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A NEW NUMERICAL METHOD FOR APPROXIMATION OF

HYPERSINGULAR INTEGRALS

C. GADJIEVA1∗, §

Abstract. In this paper, we investigate the construction of a new numerical method
for approximating Cauchy and Hilbert hypersingular integrals, which are important in
various fields such as engineering, physics, and applied mathematics due to their signif-
icant role in the solution of singular and hypersingular integral equations. To validate
the theoretical analysis, we have conducted several numerical examples implemented in
the MATLAB programming language. The obtained results demonstrate the stability,
accuracy, and efficiency of the suggested approach. The proposed quadrature formulas
are not only straightforward to compute but also scalable, ensuring the reliability and
applicability of the method to a wide range of practical problems. This makes the method
particularly useful for real-world applications requiring high computational efficiency.
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1. Introduction

In recent years, the approximations for hypersingular integrals have gained great at-
tention due to their occurrence in various fields of engineering research such as fracture
analysis [8], heat conduction [11], aerodynamics [28], elasticity [31,36] and acoustics [38].
Therefore, the approximations for hypersingular integrals are necessary to construct nu-
merical algorithms for solving hypersingular integral equations, which have been utilized
to study various real-world engineering problems. The approximation of singular and
hypersingular integrals and the development of constructive methods for solving singular
and hypersingular integral equations with Cauchy and Hilbert kernels has been extensively
studied in the works of Anfinogenov, A. Yu., Lifanov, I. K., Lifanov, P. I. [7], Boikov, I. V.
[9-13], Sagaria, V. [14], Eshkuvatov, Z. K. [15,16,31,32], Hu, Ch., He, X., Lu, T. [24,25],
Kolm, P., Rokhlin, V. [26], Lifanov, I. K., Poltavskii, L. N., Vainikko, G. M. [27-29], Mon-
egato, G. [30], De Bonis, M. C., Shoukralla, E. S., Ahmed, B. M. [33], Sidi, A. [34-37] and
others.
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It should be noted that Aliev, R. A. [1-5] has developed a new constructive method
for solving singular integral equations with a Cauchy kernel, where the singular integral
operator is approximated by special operators that preserve the essential properties of the
given singular operator. Additionally, similar approximations and their applications to
hypersingular integral equations for various types of hypersingular integral operators with
Cauchy and Hilbert kernels have been investigated in the author’s papers. [6,17-22].

In this paper, we investigate the approximation of hypersingular integrals using a new
numerical method and confirm the efficiency of the suggested approach through numerical
examples. The paper is organized as follows, in Sect. 2 we give the approximation of the
following Cauchy hypersingular integral operator in L2 (γ0) , γ0 = {t ∈ C; |t| = 1} (space
of the square-integrable functions on γ0):

(Hφ) (t) ≡ 1

πi

∫
γ0

φ (τ)

(τ − t)2
dτ, t ∈ γ 0 ,

by the sequence of operators of the form

(Hnφ) (t) =
1

πi

n−1∑
k=0

φ
(
τ
(t)
2k+1

)
− φ (t)(

τ
(t)
2k+1 − t

)2 ∆τ
(t)
2k+1, t ∈ γ0, n = 1, 2, ..,

where τ
(t)
k = ekθi · t, ∆τ

(t)
k =

(
τ
(t)
k+1 − τ

(t)
k−1

)
θ

sin θ = 2iekθi · t · θ, k = 0, 2n , θ = π
n .

In Sect. 3 we give the approximation of the following Hilbert hypersingular integral
operator: (

H̃φ
)
(t) =

1

4π

∫ 2π

0
csc2

τ − t

2
φ (τ) dτ, t ∈ T0 = [0, 2π]

by the sequence of operators of the form(
H̃nφ

)
(t) =

1

2n

n−1∑
k=0

csc2
π (2k + 1)

2n

(
φ

(
t+

π (2k + 1)

n

)
− φ (t)

)
, t ∈ T0, n ∈ N

in the space of square-integrable functions on T0 = [0, 2π] (L2 (T0)). In both sections, we
also explain how these approximations preserve the main properties of the hypersingular
integral operator and obtain an appropriate estimate of the convergence. Finally, in Sect.
4, we present numerical examples that confirm the effectiveness of the proposed method
and all examples were executed using the MATLAB system.

