically involves two key variables: time and the occurrence of
item failures. Censoring strategies illustrate how researchers structure experiments based
on predetermined criteria. Type-I censoring involves a random selection of items at a
specified time for the experiment’s termination, without knowing their exact failure times.
Type-1II censoring, on the other hand, fixes the number of failure occurrences but allows
for variability in the times of these failures. Both schemes ensure items remain in the
experiment until the final stage or until they fail, facilitating the identification of defective
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items post-experimentation. A more adaptable approach, known as progressive Type-
IT censoring, offers greater flexibility by allowing items to be withdrawn from testing at
various observed failure times.

Despite the potential for prolonged testing periods due to the inclusion of units with
significant ages, many researchers favor Type II censoring. However, it should be noted
that Type II censoring has a limitation in that once initiated, units cannot be removed
from the experiment. Therefore, a more flexible censorship approach, allowing for the
withdrawal of units during the course of the test, is termed Type II progressive censoring
(PTIIC). Progressive control strategies have gained attention recently for their adaptabil-
ity in permitting the removal of units at any point other than the endpoint. Various
forms of progressive control and censoring systems have been introduced, including Type
I, Type II, and hybrid progressive control systems. However, conducting investigations,
particularly for highly reliable products, can be time-intensive with these control meth-
ods. An effective approach to address this challenge involves grouping tested units into
sets of equal size, and monitoring the time until the first failure within each group using
a progressive first failure censoring scheme (PFFC), see [2,4,5,6].

2. PROGRESSIVE FIRST FAILURE CENSORING

Schematically, PFFC is as follows: Suppose that n independent groups with £ items

within each group are put on a life test. Ry groups and the group in which the first failure is
(R1,R2,...,Rm)

observed are randomly removed from the test as soon as the first failure X" has

occurred and finally when the m‘* failure X (Ru, R Bim) 4 observed, the remaining groups

m:m:n,k
R, are removed from the test. Then Xﬁiz’fi"”ﬁm) << Xﬁﬁfﬁ};"ﬁm) are called pro-

gressively first-failure censored order statistics with the progressive censored scheme, where

n=m+ Y ", R;. If the failure times of the n x k items originally in the test are from a

(R1,R2,....,Rm) X(RlyRQavam)
1:m:n,k > memenk

continuous population with cdf and pdf, the joint pdf for X
is defined as follows:

m
— kR;+k—1
le:m:n,---vX'm:'m:n (ml? .’I}Q, x3’ st 7xm_17 xm) :I(n,m—l)km H f (x1> [F (xl)] ? (1)
=1

0 < r<ao<a3< -+ <Lyp—1 <y <00,
where,
I(n’m,l):n(n—Rl—1)(n—R1—Rg—?)...(n—Rl—RQ—R3--~—Rm_1—m—|—1).

Recurrence relations (RR) play a pivotal role in mathematical analysis, particularly in
the study of single and product moments. These relations provide a systematic way to
compute moments of random variables and products thereof, offering insights into their
behavior and distribution characteristics. For single moments, RR allows us to recursively
calculate expectations, variances, and higher-order moments based on simpler initial con-
ditions. This iterative approach simplifies complex calculations and facilitates the analysis
of probabilistic models. Similarly, in the context of product moments, RR extends this
methodology to handle the joint distribution of multiple random variables. By defin-
ing relationships between moments of products, RR enables the derivation of covariance
structures and correlations, which is essential for understanding dependencies within sto-
chastic processes and systems. The elegance of recurrence relations lies in their ability to
transform intricate probabilistic problems into manageable sequences of equations, offering
both theoretical depth and practical utility in the statistics field. For this reason, RR have
received great attention recently, from statistical researchers, for example, Mohie El-Din
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et al. [9,10.11] derived RR of moments of the generalized Pareto, Gompertz and linear
failure rate distributions based on general PTITRCOS and characterization. Sadek et al.
[14] derived characterization for generalized power function distribution using RR based
on general PTIIRCOS. Marwa Mohie El-Din and Sharawy [8] derived RR for the gener-
alized exponential distributions based on general PTIIRCOS. Alsadat et al. [3] derived
study of RR and characterizations based on PFFC. Sharawy [15] derived RR for moment
generating function of PFFC and characterizations of right truncated exponential distri-
bution. Kotb et al. [12] derived E-Bayesian estimation for Kumaraswamy distribution
using PFFC. Abu-Moussa et al. [1] derived estimation of reliability functions for the ex-
tended Rayleigh distribution under PFFC Model. Lemonte et al. and Xie and Lai [13,16]
proposed the additive Weibull model based on the simple idea of combining the failure
rates of two Weibull distribution, one has a decreasing failure rate and the other one has
an increasing failure rate.

