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A STUDY OF FUZZY P-ESSENTIAL SUBMODULES
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Abstract. In this paper, we introduce the concept of fuzzy P-essential submodule of
an R-module M . This concept is a generalization of the concept of fuzzy essential
submodule. Also, we investigate various properties of P-essential submodules concerning
fuzzy multiplication modules over a commutative ring.
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1. Introduction

In 1965, Zadeh [15] introduced the concept of a fuzzy subset as a generalization of the
characteristic function in classical set theory. Rosenfled [12] in 1971 applied this concept
to the theory of groupoids and group. Negoita and Ralescu [7] were the first ones to
introduce a fuzzy submodule. Kalita [4] defined a fuzzy essential submodule and proved
some characteristics of such submodules. Nimbhorkar and khubchandani [8] applied this
concept of essential submodules to fuzzy essential submodules with respect to arbitrary
submodules. Also, Nimbhorkar and khubchandani [9] studied fuzzy semi-essential sub-
modules and fuzzy small-essential submodules. Finally, Nimbhorkar and khubchandani
in [10] and [11] studied fuzzy semi-essential submodules, fuzzy closed submodules and
L-fuzzy hollow modules, L- fuzzy multiplication modules respectively.

The purpose of this paper is to define fuzzy P-essential submodule and study some of
its properties.

2. Preliminaries

Throughout in this paper R denotes a commutative ring with identity, M a unitary
R-module with zero element θ. We use the notations “⊆ ”and “ ≤ ” to denote inclusion
and submodule respectively. We recall some definitions from Moderson and Malik [6].

1 Department of Engineering, Sciences and Humanities, Vishwakarma Institute of Technology, P.O. Box
411037, Pune, India.
e-mail: khubchandani jyoti@yahoo.com; ORCID: https://orcid.org/0000-0003-3155-0817.
e-mail: payal khubchandani@yahoo.com; ORCID: https://orcid.org/0000-0003-2002-8775.

∗ Corresponding author.
§ Manuscript received: August 14, 2024; accepted: February 04, 2025.
TWMS Journal of Applied and Engineering Mathematics, Vol.15, No.9; © Işık University, Depart-
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Definition 2.1. [6] A fuzzy subset of an R-module M , is a mapping U : M → [0, 1].

The support of a fuzzy set U, denoted by U∗, is the set U∗ = {x ∈ M | µ(x) > 0}. We
denote by U∗ the set U∗ = {x ∈ M | U(x) = 1}.

Definition 2.2. [6] If N ⊆ M and α ∈ [0, 1], then αN is defined as,

αN (x) =

{
α, if x ∈ N,

0, otherwise.

If N = {x}, then αx is often called a fuzzy point and is denoted by χα.
If α = 1, then 1N is known as the characteristic function of N and is denoted by χN .

Definition 2.3. [6] Let X and Y be two nonempty sets and f : X → Y be a mapping.
Let U ∈ [0, 1]X and V ∈ [0, 1]Y . Then the image f(U) ∈ [0, 1]Y and the inverse image
f−1(V) ∈ [0, 1]X are defined as follows: for all y ∈ Y ,

f(U)(y) =

{
∨{U(x) | x ∈ X, f(x) = y}, if f−1(y) ̸= ϕ,

0, otherwise.

and f−1(V)(x) = V(f(x))for all x ∈ X.

Definition 2.4. [6] Let M be an R-module. An fuzzy subset µ of an R-module M is said
to be a fuzzy submodule, if for every x, y ∈ M and r ∈ R the following conditions are
satisfied:

(1) U(θ) = 1,
(2) U(x− y) ≥ U(x) ∧ U(y),
(3) U(rx) ≥ U(x).

The set of all fuzzy submodules of M is denoted by F (M).

Lemma 2.1. [6] U∗ is a submodule of an R-module M if and only if U is a fuzzy submodule
of M .

Theorem 2.1. [4] A submodule A of an R-module M is essential in M if and only if χA

is an essential fuzzy submodule of M .

Theorem 2.2. [4] Let U be a non-zero fuzzy submodule of an R-module M . Then U�M
if and only if U∗ �M .