2. APPROXIMATION OF CAUCHY HYPERSINGULAR INTEGRALS

Hypersingular integrals were introduced by J. Hadamard to solve the Cauchy problem
for linear partial differential equations of a hyperbolic type [23]. Thus, we will begin by
defining Cauchy hypersingular integrals (hypersingular integrals with Cauchy kernel) and
then discuss some key theorems related to the approximation of the given hypersingular
integral.

Consider the integral ∫
γ0

φ (τ)

(τ − t)2
dτ , t ∈ γ0 (1)

where the function φ (t) is Lebesgue integrable on γ0 = {t ∈ C; |t| = 1}.
If we define this integral in a similar manner to the Cauchy integral, even φ ≡ 1 we get

the divergent integral, therefore, using the idea of Hadamard finite part integral [23], we
will define the integral (1) as follows.
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Definition 2.1. [4] If a finite limit

lim
ε→0+

(∫
γε

φ (τ)

(τ − t)2
dτ − 2φ (t)

iε · t

)
,

exists, then the value of this limit is called the hypersingular integral of the function φ(τ)

(τ−t)2
,

and is denoted by
∫
γ0

φ(τ)

(τ−t)2
dτ , where γε = {τ ∈ γ0 : |τ − t| > ε}.

Let L2 (γ0) be the space of square-integrable functions on γ0 with the norm

∥φ∥L2(γ0)
=

(
1

2π

∫
γ0

|φ (τ)|2 |dτ |
) 1

2

,

and let W 1
2 (γ0) be the space of absolutely continuous on γ0 functions, which their deriva-

tives belong to the space L2 (γ0), with the norm ∥φ∥W 1
2 (γ0)

= ∥φ∥L2(γ0)
+ ∥φ′∥L2(γ0)

.

Consider the Cauchy hypersingular integral operator

(Hφ) (t) ≡ 1

πi

∫
γ0

φ (τ)

(τ − t)2
dτ, t ∈ γ0, (2)

where the function φ (t) is Lebesgue integrable on γ0 = {t ∈ C : |t| = 1}.
Since, the following singular integral operator with Cauchy kernel

(Sφ) (t) =
1

πi

∫
γ0

φ (τ)

τ − t
dτ , t ∈ γ0

is bounded from the space L2 (γ0) into the space L2 (γ0) [29], then (2) is bounded from
the space W 1

2 (γ0) into the space L2 (γ0) (See [4], Theorem 2.3, p.1058) and

∥H∥W 1
2 (γ0)→L2(γ0)

≤ 1.

Let’s approximate (2) by the following sequence of operators

(Hnφ) (t) =
1

πi

n−1∑
k=0

φ
(
τ
(t)
2k+1

)
− φ (t)(

τ
(t)
2k+1 − t

)2 ∆τ
(t)
2k+1, t ∈ γ 0, n = 1, 2, .., (3)

where τ
(t)
k = ekθi · t, ∆τ

(t)
k =

(
τ
(t)
k+1 − τ

(t)
k−1

)
θ

sin θ = 2iekθi · t · θ, k = 0, 2n , θ = π
n .

State the following properties of the operators Hn, n = 1, 2, 3, ....

Theorem 2.1. The operators Hn, n = 1, 2, ... are bounded from the space W 1
2 (γ0) into

the space L2 (γ0), and

∥Hn∥W 1
2 (γ0)→L2(γ0)

≤ 1, (4)

and for any polynomial q (t) =
n−1∑

k=−n+1

qkt
k of a degree not higher than n the following

relation holds

(Hnq) (t) = (Hq) (t) . (5)

Proof. Before starting the proof, first calculate Hn (t
m) for any m ∈ Z (Z- set of integer

numbers):