The Additive Weibull Distribution (AWD) originated as an extension of the traditional
Weibull distribution. AWD is widely used in reliability engineering to model the lifetimes
of components and materials, where the failure rate changes over time. The AWD enhances
this by allowing for the combination of multiple independent AWD variables, making it
suitable for scenarios involving complex systems or compounded failures, which benefit
from a quite flexible distribution for fitting lifetime data with a bathtub-shaped failure
rate function. Historically, the AWD has evolved through theoretical advancements in
reliability theory and statistical modeling, expanding its applicability beyond traditional
Weibull settings. Its features include the ability to model scenarios where failures result
from the simultaneous occurrence of multiple independent events, making it valuable in
systems engineering and quality control. The probability density function (pdf) of the
AWD is

_1)e—aac9—aac'8

f(z,a,pB,0,0) = (abz’ 4+Box’ , a,0>0, 0>p>0, x>0, (2)
and the corresponding cumulative distribution function (cdf) is given by
F(z,a,8,0,0)=1— efaxefmﬁ, a,0>0, 60>5>0, x>0. (3)
It may be noticed that from (2) and (3) the relation between pdf and cdf is given by,
f (@) = (a02"" + Box’ ) [1 = F (2)]. (4)
For any continuous distribution, we shall denote the i’" single moment of the PFFC in

view of Eq. (1) as

qgmm,k gm:n,k

It m—1) // /<m1< o kmf(xl) [F(x )]szl—i-k—lX (5)

£ (@) [F (@2)] " f () [F ()] ey - d,

where [F (z)] = [1 — F (z)], and the i"* and ;" product moments as

(kRy+k—1,kRo+k—1,... kRm+k—1)@ E[X(k;RlJrk 1,kRo+k— 1,..,I<:Rm+k—1)r

(kRy4k—1,....kRm+k—1)" E X(le—&-k:—l,...,kRm—&-k—l)i Rk =1, kR = 1)
q,s:mn,k - qgm:n,k simin,k

B I(nm 1) // /O<zl< <33m<oox :Cjkmf(q;l)[ (z )]kR1+kz—1X (6)
f(x2) [F (wz)]kR2+k L f () F(xm)}kRm“f Yz, .. da,,.
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3. RECURRENCE RELATIONS OF SINGLE AND PRODUCT MOMENTS

RR are invaluable tools in statistical analysis, particularly when applied to moments in
the context of PFFC schemes. These schemes involve systematically removing units from
testing upon their first failure, allowing for flexibility in experiment duration. For single
moments, RR in this framework enables iterative computation of expected values, vari-
ances, and higher-order moments, starting from initial conditions and updating as failures
occur. This method not only simplifies complex calculations but also enhances under-
standing of how moments evolve over time. In the case of product moments, RR extends
their utility by facilitating the calculation of joint distributions and covariance structures
amidst ongoing censoring events. Such analyses are crucial in fields like reliability engi-
neering and clinical trials, where understanding the dynamics of failure and its impact
on statistical outcomes is paramount. Through RR, researchers can effectively model and
predict the behavior of systems subject to progressive first failure censoring, thereby ad-
vancing both theoretical insights and practical applications in probabilistic analysis. In
the next theorem we introduce the RR for single moments based on PFFC.

Theorem 3.1. If Xi., < Xo.,, < -+ < Xy be the order statistics of a random sample of
size i following AWD, for2=q<m—1, m<n andi>0, then

(kRi+k—1,....kRpm+k—1)"

gm:n,k
(kR, + ) BO (kRyt+k—1,.. .kRm+k—1)0FP) N all (kRy+k—1,.. kRmtk—1)0+0)
q B 4 qgm:n,k 0+ qgm:n,k
_Bo(n—Ri—--—Rg1—q+ 1)M(szl+k—1,...,qu_1+qu+2k—l,qu+1+k—L...,kRm—i-k—l)(”B)
; —1:m—1:nk
6 + 7 q 5
Bo(n—Ri—-—Ry—q) (kRitk—1,..kRy+kRgp1+2k—1 kRgpoth—1,...kR,, +k—1)0+5)
. :m—1:nk
B'+’l gm—1mn,
~af(n—R—--—Rg1—q+ 1)M(kR1+k—1,..,,qu,1+qu+2k_1,qu+1+k—1,...,kRm+k—1)<"+9>
04 qg—1:m—1:nk
a(n—Ry—-—Ry—q) (kRi+k—1,..kRg+kRgp1+2k—1,kRgia-+k—1,.. kR, +k—1)F0)
0+ gm—1mn,k :

