A STUDY OF FUZZY P-ESSENTIAL SUBMODULES

JYOTI A. KHUBCHANDANI^{1*}, PAYAL A. KHUBCHANDANI¹, §

ABSTRACT. In this paper, we introduce the concept of fuzzy \mathcal{P} -essential submodule of an R-module M. This concept is a generalization of the concept of fuzzy essential submodule. Also, we investigate various properties of \mathcal{P} -essential submodules concerning fuzzy multiplication modules over a commutative ring.

Keywords: Fuzzy essential submodules, fuzzy \mathcal{P} -essential submodule, fuzzy fully \mathcal{P} -essential submodule, fuzzy \mathcal{P} -uniform module.

AMS Subject Classification: 16D10, 08A72.

1. Introduction

In 1965, Zadeh [15] introduced the concept of a fuzzy subset as a generalization of the characteristic function in classical set theory. Rosenfled [12] in 1971 applied this concept to the theory of groupoids and group. Negoita and Ralescu [7] were the first ones to introduce a fuzzy submodule. Kalita [4] defined a fuzzy essential submodule and proved some characteristics of such submodules. Nimbhorkar and khubchandani [8] applied this concept of essential submodules to fuzzy essential submodules with respect to arbitrary submodules. Also, Nimbhorkar and khubchandani [9] studied fuzzy semi-essential submodules and fuzzy small-essential submodules. Finally, Nimbhorkar and khubchandani in [10] and [11] studied fuzzy semi-essential submodules, fuzzy closed submodules and L-fuzzy hollow modules, L- fuzzy multiplication modules respectively.

The purpose of this paper is to define fuzzy P-essential submodule and study some of its properties.

2. Preliminaries

Throughout in this paper R denotes a commutative ring with identity, M a unitary R-module with zero element θ . We use the notations " \subseteq " and " \le " to denote inclusion and submodule respectively. We recall some definitions from Moderson and Malik [6].

Department of Engineering, Sciences and Humanities, Vishwakarma Institute of Technology, P.O. Box 411037, Pune, India.

e-mail: khubchandani_jyoti@yahoo.com; ORCID: https://orcid.org/0000-0003-3155-0817.

e-mail: payal_khubchandani@yahoo.com; ORCID: https://orcid.org/0000-0003-2002-8775.

^{*} Corresponding author.

[§] Manuscript received: August 14, 2024; accepted: February 04, 2025.
TWMS Journal of Applied and Engineering Mathematics, Vol.15, No.9; © Işık University, Department of Mathematics, 2025; all rights reserved.

Definition 2.1. [6] A fuzzy subset of an R-module M, is a mapping $\mathcal{U}: M \to [0,1]$.

The support of a fuzzy set \mathcal{U} , denoted by \mathcal{U}^* , is the set $\mathcal{U}^* = \{x \in M \mid \mu(x) > 0\}$. We denote by \mathcal{U}_* the set $\mathcal{U}_* = \{x \in M \mid \mathcal{U}(x) = 1\}$.

Definition 2.2. [6] If $N \subseteq M$ and $\alpha \in [0,1]$, then α_N is defined as,

$$\alpha_N(x) = \begin{cases} \alpha, & if \ x \in N, \\ 0, & otherwise. \end{cases}$$

If $N = \{x\}$, then α_x is often called a fuzzy point and is denoted by χ_{α} . If $\alpha = 1$, then 1_N is known as the characteristic function of N and is denoted by χ_N .

Definition 2.3. [6] Let X and Y be two nonempty sets and $f: X \to Y$ be a mapping. Let $\mathcal{U} \in [0,1]^X$ and $\mathcal{V} \in [0,1]^Y$. Then the image $f(\mathcal{U}) \in [0,1]^Y$ and the inverse image $f^{-1}(\mathcal{V}) \in [0,1]^X$ are defined as follows: for all $y \in Y$,

$$f(\mathfrak{U})(y) = \begin{cases} \forall \{\mathfrak{U}(x) \mid x \in X, f(x) = y\}, & \text{if } f^{-1}(y) \neq \emptyset, \\ 0, & \text{otherwise.} \end{cases}$$

and $f^{-1}(\mathcal{V})(x) = \mathcal{V}(f(x))$ for all $x \in X$.

Definition 2.4. [6] Let M be an R-module. An fuzzy subset μ of an R-module M is said to be a fuzzy submodule, if for every $x, y \in M$ and $r \in R$ the following conditions are satisfied:

- (1) $U(\theta) = 1$,
- (2) $U(x-y) \ge U(x) \wedge U(y)$,
- (3) $\mathcal{U}(rx) \geq \mathcal{U}(x)$.