Hn (t
m) =

1

πi

n−1∑
k=0

(
τ
(t)
2k+1

)m
− tm(

τ
(t)
2k+1 − t

)2 ∆τ
(t)
2k+1 =
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=
1

πi

n−1∑
k=0

e(2k+1)mθi · tm − tm(
e(2k+1)θi · t− t

)2 · 2ie(2k+1)θi · t · θ =

=
2tm−1

n

n−1∑
k=0

e(2k+1)mθi − 1(
e(2k+1)θi − 1

)2 · e(2k+1)θi = µ(n)
m · tm−1 (6)

where µ
(n)
m = 2

n

n−1∑
k=0

e(2k+1)mθi−1

(e(2k+1)θi−1)
2 · e(2k+1)θi.

Since

µ
(n)
0 = 0, (7)

µ
(n)
m+1 − µ(n)

m =
2

n

n−1∑
k=0

e(2k+1)(m+1)θi − e(2k+1)mθi(
e(2k+1)θi − 1

)2 · e(2k+1)θi =

=
2

n

n−1∑
k=0

e(2k+1)(m+1)θi

e(2k+1)θi − 1
=

1

in

n−1∑
k=0

e(2k+1)(m+ 1
2)θi

sin (2k + 1) θ
2

= λ(n)
m , m ∈ Z. (8)

Let’s compute λ
(n)
m , m ∈ Z. Since λ

(n)
m±2n = λ

(n)
m , m ∈ Z, it is enough to compute λ

(n)
m for

m = 0, 2n− 1. λ
(n)
m can be written as follows:

λ(n)
m =

1

in

n−1∑
k=0

e(2k+1)(m+ 1
2)θi

sin (2k + 1) θ
2

=
1

in

n−1∑
k=0

e(m+ 1
2)(2n−(2k+1))θi

sin (2n− (2k + 1)) θ
2

=

=
1

in

n−1∑
k=0

e(2πm+π)ie−(m+ 1
2)(2k+1)θi

sin (π − (2k + 1)) θ
2

= − 1

in

n−1∑
k=0

e−(m+ 1
2)(2k+1)θi

sin (2k + 1) θ
2

. (9)

From (8) - (9), we get

λ(n)
m =

1

2ni

n−1∑
k=0

e(2k+1)(m+ 1
2)θi − e−(m+ 1

2)(2k+1)θi

sin (2k + 1) θ
2

=
1

n

n−1∑
k=0

sin (2m+ 1) (2k + 1) θ
2

sin (2k + 1) θ
2

.

It follows that,

λ
(n)
0 =

1

n

n−1∑
k=0

sin (2k + 1) θ
2

sin (2k + 1) θ
2

= 1,

λ(n)
m = λ

(n)
m−1 +

1

n

n−1∑
k=0

sin (2m+ 1) (2k + 1) θ
2 − sin (2m− 1) (2k + 1) θ

2

sin (2k + 1) θ
2

=

= λ
(n)
m−1 +

2

n

n−1∑
k=0

cos (2k + 1)mθ

for m = 1, 2n.
Therefore,

λ(n)
m = λ

(n)
m−1 +

2

n
· sin 2n ·mθ

2 sinmθ
= λ

(n)
m−1,m = 1, n− 1

and we have

λ(n)
m = 1, for m = 0, 1, 2, ..., n− 1.
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Since

λ(n)
m = λ

(n)
m−1 +

2

n

n−1∑
k=0

cos (2k + 1)nθ = λ
(n)
n−1 +

2

n

n−1∑
k=0

(−1) = 1− 2 = −1,

when m = n, n+ 1, ..., 2n− 1.

To summarize the results obtained above, we get the following values for λ
(n)
m :

λ
(n)
m = 1, form = 0, 1, 2, ..., n− 1,

λ
(n)
m = −1, form = n, n+ 1, ..., 2n− 1,

λ
(n)
m±2n = λ

(n)
m ,m ∈ Z.

(10)

Then, from equations (7), (8), and (10), we can conclude that:
µ
(n)
m = m, form = 0, n ,

µ
(n)
m = 2n−m, form = n+ 1, 2n

µ
(n)
m±2n = µ

(n)
m ,m ∈ Z.