(7)

Proof. From (4) and (5), we get

(kRi+k—1,....kRpm+k—1)" "
M¢numk " _'Rnﬂn—l) T [@H($q71,$q+1)k X
0<z) < <21 <Tg1 <+ <Tm <00

£ [F @] ™ f @) [F (o) 7

- k k— - kRpm+k—
[ (xg41) [F (zg41)] Rarrth-t S (@) [F (2m)] Bt g codzgqdrgyr ... day,

where

Tg+1 . ) o
Wi (zg-1,2g+1) :/ (a&xff@*l + ﬁgx?rﬁ*l) [F (xq)]kRﬁk

Tg—1
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Now, integrating by parts gives

i — kRq+k i — kR, +k
xq—:ﬁl [F (xq+1)] - J"qt/f [F (xq—l)] "
Wi (2g—1,2q41) = Py
kR, + k T+l _
- (q) / quJrBf (z4) F(xq)]]mﬁk ' dxg
i+ 0 P (10)
i kRq+k i kRq+k
l‘;:i F(azq+1)] 4 —:cqfel F(a:q,l)] a
1+0
kR, + k T+l _
() [ e ) [F )
i+0 g1
Substituting by (10) in (8) and simplifying, yields (7).
U

This completes the proof.

Special Cases.
1- Theorem 3.1 will be valid for the PTIIRCOS as a special case from the PFFC

when k£ =1,
Ri1,Ra,...,Rm)® _ po Ri,Ro,...,Rpn) (5 ab Ry Ra.... R) 0
lu't(]:Trlbznz ) - (Rq + 1) <B_H MI(J:TrlL:n2 ) 07_{_7] Hl(I:TrlL:n2 )
po (R1,Rar(Ry 1 +Rg+1), Byt iRy )Y
_ .(n*le”'*Rq*1*Q+1)/~L,1. .y q
ﬁ +1 g—1:m—1:n
BU (Rl,RQ,...,(R +Rq+1+1),Rq+2,~..,Rm)(H_B)
+ 20 (= Ry— = Ry — q) o e
ﬁ +1 gm—1n
0 Ri,Ro, (R, +Rg+1),Rgs1,. R, )T
~ g R R —g D) e R
n af (= Ry~ — Ry —q) M(Rl,Rlz,...,(Rq+Rq+1+1),Rq+2,...,Rm)(Hg)
0 + 7 qgm—1n

2- For k=1 and g=m

(i) Bo (i+8) af (i+0)
BT = (1) (2 e 00 g +0)
(i+8)
Ri,Rs,..,(R Rm+1
o By = Ry =t Dl e )
9 R1,Ra,...,(R Rom+1)) 7
o R Ry~ 1)l )
3-For k=1 and2<m<n
Ry,Ra,....Rpm) BO  (RiRapesRin) P all (R Ry,..Rp) 0
My =(R1 + 1) (BH' Mt G M )
(i+8)
R,+Rs+1),Rs,...,R,,
+ﬁﬁji (= Ry = - = Ry —m) pl it Do S0
and for k=0, m=1and n=12,...
(n—1)® Bo (n-1)+D al  (p1)+O
Hi:1:n = ,B—I-Z Hi:1:n m 1:1:n :

In the next two theorems, we shall introduce RR for product moments based on PFFC.
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Theorem 3.2. If X1, < Xo., < -+ < X be the order statistics of a random sample of
size n following AWD, for1<qg<s<m-—1, m<n andi,j >0, then