Corollary 2.1. [2] Let V be an L-fuzzy prime submodule of M . Then V∗ = {x ∈
M | V(x) = V(0M )} is a prime submodule of M .

Theorem 2.3. [2] a). Let N be a prime submodule of M and α a prime element in L. If
U is the fuzzy subset of M defined by

U(x) =

{
1, if x ∈ N,

α, if otherwise

for all x ∈ M , then U is an L-fuzzy prime submodules of M .
b). Conversely, any L-fuzzy prime submodule can be obtained as in (a).

Definition 2.5. [9] Let M be an R-module and let U ∈ L(M). Then U is said to be an
essential L-submodule of M , if for any V ∈ L(M) satisfying U ∩ V = χθ implies V = χθ.
If L = [0, 1], then U is called a fuzzy essential submodule of M and is denoted by U ⊴f M .
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Definition 2.6. [1] A fuzzy submodule U of an R-module M is called a fuzzy semi-essential
submodule of M if for any nonzero fuzzy prime submodule V of M ,
U ∩ V ̸= χθ and then we write U�semi M .

3. Fuzzy P-essential submodules

In this section, we define fuzzy P-essential submodule, study some of its properties and
examples. Now onwards all the fuzzy sets involved in this paper have finite images.

Definition 3.1. Let M be an R-module and P be a non-constant fuzzy prime submodule
of M . A fuzzy submodule U of M is called P-essential if for any non-constant fuzzy
submodule V of P satisfying U ∩ V = χθ implies V = χθ, and is denoted by U�P M .

The above definition can also be stated as:

Definition 3.2. A non-constant fuzzy submodule U of M is called P-essential if U∩V ̸= χθ

for any non-constant fuzzy submodule V subset of P (χθ ̸= V ⊆ P), where P be a non-
constant fuzzy prime submodule of M and is denoted by U�P M .

Remark 3.1. Every fuzzy essential submodule is P-essential.

Proof. Let U be a fuzzy submodule of an R-module M and V be an non-constant fuzzy
submodule of non-constant fuzzy prime submodule P, then U ∩ V ̸= χθ as U is essential
submodule of M . Hence, U�P M . □

Theorem 3.1. (Kalita [4], Theorem 3.2.7, p.71) If A is a submodule of a non-zero prime
submodule P if and only if χA is fuzzy submodule of non-constant fuzzy prime submodule
χP .

Theorem 3.2. Let U be a non-constant fuzzy submodule of M . Then U�PM if and only
if U∗ �P∗ M .

Proof. Let U �P M and A be submodule of non-zero prime submodule P∗. Then by
Theorem 3.1, χA is fuzzy submodule of non-constant fuzzy prime submodule χP∗ .
Suppose that U∗ ∩A = θ. Then (U∩χA)

∗ = θ. Hence, U∩χA = χθ. But U�P M implies
that χA = χθ. Hence, A = θ. Thus, U∗ �P∗ M .
Conversely, assume that U∗ �P∗ M .
let χA be a fuzzy submodule of a non-constant fuzzy prime submodule χP∗ , then by
Theorem 3.1 A is a submodule of non-zero prime submodule P∗. Suppose, U ∩ χA = χθ

implies (U ∩ χA)
∗ = θ gives U∗ ∩ A = θ. But U∗ �P∗ M , we get A = θ implies χA = χθ.

Thus, U�P M . □

The converse of Remark 3.1 may not be true.

Example 3.1. Consider the ring R = Z and its module M = Z24.
Define fuzzy submodule U : M → [0, 1] as follows:

U(x) =


1, if x = 0,

0.7, if x ∈ {6, 12, 18},
0, if x /∈ {6, 12, 18}.