, (11)

Since from (11) it implies that, the coefficients µ
(n)
m satisfy the following inequality:∣∣∣µ(n)

m

∣∣∣ ≤ |m| ,m ∈ Z. (12)

The proof of (12) can be easily derived from (11). However, for clarity, we will briefly
show the validity of this inequality according to (11) as follows:

if m = 0, n ∣∣∣µ(n)
m

∣∣∣ = |m| ≤ |m| ,

if m = n+ 1, 2n, ∣∣∣µ(n)
m

∣∣∣ = |2n−m| ≤ |2m−m| = |m| ≤ |m| ,

if m = −n,−n+ 1, ..., 0, ∣∣∣µ(n)
m

∣∣∣ = |−m| = |m| ,

if m = −2n, ...,−n− 1, ∣∣∣µ(n)
m

∣∣∣ = |m+ 2n| ≤ |n| ≤ |m| ,

if |m| ≥ 2n, ∣∣∣µ(n)
m

∣∣∣ = |2n| ≤ |m| ,

and this leads us to the desired result.

Now prove the theorem. Suppose that φ (t) =
+∞∑

k=−∞
ckt

k ∈ W 1
2 (γ0) . Then, by taking

(6) into account, we obtain

(Hnφ) (t) =

(
Hn

(
+∞∑

k=−∞
ckt

k

))
=

+∞∑
k=−∞

ck

(
Hn

(
tk
))

=

+∞∑
k=−∞

ckµ
(n)
k tk−1. (13)

Since [39]

∥Hnφ (t)∥L2(γ0)
=

[
+∞∑

k=−∞
|ck|2

∣∣∣µ(n)
k

∣∣∣2 ∣∣∣t(k−1)
∣∣∣2] 1

2

,
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and

∥Hnφ (t)∥L2(γ0)

(12)

≤

[
+∞∑

k=−∞
k2 |ck|2

∣∣∣t(k−1)
∣∣∣2] 1

2

=
∥∥φ′ (t)

∥∥
L2(γ0)

≤

≤
∥∥φ′ (t)

∥∥
L2(γ0)

+ ∥φ (t)∥L2(γ0)
= ∥φ (t)∥W 1

2 (γ0)
,

then, we get
∥Hnφ (t)∥L2(γ0)

≤ ∥φ (t)∥W 1
2 (γ0)

. (14)

(14) implies the boundedness of the operators Hn , n = 1, 2, ... from the space W 1
2 (γ0) into

the space L2 (γ0) and (4).
Thus, it remains to prove (5). As we know for any polynomial of the form q (t) =
n−1∑

k=−n+1

qkt
k the following equation is true (See [4], Theorem 2.3, p.1058):

(Hq) (t) =
(
Sq′
)
(t) . (15)

Since [2] {
S (tm) = tm,m ≥ 0,
S (tm) = −tm,m < 0,

,m ∈ Z,

then from (15) it follows that,

(Hq) (t) =
(
Sq′
)
(t) = S

(
n−1∑

k=−n+1

kqkt
k−1

)
=

=

n−1∑
k=−n+1

kqkS
(
tk−1

)
=

n−1∑
k=1

kqkt
k−1 −

−1∑
k=−n+1

kqkt
k−1, (16)

and we have

(Hnq) (t) = Hn

(
n−1∑

k=−n+1

qkt
k

)
=

=
n−1∑

k=−n+1

qkHn

(
tk
)

(6)
=

n−1∑
k=−n+1

qkµ
(n)
k tk−1 (11)

=
n−1∑
k=1

kqkt
k−1 +

−1∑
k=−n+1

qk · (−k) · tk−1. (17)

By combining (16) and (17), we obtain (5) and this completes the proof of the theorem. □

Theorem 2.2. The sequence of operators {Hn}, n = 1, 2, ... strongly converges to the
operator H, and for any φ ∈ W 1

2 (γ0) the following estimate holds:

∥Hφ−Hnφ∥L2(γ0)
≤ 2En

(
φ; W 1

2

)
,

where En

(
φ; W 1

2

)
= inf

q∈Tn

∥φ (·)− qn(·)∥W 1
2(γ0)

, n = 1, 2, ... is the best approximation of

the function φ ∈ W 1
2 (γ0) by polynomials from Tn, and Tn is the set of polynomials of the

form
n∑

k=−n

αkt
k, αk ∈ C.