(kRy+k—1,....kRm+k—1)3)

q,s:m:n,k -
(kR, + k) Bo  (kRi+k—1,...kRpm+k—1)F59) n A0 (kRi+k—1,.. kR k—1)(F09)
q 6 +1 q,s:min,k 0+ q,s:m:n,k
Bo(n—Ri—- = Rg1 —q+ 1) (kRi+h—1,.. kRy_1+kRy+2k—1kRys1+k—1 ...k Ry +k—1) 59
; —1,s—1:m—1:nk
6 + 7 q ) )
Bo(n—Ry—---— Ry —q) H(le+k71,..,,Ilqu+qu+1+2k71,qu+2+k71,..‘,kRerkfl)(i*B’j)
. —1lim—1:n
ﬂ _.I_ 2 q,s ;
~af(n—Ry—--—Rg1—q+ 1)M(k:R1+k—1,...,qu_1+qu+2k—1,qu+1+k—L...,kRm-i-k—l)(”a*j)
0+i q—1,s—1:m—1:n.k
af(n—Ry—-—Ry—q) (kRi+k—1,..kRy+kRgp1+2k—1,kRgpoth—1,..kR,, +k—1)+0)
(9 + 2 q,s—1:m—1:nk .
(11)
Proof. From (4) and (6), we get
) g
(kRy + k) BO (kRitk—1,..kRm+k—1)+8D b (kR 4 k1. kRmtk—1)0+09)
q B Iy 'uq,s:m:n,k 0+ q,s:m:n,k
Bo(n—Ri—-—Rg1—q+ 1)M(leJrkfl,...,qu,l+qu+2k71,qu+1+k71,...,kRerkfl)(i'*'B’j)
; —1,s—1:m—1:nk
6 + 7 q ) )
n po(n—Ry—---— Ry —q) N(szl+k71,...,]I;:RququH+2k71,qu+2+k71,...,kRm+k71)(”5’”
: —1lim—1n
B _.I_ 2 q,S ’
~af(n—Ri—- = Rg1 —q+1) (kRith—1,..kRyo1+kRg+2k—1 kR 14k—1,....k Ry +h—1)(+07)
[ q—1,s—1:m—1:n.k
af(n—Ry—---— Ry —q) Iu(le+k—1,...,qu+qu+1+2k—1,qu+g+k—1,...,kRm+k—1)(i+0’j)
0+ q,s—1:m—1:nk .
(12)

Substituting the resultant expression of Wi (z4—1,z4+1) from Eq. (10) in Eq. (12) and
simplifying, yields Eq. (11).
This completes the proof. O

Special Case. For k =1, we obtain the recurrence relation of PTIICOS.

(Rq + 1) ( 50— (RI’RQMMRT“)(Z.Jrﬁ,j) —+ ae (R17R2)'~.,Rm)(i+9’j)>

6 4 q,s:m:n,k 6+ q,s:min,k
Bo (R1,R2,,Rg 14+ Rg+1,Rg g 1,000, Ri) 57
- i (7’L — Ry - = Rq—l —q+ 1) HFg—1,s—1:m—1nk
BO' R R (R1’RQ7-~'7RQ+RQ+1+1)RQ+2’“‘7Rm)(i+ﬁ’j)
ﬁ (n L2 T Q) ¢,s—1:m—1n,k
af (R1,Ra..... R+ R tL, Ry 1,.ess R ) )
- 01 (n —Ry—- = Rq—l —q+ 1) Hg—1,s—1:m—1m,k
+ af (n — Rl —_— e — Rq - Q) M(Rl:}122’~.~’1Rq4];Rq+1+17Rq+27“"Rm)(i+0’j)
0+ q,s—1:m—1:n, ’
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Theorem 3.3. If X1., < Xo.p, < -+ < X be the order statistics of a random sample of
size n following AWD, for1<qg<s<m-—1, m<n and 1i,j>0, then

(kRy1+k—1,...kRy+k—1)9

q,s:m:n,k
(kRs+ k) B (kRi4k—1,.. kRmtk—1)040 (kR 4k—1,.. kRpmtk—1)03H0
& B+ Hg,s:m:n,k 0+ j Mg, s:men,k
Bo(n—Ry—-—Rse1 —54+1) kRi4k—1,..kRs_1+kRet2k—1,kRo1+k—1, .. kRo+k—1)03+F)
B ,8 _|_] lu’q,s—lzm—lzn,k
Bo(n—Ri—--—Rs—8) (kRi+k—1,.. .kRs+kRos1+2k—1kRoiath—1,... kR, +k—1)03+5)
B +] 'uq,s:m—lzn,k
a(n—Ry —-—Rs 1 —5+1) (kRy4k—1,...kRs_ 1 +kRst2k—1kRoi1+k—1,....kRpm+k—1)E3+0)
B 0 +] q,s—1m—1nk
af(n—Ri—-—Rs—8) (kRi+k—1,.. .kRotkRop1+2k—1,kRoioth—1,... kR, +k—1)Hi+0)
0 + 7 q,s:m—1:n.k .