Then U∗ = {0, 6, 12, 18}.
Also, we define fuzzy submodule P : M → [0, 1] as follows:

P(x) =

{
1, if x ∈ < 3̄ >,

0.5, otherwise.
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Then by Theorem 2.3, P is fuzzy prime submodule of Z24 and by Corollary 2.1, P∗ =< 3̄ >
is prime submodule of M .
Then U∗ is < 3̄ >-essential submodule of M , that is U∗�<3̄>M , as for proper submodules
< 6̄ >,< 1̄2 > of Z24 are submodules of < 3̄ > and intersection of these with U∗ is non-
zero. Then by Theorem 3.2, U�P Z24. But U∗ ⋬ Z24 as U∗∩ < 8 >= 0.
Thus by Theorem 2.2, U ⋬ Z24.

Remark 3.2. A fuzzy semi-essential submodule may not be P-essential submodule of M .

Example 3.2. Consider the ring R = Z and its module M = Z30.
Define fuzzy submodule V : M → [0, 1] as follows:

V(x) =

{
1, if x ∈ < 3̄ >,

0, otherwise.

By example 3.1 of [10], V is semi-essential submodule of M .
Again we define fuzzy submodule P : M → [0, 1] as follows:

P(x) =

{
1, if x ∈ < 5̄ >,

0.8, otherwise.

Then by Theorem 2.3, P is fuzzy prime submodule of Z30 and by Corollary 2.1,
P∗ =< 5̄ > is prime submodule of M . Now, V∗ =< 3̄ > is not P∗-essential submodule of
M as {0, 10, 20} is the only proper submodule of < 5̄ > but V∗ ∩ {0, 10, 20} = 0. Implies
V∗ ⋬<5̄> M . Hence by Theorem 3.2, V ⋬P M .

Proposition 3.1. Let M be an R-module, P be a non-constant fuzzy prime submodule
and U be any fuzzy submodule of M . If P�M , then U�P M if and only if U�M .

Proof. Suppose that U�P M .
Let P be a non-constant fuzzy prime submodule of M and V ≤ P such that U ∩ V = χθ

implies U ∩ (P ∩ V) = χθ. As P ∩ V ≤ P and U �P M , then P ∩ V = χθ. By hypothesis,
P�M , thus V = χθ implies U�M .
The converse is obvious. □

Proposition 3.2. Let M be an R-module and U1,U2 ∈ F (M) such that U1 ≤ U2. If
U1 �P M , then U2 �P M .

Proof. let V be fuzzy submodule of a fuzzy prime submodule P of M such that U2∩V = χθ.
As U1 ≤ U2 implies U1 ∩V ≤ U2 ∩V = χθ. Implies U1 ∩V = χθ. But U1�PM , so V = χθ.
Thus, U2 �P M . □

The following example shows that the converse of Proposition 3.2 need not be true.

Example 3.3. Consider the ring R = Z and its module M = Z24.
Define fuzzy submodules U,V : M → [0, 1] as follows:

U(x) =


1, if x = 0,

0.9, if x ∈ {4, 8, 12, 16, 20},
0, if x /∈ {4, 8, 12, 16, 20}.

V(x) =


1, if x = 0,

0.7, if x ∈ {8, 16},
0, if x /∈ {8, 16}.

Here we observe that V ⊆ U.
Again we define P : M → [0, 1] as,
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P(x) =

{
1, if x ∈ < 2̄ >,

0.3, otherwise.

Then by Theorem 2.3, P is fuzzy prime submodule of M .
Here P∗ =< 2̄ > is prime submodule of M by Corollary 2.1 .
Also, U∗ = {0, 4, 8, 12, 16, 20} then U∗ �P∗ M , then by Theorem 3.2 U�P M .
Thus V�P M , as for ζ : M → [0, 1]

ζ(x) =


1, if x = 0,

0.5 if x ∈ {6, 12, 18},
0, otherwise.

We observe that V ∩ ζ = χθ but ζ ̸= χθ.

Corollary 3.1. Let M be an R-module and U1,U2 ∈ F (M). If U1 ∩ U2 �P M , then
U1 �P M and U2 �P M .

Proof. We know that U1 ∩U2 ≤ U1 and U1 ∩U2 ≤ U2 and given that U1 ∩U2 �P M , then
by Proposition 3.2, U1 �P M and U2 �P M . □

The following example shows that the converse of Cor 3.1 need not be true.