Proof. Suppose qn (t) =
n−1∑

k=−n+1

q
(n)
k tk is the best polynomial approximation for the func-

tion φ ∈ W 1
2 (γ0) from Tn.

Then, we can write

(Hφ−Hnφ) (t) = Hφ (t)−Hnφ (t) +Hqn (t)−Hqn (t)
(5)
=
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= Hφ (t)−Hnφ (t) +Hnqn (t)−Hqn (t) = H (φ− qn) (t)−Hn (φ− qn) (t) .

This yields

∥Hφ−Hnφ∥L2(γ0)
= ∥H (φ− qn) (t)−Hn (φ− qn)∥L2(γ0)

≤

≤
(
∥H∥W 1

2 (γ0)→L2(γ0)
+ ∥Hn∥W 1

2 (γ0)→L2(γ0)

)
×

×∥φ− qn∥W 1
2 (γ0)

(4)

≤ 2En

(
φ; W 1

2

)
,

and

∥Hφ−Hnφ∥L2(γ0)
≤ 2En

(
φ; W 1

2

)
.

Hence, we get the required result and the proof is complete. □

3. APPROXIMATION OF HILBERT HYPERSINGULAR INTEGRALS

Now we will examine the approximation of the hypersingular integral with a special type
of kernel known as the Hilbert hypersingular integral. Alternatively, when considering
this integral from a geometric perspective, it can be referred to as the hypersingular
integral on the circle. The latter name is derived from the fact that the inner Neumann
problem for the Laplace equation on the circle is reduced to the hypersingular integral
equation with the integral of this form (See [27], Ch.4, §4.3). Here, we will define Hilbert
hypersingular integral (hypersingular integral with Hilbert kernel), conduct theoretical
analysis for approximate computation, and give an error estimate analogously to Sect. 2

Consider the integral ∫ 2π

0
csc2

τ − t

2
φ (τ) dτ, t ∈ T0 = [0, 2π], (18)

where φ (t) is Lebesgue integrable on T0 and 2π-periodic function.
If we define (18) in a similar manner to the Cauchy integral, even φ ≡ 1, we get the

divergent integral. Therefore, using the idea of Hadamard finite part integral [23], we will
define (18) as follows:

Definition 3.1. [18] If a finite limit

lim
ε→0+

(∫ t−ε

t−π
csc2

τ − t

2
φ (τ) dτ +

∫ t+π

t+ε
csc2

τ − t

2
φ (τ) dτ − 8φ (t)

ε

)
exists, then the value of this limit is referred to as the Hilbert hypersingular integral of the

function csc2 τ−t
2 φ (τ) on T0, and is denoted by

∫ 2π
0 csc2 τ−t

2 φ (τ) dτ .

Let L2 (T0) be the space of square-integrable functions on T0 = [0, 2π] with the norm

∥φ∥L2(T0)
=

(
1

2π

∫ 2π

0
|φ (τ)|2 dτ

) 1
2

,

and let W 1
2 (T0) be the space of absolutely continuous functions on T0, which their deriva-

tives belong to the space L2 (T0), with the norm ∥φ∥W 1
2 (T0)

= ∥φ∥L2(T0)
+ ∥φ′∥L2(T0)

.

Consider the Hilbert hypersingular integral operator(
H̃φ
)
(t) =

1

4π

∫ 2π

0
csc2

τ − t

2
φ (τ) dτ, t ∈ T0 = [0, 2π] (19)

where φ (t) is Lebesgue integrable on T0 and 2π-periodic function.
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Since, (19) is bounded from the space W 1
2 (T0) into the space L2 (T0) (See [18], [29],

[39]) and ∥∥∥H̃∥∥∥
W 1

2 (T0)→L2(T0)
≤ 1.