(13)

Proof. From (4) and (6), we get

(kRi+k—1,....kRp+k—1)"3) .
Pg,s:m:n k m = Inm-1) . s
0<T1 < <L 1 <Tsp1 < <Ly KOO

Wa (w51, 2511) f (21) [F(m)]kRHk*l oo fxsmr) F(xs,l)}ms’ﬁk*lx

kR k— — kR +k—
f(zs1) I?($3+1)] k=l S (zm) [F (l‘m)] + 1d951 codrs_1dxsyq ... ATy,

(14)
where
Fat1 o S R g kRs+k
Wo ($31,$5+1):/ (a@xzjg 1 —|—Bam§+ﬂ 1)[F (ms)] * dxs. (15)
Ts—1
Now, integrating by parts gives
; kRs+k . — kRs+k
W (.CU T ):l'/;j_'? F($S+1):| _xztﬁl [F (’1"5*1)]
2 s—1,Ls+1 Z+B
kRs + k T+l — kR, +k—1
+ <S>/ x;—i_ﬁf (-’Es) [F (-Ts)] " dxg
18 ) Jaes (16)
; — kRs+k ; kRs+k
i x?ﬂi [F (xs+1)] - stiel F(xs—l)] "
i+0
kRs + k Tot1 kRs+k—1
+ <S> / 2O (24) [F (z5)] L
1+ 0 S

Substituting by (16) in (14) and simplifying, yields (13). O
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Special Case. For k = 1, we obtain the recurrence relation of PTIICOS.

(Rs +1) <BU Méﬁg};}fg--me)“’”ﬁ) 4 af é@;ﬁ%""’R’")”’M)
5 +7J e 0 +3 ,81MM:
po (R1,R2,sRs—1+Rs+1,Rs 1,000 R ) I HF)
. c(n—Ry— - — Re_y — s+ 1) p, Ly o omriemoiist b tim
B +7 q,s—1:m—1:n,
Bo (R1,R2,...;Rs+Rs 141, R g2, Ry, ) (HIHH)
+ . (n_Rl_"'—RS—S)M > ’l‘j"s s+ s 2,0,
/8 + .7 q,ssm—1Lln
af (R1,Rz2,...;Rs—1+Rs+1,R 41,0, R) HI0)
- (m—Ri—-—Rg1—s5+1)p, 3070 st1,Rst1,,im
0+ g,s—l:m—1n
af (R1,Ra,..;Rs+Rsy1+1,Reya,...,R,, ) 710)
+m (n_Rl_"‘_RS_S)Mq,s:m—lzn ,

and for s = m

(Rm+1)< BU M(R1,R2,...,Rm)(i’j+6> + af (R17R2,...,Rm)<i’j+9>>

5 +,7 q,m:m:n 0 +,] q,m:m:n

po (R1,Ra,....;Rs 14 Rs+1,Ret1,..; Rp) I+
- B+ (n —-Ri - —Rs1—s+ 1) Hgm—1:m—1mnk

ab (R1,Rz2,...;Rs—1+Rs+1,Rs 41,0, R ) HI0)
- 9+j(n—R1—"'—Rs—1—3+1) g;m—1m—1n :

4. THE CHARACTERIZATIONS

Characterizations of distributions hold significant importance for researchers in applied
fields, particularly when assessing the suitability of their models to specific distributions.
Investigators are keen to ascertain if their models meet the criteria of a given distribu-
tion, relying heavily on these characterizations. These definitions outline conditions that
confirm whether the underlying distribution aligns with the desired theoretical model.
Numerous characterizations of distributions have been formulated across various avenues
of research. In this study, several characterizations of the AWD are detailed, including
characterizations via differential equation for the general distribution, via RR for a single
moment, and via RR for product moments.

4.1. Characterization via differential equation for the general distribution. In
the next theorem, we introduce the characterization of the AWD using relation between
pdf and cdf.