Example 3.4. Consider the ring R = Z and its module M = Z24.
Define fuzzy submodules U1,U2 : M → [0, 1] as follows:

U1(x) =


1, if x = 0,

0.9, if x ∈ {4, 8, 12, 16},
0, if x /∈ {4, 8, 12, 16}.

U2(x) =


1, if x = 0,

0.6, if x ∈ {6, 12, 18},
0, if x /∈ {6, 12, 18}.

Then U1
∗ = {0, 4, 8, 12, 16} and U2

∗ = {0, 6, 12, 18}
Also, we define fuzzy submodule P : M → [0, 1] as follows:

P(x) =

{
1, if x ∈ < 2̄ >,

0.5, otherwise.

Then P∗ =< 2̄ > is prime submodule by Corollary 2.1. Also, P is fuzzy prime submodule
by Theorem 2.3. Then U1

∗ �P∗ M and U2
∗ �P∗ M . But U1

∗ ∩ U2
∗ ⋬P∗ M and here we

observe that U1
∗ ∩ U2

∗ = (U1 ∩ U2)
∗. Thus, (U1 ∩ U2)

∗ ⋬P∗ M . Then by Theorem 3.2,
U1 �P M , U2 �P M and U1 ∩ U2 ⋬P M .

Proposition 3.3. Let M be an R-module and U1,U2 ∈ F (M). If U1 �M and U2 �P M ,
then U1 ∩ U2 �P M .

Proof. Let P be a fuzzy prime submodule of M and χθ ̸= V ⊆ P.
Since, U2 �P M , then U2 ∩ V ̸= χθ.
Again as U1 �M , then U1 ∩ (U2 ∩ V) ̸= χθ, so (U1 ∩ U2) ∩ V ̸= χθ.
This implies U1 ∩ U2 �P M . □

Proposition 3.4. Let f be an R-module epimorphism from M to M1. If U�P M1, then
f−1(U)�P M .

Proof. From Theorem 3.6 of [2], if U is an fuzzy prime submodule of M1, then f−1(U) is
an fuzzy prime submodule of M . let χθ ̸= V ⊆ P and f−1(U) ∩ V = χθ.
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To prove, V = χθ.
As U ∩ f(V) = χθ and as U�P M1 and f(V) ⊆ P, then f(V) = χθ implies V ⊆ f−1(χθ) =
kerf ≤ f−1(U). But, f−1(U) ∩ V = χθ, gives V = χθ. Thus, f

−1(U)�P M . □

Proposition 3.5. Let M be an R-module and U,V,W ∈ F (M) such that U ≤ V ≤ W. If
U�P V and V�P W, then U�P W.

Proof. Let P be a fuzzy prime submodule of W and A be a fuzzy submodule of P such
that U ∩A = χθ.
Also we can write,

χθ = U ∩A

= (U ∩A) ∩ V

= U ∩ (A ∩ V).

If V ⊆ A, then χθ = U ∩ (A ∩ V) = U ∩ V, hence U ∩ V = χθ. But U ≤ V, so U ∩ V = U

implies that U = χθ, a contradiction. Thus, V ≰ A and A∩V = P. But U�P V, therefore
A ∩ U = χθ and since V ≤ W, then A = χθ, that is, U�P W. □

The following example shows that the converse of Proposition 3.5 need not be true.

Example 3.5. Consider the ring R = Z and its module M = Z24.
Define fuzzy submodules U,V : M → [0, 1] as follows:

U(x) =


1, if x = 0,

0.5, if x ∈ {6, 12, 18},
0, if x /∈ {6, 12, 18}.

V(x) =


1, if x = 0,

0.7, if x ∈ {2, 4, 6, ..., 22},
0, if x /∈ {2, 4, 6, ..., 22}.

Here we observe that U ⊆ V.
Also, we define fuzzy submodule P : M → [0, 1] as follows:

P(x) =

{
1, if x ∈< 3̄ >,

0.5, otherwise.