Now approximate (19) by the following sequence of operators:(
H̃nφ

)
(t) =

1

2n

n−1∑
k=0

csc2
π (2k + 1)

2n

(
φ

(
t+

π (2k + 1)

n

)
− φ (t)

)
, t ∈ T0, n ∈ N. (20)

State the following properties of the operators H̃n, n = 1, 2, 3, ....

Theorem 3.1. [18] The operators H̃n, n = 1, 2, ... are bounded from the space W 1
2 (T0)

into the space L2 (T0), and ∥∥∥H̃n

∥∥∥
W 1

2 (T0)→L2(T0)
≤ 1,

and for any trigonometric polynomial q (t) =
n∑

k=−n

qke
ikt the following relation holds:(

H̃nq
)
(t) =

(
H̃q
)
(t) .

Theorem 3.2. [18] The sequence of operators
{
H̃n

}
, n = 1, 2, ... strongly converges to

the operator H̃ and, for any φ ∈ W 1
2 , the following estimate holds:∥∥∥H̃φ− H̃nφ
∥∥∥
L2(T0)

≤ 2En

(
φ; W 1

2

)
,

where En

(
φ; W 1

2

)
= inf

q∈Tn

∥φ (·)− qn(·)∥W 1
2
, n = 1, 2, ... is the best approximation of the

function φ ∈ W 1
2 by polynomials from Tn, and Tn is the set of trigonometric polynomials

of the form
n∑

k=−n

αke
ikt , αk ∈ C.

For the proofs of Theorem 3.1 and Theorem 3.2, see [18].

4. NUMERICAL EXAMPLES

To demonstrate the performance of the numerical algorithm and justify the theoretical
analysis presented in Sections 2 and 3, we will consider two examples, implemented using
the MATLAB programming language.

Firstly, provide an example to illustrate the features of the numerical method and verify
the theoretical conclusions stated in Section 2.

Example 4.1. Consider the hypersingular integral of the form

H(t2) =
1

πi

∫
γ0

t2

(t− t0)2
dt, t0 ∈ γ0, (21)

where φ(t) = t2, γ0 = {t ∈ C : |t| = 1}. The exact values of (21) at the different values of
t0 ∈ γ0, calculated by (16), are shown in Table 1. The results of the numerical evaluation
of the given hypersingular integral at different values of t0 ∈ γ0, computed using the ap-
proximate method mentioned above (Sect. 2) and the quadrature formula (3), are given
in Table 2.
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TABLE 1. Exact results of H(t2) = 1
πi

∫
γ0

t2

(t−t0)2
dt at the points t0 = ei0, t0 = ei

π
6 ,

t0 = ei
π
4 , t0 = ei

π
3 , t0 = ei

π
2 .

t0 ei0 ei
π
6 ei

π
4 ei

π
3 ei

π
2

H(t2) 2.0000 -0.0000i 1.7321+1.0000i 1.4142+1.4142i 1.0000 + 1.7321i 0.0000 + 2.0000i

TABLE 2. Numerical results of H(t2) = 1
πi

∫
γ0

t2

(t−t0)2
dt at the points t0 = ei0, t0 = ei

π
6 ,

t0 = ei
π
4 , t0 = ei

π
3 , t0 = ei

π
2 , for n = 10, 40, 70, 100.

Hn(t
2), n = 10, 40, 70, 100

t0 H10(t
2) H40(t

2) H70(t
2) H100(t

2)

ei0 2.0000 -0.0000i 2.0000 -0.0000i 2.0000 -0.0000i 2.0000 -0.0000i

ei
π
6 1.7321+1.0000i 1.7321+1.0000i 1.7321+1.0000i 1.7321+1.0000i

ei
π
4 1.4142+1.4142i 1.4142+1.4142i 1.4142+1.4142i 1.4142+1.4142i

ei
π
3 1.0000 + 1.7321i 1.0000 + 1.7321i 1.0000 + 1.7321i 1.0000 + 1.7321i

ei
π
2 0.0000 + 2.0000i 0.0000 + 2.0000i 0.0000 + 2.0000i 0.0000 + 2.0000i

Additionally, the following graph (Figure 1) presents the comparison of numerical and
exact results of H(t2) which are stated above (See Table 1 and Table 2).