Theorem 4.1. Let X be a continuous random variable with pdf f(e), cdf F (o) and survival
function F. Then X has AWD iff

f () = (@029~ + Boz® 1) [F ()] (17)
Proof. Necessity: From (2) and (3) we can easily obtain (17).
Sufficiency: Suppose that (17) is true. Then we have:
_dgx()m)] = (abz?! + BoaP1)dux.
By integrating, we get
~In |F (z)] = (az? + o2P) + C, (18)

where C' is an arbitrary constant.
Now, since F'(0) = 1, then putting z = 0 in (18), we get C' = 0.
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Therefore,
In|[F (z)]| =- (axe + Ua;’B) ,
or,
[F (z)] =exp {—ame — J:L'B} .
Hence,
F(z)=1- exp{—ozme — am'g} .
That is the distribution function of AWD.
This completes the proof. O

4.2. Characterization via RR for single moment. In the next theorem, we will intro-

duce the characterization of the AWD using recurrence relation for single moments based
on PFFC.

Theorem 4.2. Let Xi., < Xo.,, <... < X,,.n be the order stasistics of a random sample
of size n. Then X has AWD iff, for2=q<m—-1, m<n and i>0,

(kRi+k—1,....kRpm+k—1)"

gm:n,k -
KR4k BO (kRith—1, kRt k=)0 0O (kR ko1, kR tk—1)0+0)
( q + ) B +i qgm:n,k + [ qgm:n,k
_Bo(n—Ri—--—Rg1—q+ 1)H(le+k:—1,...,qu_l+szq+2k—1,qu+1+k—1,...,kRm+k—1)("+ﬁ>
; —1lmm—1nk
B + 7 q ’
Bo(n—Ri—-—=Rqg—q) (kRi+k—1,..kRy+kRys1+2k—1,kRgsotk—1,. kR, +k—1)(+5
. m—1:n,k
B 44 qgm—1mn,
B a(n—Ry—--—Ry1—q+ 1)M(le+k—1,4..,qu,1+qu+2k—1,qu+1+k—1,...,kRm+k—1)(i+9>
01 qg—1:m—1:nk
af(n—Ry— - —Rqg—q) (kRy+k—1,..kRg+kRqs1+2k—1,kRgsotk—1,. kR, +k—1)(+0)
0+ gm—1nk .
(19)
Proof. Necessity: Theorem 3.1 proved the necessary part of this theorem.
Sufficiency: Assuming that Eq. (19) holds, then we have:
(kR14k—1,....kRm+k—1)
gm:n,k -
KR4k B (kRi+k—1, kR k-1 0l (kR k1, kRm+k—1)F0)
( q + ) /8 4 'U’q:m:n,k 0+ Mq:m:n,k
_Bo(n—Ri—--—Rg1—q+ 1)M(k:Rl+k—1,...,l~ch_1+qu+2k—1,qu+1+k—L...,kRm—i-k—l)(”ﬁ)
; —1lmm—1nk
B + 7 q s
n Bo(n—Ri—-—Ry—q) (kRytk—1,..kRy+kRgp1+2k—1,kRypoth—1,...kR,, +k—1)0+5)
: m—1:n,k
B Ny qgm—1mn,
B af(n—Ri—-—Rg1—q+1) (kRi+k—1,..kRy_1+kRy+2k—1,kRgs1+k—1,....kRpm+k—1)(+0
01 qg—1:m—1:nk
a(n—Ry—--—R;—q) H(leJrkfl,...,qu+qu+1+2k71,qu+2+k71,...,kRerkfl)(“'e)
0+ qgm—1mn,k :

(20)
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where,

(kR1+k—1,....kRy+k—1)0t5
Hgmin,k " - I(n,m—l) Wa (.Iq,l, $q+1) X
0<zy<Tg—1<Tg41 <+ <T <00

K7 (@) [F @] () [F (o)
f(zg41) F(%H)]kRﬁﬁk_l o f () F (mm)}kRm—Fk_ldxl coodzg1dTtr ... AT,

(21)

where oo

4 i — kRq+k—1

Wa (agr,gin) = [ a8 (o) [F ()], (22)

Tg—1

Integrating by parts, we obtain
-1 kRq+k 1 8 kRg+k
WQ(ﬂfq 1vxq+1) kR Tk q+1r $q+1)] ! +kR Tk 2 1[F(xq—l)] ! ”
+ Z + 6 Ta+1 z+,3 1 r ]qu+k ( )
kRy+k Jy . e