Then P∗ =< 3̄ > is prime submodule by Corollary 2.1. Also, P is fuzzy prime submodule
by Theorem 2.3. Here, U∗ = {0, 6, 12, 18} =< 6̄ >, then U∗ �P∗ M . Then by Theorem
3.2, U �P M . Again, V∗ = {0, 2, 4, 6, ..., 22} =< 2̄ >. We observe that U∗ ⋬P∗ M and
V∗ �P∗ M . Again by applying Theorem 3.2, U ⋬P M and V�P M .

Proposition 3.6. Let M be an R-module and U1,U2 ∈ F (M) such that U1�PM , U2�PM
and U1 ∩ U2 ̸= χθ, then U1 ∩ U2 �P M .

Proof. Let P be fuzzy prime submodule of M and V ∈ F (M) such that V ≤ P and
(U1 ∩ U2) ∩ V = χθ. This can be written as U2 ∩ (U1 ∩ V) = χθ.
If U1 ≤ V, then we get a contradiction to the assumption, so U1 ≰ V. This implies U1 ∩V

is a submodule of M . As U2 �P M and U1 ∩ V is a submodule of M , then U1 ∩ V = χθ.
But U1 �P M , therefore V = χθ, hence U1 ∩ U2 �P M . □

4. P-essential submodules in fuzzy multiplication modules

In this section we study some properties of P-essential submodules concerning fuzzy
multiplication modules over a ring.
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Theorem 4.1. Let M be a faithful fuzzy multiplication R-module, I ≤ R and U ≤ M .
Then U�P M if and only if I�P R.

Proof. Assume U�P M .
let V1 be a fuzzy ideal and P be a fuzzy prime ideal of R such that V1 ≤ P and I∩V1 = χθ.
Since, M is faithful fuzzy multiplication module, then (I ∩ V1)χM = IχM ∩ V1χM = χθ.
Now by Theorem 17 of [3], V1χM is fuzzy prime submodule of M .
Also, V1χM ⊆ PχM and IχM = V1 is P-essential submodule of M , implies V1χM = χθ.
Since M is faithful fuzzy multiplication module, then V1 = χθ. Therefore, I�P R.

Conversely, assume I�P R.
let P be fuzzy prime submodule of M and V2 fuzzy submodule of P such that U∩V2 = χθ.
Now by Proposition 5 of [3] there exists an fuzzy ideal ζ of R with ζ(0)R = 1 such that
V2 = ζχM . Hence, U∩V2 = IχM ∩ ζχM = (I∩ ζ)χM = χθ, as M is faithful so I∩ ζ = χθ.
But I�P R, then ζ = χθ therefore V2 = ζχM = χθ. Thus, U�P M . □

Proposition 4.1. Assume M is faithful fuzzy multiplication R-module. If C �P F, then
CχM �P FχM , for every fuzzy ideal C and F of R.

Proof. Let P be a fuzzy prime submodule of FχM such that P = DχM for some fuzzy
prime ideal D of R and D ≤ F. Let U be a fuzzy submodule of P such that

CχM ∩ U = χθ (4.1)

Since, M is fuzzy multiplication R-module, then C = EχM for some fuzzy ideal E of R.
So equation (4.1) becomes CχM ∩ EχM = χθ this can be written as (C ∩ E)χM = χθ.
Since, M is faithful R-module, then C ∩ E = χθ. Since, CχM ⊆ DχM , DχM ̸= χM and as
M is faithful fuzzy multiplication R-module, then by Proposition 18 of [3], E ⊆ D. Since,
C�P F, then E = χθ and hence U = χθ. Thus, CχM �P FχM . □

Theorem 4.2. let M be a faithful fuzzy multiplication R-module. If there exists an fuzzy
essential ideal U of F (R) such that C = UχM , where C is fuzzy submodule of M , then C

is essential.

Proof. Let V ∈ F (M) such that (UχM ) ∩ V = χθ. There exists an fuzzy ideal F of F (R)
with V = FχM and hence, (U ∩ F)χM ⊆ (UχM ) ∩ V = χθ. Since M is faithful, it follows
that U ∩ F = χθ and hence, F = χθ. Thus, UχM is fuzzy essential submodule of M . □

Definition 4.1. A non-zero ring R is called fuzzy fully P-essential if every non-constant
fuzzy P-essential ideal of R is essential ideal of R.