FIGURE 1. Comparison of numerical values and exact values of H(t2).
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The above results (see Table 1 and Table 2) show that the computational errors coincide
with that of theoretical analysis. Since Figure 1 illustrate that the algorithm outlined by
formula (3), relation (5) in Theorem 2.1, and the estimation in Theorem 2.2 yield results
that are both highly accurate and consistent with theoretical results. Consequently, the
numerical performance is consistent with the theoretical conclusions.

Now consider an example that demonstrates the justification of the theoretical analyses
cited in Section 3.

Example 4.2. Compute the hypersingular integral of the form(
H̃φ
)
(t) =

1

4πi

∫ 2π

0
csc2

t− t0
2

sin tdt, t ∈ T0 = [0, 2π], (22)

where φ(t) = sin t. The exact values of (22) at the different values of t0 ∈ [0, 2π], are
calculated using the following formula (See [27], Ch.4, §4.3.1)

1

4π

∫ 2π

0
csc2

t− t0
2

(an cosnt+ bn sinnt)dt = −n(an cosnt0 + bn sinnt0),

and the numerical results for the given hypersingular integral at different values of t0 ∈
[0 , 2π], computed by the application of approximate method mentioned above (Sect. 3)
and using quadrature formula (20) are shown correspondingly in Table 3 and Table 4.

TABLE 3. Exact results of H̃(sin t) = 1
4πi

∫ 2π
0 csc2 t−t0

2 sin tdt at the points t0 = π
6 ,

t0 =
π
4 , t0 =

π
3 , t0 =

π
2 , t0 = π.

t0
π
6

π
4

π
3

π
2 π

H̃(sin t) -0.5000 -0.7071 -0.8660 -1.000000 -3.5527e-016

TABLE 4. Numerical results of H̃(sin t) = 1
4πi

∫ 2π
0 csc2 t−t0

2 sin tdt at the points t0 =
π
6 ,

t0 =
π
4 , t0 =

π
3 , t0 =

π
2 , t0 = π, for n = 10, 40, 70, 100.

H̃n(sin t), n = 10, 40, 70, 100

t0 H̃10(sin t) H̃40(sin t) H̃70(sin t) H̃100(sin t)

π
6 -0.5000 -0.5000 -0.5000 -0.5000

π
4 -0.7071 -0.7071 -0.7071 -0.7071

π
3 -0.8660 -0.8660 -0.8660 -0.8660

π
2 -1.000000 -1.000000 -1.000000 -1.000000

π -3.5527e-016 -3.5527e-016 -3.5527e-016 -3.5527e-016

In addition, the following figure (Figure 2) illustrates the comparison of numerical and

exact values of H̃(sin t) which are stated above (See Table 3 and Table 4).
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FIGURE.2. Comparison of numerical values and exact values of H̃(sin t).

A comparison of the numerical and exact values for the given hypersingular integral
indicates that, the numerical value matches the exact value of H̃(φ(t)) for any trigono-
metric polynomial of the specified form, confirming the theoretical analysis in Sect. 3
and demonstrating the feasibility and effectiveness of our algorithm (see Table 3, Table 4,
Figure 2).

It should be noted that in Example 4.1 and Example 4.2, the values for n, t0 ∈ γ0
and t0 ∈ [0 , 2π] are chosen arbitrarily. Changing these values does not alter the results
obtained from our algorithms.

5. CONCLUSION

In this paper, we have introduced a new numerical method for approximating hyper-
singular integrals of types (2) and (19) with optimal accuracy. The proposed quadrature
formulas can be applied to solve real-world engineering problems and have various suc-
cessful applications in numerical implementations. To confirm our theoretical analysis, we
have included numerical examples. It’s important to note that the numerical algorithm
described above applies to a wide range of hypersingular integrals, including the popular
ones discussed in our work. Finally, note that our new method can provide good numerical
results with optimal accuracy in all cases.
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