Substituting in Eq. (21), we get

M(le+k—1,...7kRm+k—1)(i+5>_ i+ 3 I )// / R
min,k 1P . .tmm-1
e qu + k 0<zy <1 <Tg41 < <Tym <00

f (551) F (331)] kRy+k—1 o f ($q,1) [F ($q71)] kRy_1+k—1 /Zq+1 xf]—i—ﬁ—l [F (xq)] qu+kd$q

f(xqﬂ) [1— F (2] e f () [1 = F ()] ey L day ydagyy .. day,

I m— L(nm-1) // / ”Bkmf(x ) IF( kRy+k—1
1 xl) oo X
kR +k 0<zy - <xg1<Tgt1<-<TmM <00 }

[F )] f () qu_l)}’“Rq R () [ gen)] T
f(xm) [F(JT )]kRerk 1d d_’]j‘q 1d1;q+1 dxm

e ]
q+1
kR +k 0<zy<xg1<Tgt1< " <T, <00

f (@) [F @] F (@) [F (mgen)]
f(zm) [F (l‘m)] dzy...dxg1dzgsq ... depy,

T o
qu + k 0<zy - <xg—1<Tg41<-<T, <00

/ I ()] e f (@) [F @] () [F ()]

—1

q—1

a2l

R,

— ERg+1+k—1 — ERy+k—1
[ (@gs1) [F (zgg1)] S (zm) [F (2m)] dzy...dxg1dxgsr ... depy,
(n—Ri—-—Rg1—q+ 1)M(le+k71,...,qu_1+qu+2k71,qu+1+k71,...,kRm+k71)(i+ﬂ)
qu + k qg—1:m—1:nk
i m—Ry—-—Ry—q) u(le+k—1,...,qu+qu+1+2k—1,qu+2+k—1,...,kRm+k—1)“’+ﬂ>
m—1:n,k )
kR, + k gm—Lin

(24)

and
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(kR14k—1,....kRm+k—1)0+0 7 1+ 6 o
Fgimen,k = (n,m-1) kR Tk s X
0<zy - <xg-1<Tg41 < <Tp <00

[ ] g o) [F o] ) [F (o]

— kRgy1+k—1 — kRpm+k—1
[ (@gs1) [F (xg1)] S (zm) [F (2m)] dzy...dxg_1dzgsr ... depy,

B mM—Ri—-—Ry1—q+ 1)M(le+k71,...,qu,1+qu+2k71,qu+1+k71,...,kRm+k71)("+9>

qu Tk qg—1:m—1:n
n n—Ry—-—Ry— )M(kRﬁ-k k1 kBB 142k =1k Rg 2 k=L kR +h=1) ()
KRy + k am—Ln,
(25)
_ _1\(@+8) _ _ 1\ (i+0)
Substituting for uékn}jf,f Lok Bom k1) and ((ijl;: Lok Bm k1) from (24) and

(25) in (20), we get

(kR1+k—1,....kRpm+k—1)® i 0—1 -1
Fg:min, k = I(n,m—l) qu(ael'q + ,BO'LL”QB )
0<z1 < <TIm <00

K [F (xq)]qu-&-kf (1) F(xl)]kﬁcﬁk—l o) [F (:rq_l)]quthk_lx (26)

F(@gr1) [F (g )]0 F ) [F ()] ey da,
we get

- /0 ) [P ]

f @) [F @] ™ f @) [F ()]
I (2qs1) [F (2qe)) 7 (@) [F ()] ey L d,

Lopm) // / 2 (B2 + foal =)k [F (z )V“R”’“ o
0<x <+ <X <00

£ (@) [F @) @) [F (g 0)] ™ (g 0) [F (gen)] T x

I (zm) F(xm)]kRm+kildx1 e dxy,.
(27)
We get

: kRg+k— Rk1+k—
I(n,m_l)//.../ zi K [F ()] () [F ()]
0<z1 < <Tm <00

[ (z4-1) F(xq—l)]qu_1+k_1f (2gs1) [F (xq+1)]qu+1+k—1 o fem) [F (xm)]kRm-i-k—l
[f (2q) — (82871 + Boal ™) [F(z,)]ldzs . .. day = 0.