Definition 4.2. let M be an non-zero module over a commutative ring R. M is called
fuzzy fully P-essential if every non-constant fuzzy P-essential submodule of M is essential
submodule of M .

Remark 4.1. Every fuzzy fully essential submodule is fully P-essential but converse may
not be true.

Example 4.1. Consider the ring R = Z and its module M = Z12.
Define fuzzy submodules U,P : M → [0, 1] as follows:

U(x) = 1, for all x ∈ Z12.

P(x) =

{
1, if x ∈ < 3̄ >,

0, if x /∈ < 3̄ > .

Then P∗ =< 3̄ > is prime submodule by Corollary 2.1. Then by Theorem 2.3, P is fuzzy
prime submodule of M .
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Here we observe that U is not fuzzy fully P-essential because if we define fuzzy submodules
V : Z12 → [0, 1] by:

V(x) =


1, if x = 0,

0.7, if x ∈ < 6̄ >,

0, if x /∈ < 6̄ > .

Then V∗ = {0, 6} and V∗ �P∗ Z12. Then by Theorem 3.2, V�P Z12.
But if we define a fuzzy submodule W : Z12 → [0, 1] by:

W(x) =


1, if x = 0,

0.3, if x ∈ {4, 8},
0, if x /∈ {4, 8}.

Here we observe that V ∩W = χθ but V ̸= χθ.

Theorem 4.3. let M be a faithful fuzzy multiplication R-module where R is fuzzy fully
P-essential ring. Then M is fully P-essential.

Proof. Let U be a non-constant fuzzy submodule of M such that U�P M .
Since M is faithful fuzzy multiplication R-module then U = VχM for some fuzzy P-
essential ideal V of R. By hypothesis, V is fuzzy essential ideal of R. But M is faithful
fuzzy multiplication module, then U is essential submodule of M , by Theorem 4.2.
Thus, M is fully P-essential module. □

Definition 4.3. A fuzzy module M is called P-uniform if every non-constant submodule
of M is P-essential.

Remark 4.2. Each fuzzy uniform R-module is P-uniform but converse is not true.

Example 4.2. Consider the ring R = Z and its module M = Z15.
Define fuzzy submodules U,P : M → [0, 1] as follows:

U(x) = 1, for all x ∈ Z15.

P(x) =

{
1, if x ∈ < 3̄ >,

0, if x /∈ < 3̄ > .

Then P∗ =< 3 > is prime submodule of M by Corollary 2.1.
Also by Theorem 2.3 P is fuzzy prime submodule of M and U∗ = Z15. Then U∗ �P∗ M .
Hence by Theorem 3.2, U�P M implies U is P-uniform.
Now define fuzzy submodule V : M → [0, 1] such that V ⊆ U as follows:

V(x) =


1, if x = 0,

0.7, if x ∈ {5, 10},
0, if x /∈ {5, 10}.

we observe that P ∩ V = χθ but V ̸= χθ. Thus, V ⋬ M . Hence, U is not uniform.

Proposition 4.2. Let M be an R-module. Then M is uniform if and only if M is P-
uniform and fully P-essential.

Theorem 4.4. let M be a faithful fuzzy multiplication R-module. Then M is P-uniform
R-module if and only if R is a P-uniform ring.

Proof. Assume M is P-uniform and let U be a non-constant fuzzy ideal of R.
Then UχM is P-essential submodule of M . By Theorem 4.1, U is P-essential ideal of R.

Conversely, assume that R is a P-uniform ring and V ∈ F (M). Since, M is fuzzy
multiplication R-module, then there exists an fuzzy ideal I of R such that V = IχM .
But R is a P-uniform, so I is P-essential. Thus, V is P-essential by Theorem 4.1. □



2268 TWMS J. APP. ENG. MATH. V.15, N.9, 2025

5. Conclusion

In this article, we have defined P-essential submodules and some of its properties are
investigated. Also, some properties of P-essential submodules concerning fuzzy multipli-
cation modules over a ring are studied.
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