Using Muntz-Szasz theorem, [See, Hwang and Lin [7]], we get

f (q) = (azf " + Boay )[F (z4)] -
Using Theorem 4.1, we get

0

Fz)=1—e —ow’,
That is the distribution function of AWD.
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This completes the proof. ]

4.3. Characterization via RR for product moments. In the next two theorems,

we will introduce the characterization of AWD using RR for product moments based on
PFFC.

Theorem 4.3. Let X1, < Xo.,, < ... < X, be the order statistics of a random sample
of size n. Then X has AWD iff, for 1=qg<s<m-—1, m<n and i,j >0,

(kRi+k—1,....kRp+k—1)7)

q,s:m:n,k
(kR, + k) BO (kRy+k—1,.. kRptk—1)+5D N bl (kRy+k—1,.. kRpmtk—1)0+09)
q B‘i‘l luq,s:m:n,k 0+ q,s:m:n,k
Bo(n—Ry—-— Ry 1—q+ 1)M(leJrkfl,...,qu,l+qu+2k71,qu+1+k71,...,kRerkfl)(i“‘B’j)
- : —1,s—1:m—1:n,k
B + 7 q ) )
n Bo(n—Ry—-—=Ry—q) (kRi+k—1,..kRg+kRys1+2k—1,kRgsatk—1,.. kR, +k—1)0+5D)
- —1:m—1:nk
ﬂ _.I_ 2 q,S ;
~af(n—Ri—- = Rg1 —q+1) (kRith—1,..kRyo1+kRg+2k—1 kRt 14k—1,....k Ry +h—1)(+07)
[ q—1,s—1:m—1:n.k
af(n—Ry—---— Ry —q) M(le—i-k—1,...,qu+qu+1+2k—1,qu+2+k—1,...,kRm+k—1)(i+9’j)
0+ q,s—1:m—1:nk :

(29)

Proof. Necessity: Theorem 3.2 proved the necessary part of this theorem.

Sufficiency: Similarly as proved in theorem 4.2 we obtain the distribution function
of AWD given by

0

Fx)=1—e —oa?
This completes the proof. ]

Theorem 4.4. Let X1., <... < X,., be the order statistics of a random sample of size
n. Then X has AWD iff, forl=q<s<m—-1, m<n and i,j >0,

(kR1+k—1,....kRpy+k—1)9)

q,s:m:n,k
(kRs + k) BO (kRi+k—1,...kRoy+k—1)03 ) n 0 kR 4k, kRt h—1)(90)
s ﬂ‘i‘j lu’q,s:m:n,k 0_'_] :u’q,s:m:n
Bo(n—Ri—-—Rse1—54+1) (kRi4h—1,...kRo1+kRot2k—1,kRop1+k—1, .. kR +k—1)03+0
- B +] Mq,sflszl:n,k
Bo(n—Ry—--+—Rs—8) (kRi+k—1,.. kRg+kRop1+2k—1kRoia+k—1,...kR,, +k—1)3+5)
6 +] 'u’q,s:m—lzn,k
af(n—Ri—-—Rs1—5+1) kRi4k—1,...kRe1+kRet2k—1,kRop1+k—1, .. kR +k—1)03+0)
- 0 +] q,s—1:m—1:nk
af (n— Ry —--— Rs—8) (kRi+k—1,.. kRg+kRop1+2k—1kRoia+k—1,...kR,, +k—1)03+0)
0+ 'uq,s:m—lzn,k :

(30)

Proof. Necessity: Theorem 3.3 proved the necessary part of this theorem.

Sufficiency: Similarly as proved in theorem 4.2 we obtain the distribution function
of AWD given by

0 —gah

Fz)=1—e
This completes the proof. O



2214 TWMS J. APP. ENG. MATH. V.15, N.9, 2025

5. CONCLUSION

This study introduces novel recurrence relations for single and product moments derived
from the AWD through the framework of PFFC. The characterizations of the AWD are
explored via differential equations governing the general distribution, recurrence relations
for single moments (RR), and recurrence relations for product moments. The research
underscores the significance of RR in facilitating the expression of higher-order moments
of order statistics in terms of lower-order moments, thereby enhancing the computation of
these higher-order moments. Moreover, RR play a crucial role in verifying the accuracy of
moment computations for order statistics. Ultimately, these recurrence relations provide
a foundation for deriving comprehensive characterizations of distributions.

Acknowledgment. The authors would like to extend their gratitude to the referees and
the associate editor for many valuable suggestions and comments that have helped to
improve the paper significantly.
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