The set of all fuzzy submodules of M is denoted by F(M).

Lemma 2.1. [6] \mathcal{U}_* is a submodule of an R-module M if and only if \mathcal{U} is a fuzzy submodule of M.

Theorem 2.1. [4] A submodule A of an R-module M is essential in M if and only if χ_A is an essential fuzzy submodule of M.

Theorem 2.2. [4] Let \mathcal{U} be a non-zero fuzzy submodule of an R-module M. Then $\mathcal{U} \subseteq M$ if and only if $\mathcal{U}^* \subseteq M$.

Corollary 2.1. [2] Let V be an L-fuzzy prime submodule of M. Then $V_* = \{x \in M \mid V(x) = V(0_M)\}$ is a prime submodule of M.

Theorem 2.3. [2] a). Let N be a prime submodule of M and α a prime element in L. If U is the fuzzy subset of M defined by

$$U(x) = \begin{cases} 1, & \text{if } x \in \mathbb{N}, \\ \alpha, & \text{if otherwise} \end{cases}$$

for all $x \in M$, then U is an L-fuzzy prime submodules of M.

b). Conversely, any L-fuzzy prime submodule can be obtained as in (a).

Definition 2.5. [9] Let M be an R-module and let $\mathcal{U} \in L(M)$. Then \mathcal{U} is said to be an essential L-submodule of M, if for any $\mathcal{V} \in L(M)$ satisfying $\mathcal{U} \cap \mathcal{V} = \chi_{\theta}$ implies $\mathcal{V} = \chi_{\theta}$. If L = [0, 1], then \mathcal{U} is called a fuzzy essential submodule of M and is denoted by $\mathcal{U} \subseteq_f M$.

Definition 2.6. [1] A fuzzy submodule \mathcal{U} of an R-module M is called a fuzzy semi-essential submodule of M if for any nonzero fuzzy prime submodule \mathcal{V} of M, $\mathcal{U} \cap \mathcal{V} \neq \chi_{\theta}$ and then we write $\mathcal{U} \leq_{semi} M$.

3. Fuzzy P-essential submodules

In this section, we define fuzzy P-essential submodule, study some of its properties and examples. Now onwards all the fuzzy sets involved in this paper have finite images.

Definition 3.1. Let M be an R-module and \mathfrak{P} be a non-constant fuzzy prime submodule of M. A fuzzy submodule \mathfrak{U} of M is called \mathfrak{P} -essential if for any non-constant fuzzy submodule \mathfrak{V} of \mathfrak{P} satisfying $\mathfrak{U} \cap \mathfrak{V} = \chi_{\theta}$ implies $\mathfrak{V} = \chi_{\theta}$, and is denoted by $\mathfrak{U} \trianglelefteq_{\mathfrak{P}} M$.

The above definition can also be stated as:

Definition 3.2. A non-constant fuzzy submodule \mathcal{U} of M is called \mathcal{P} -essential if $\mathcal{U} \cap \mathcal{V} \neq \chi_{\theta}$ for any non-constant fuzzy submodule \mathcal{V} subset of \mathcal{P} ($\chi_{\theta} \neq \mathcal{V} \subseteq \mathcal{P}$), where \mathcal{P} be a non-constant fuzzy prime submodule of M and is denoted by $\mathcal{U} \preceq_{\mathcal{P}} M$.

Remark 3.1. Every fuzzy essential submodule is P-essential.

Proof. Let \mathcal{U} be a fuzzy submodule of an R-module M and \mathcal{V} be an non-constant fuzzy submodule of non-constant fuzzy prime submodule \mathcal{P} , then $\mathcal{U} \cap \mathcal{V} \neq \chi_{\theta}$ as \mathcal{U} is essential submodule of M. Hence, $\mathcal{U} \leq_{\mathcal{P}} M$.

Theorem 3.1. (Kalita [4], Theorem 3.2.7, p.71) If A is a submodule of a non-zero prime submodule P if and only if χ_A is fuzzy submodule of non-constant fuzzy prime submodule χ_P .

Theorem 3.2. Let \mathcal{U} be a non-constant fuzzy submodule of M. Then $\mathcal{U} \preceq_{\mathcal{P}} M$ if and only if $\mathcal{U}^* \preceq_{\mathcal{P}_*} M$.

Proof. Let $\mathcal{U} \leq_{\mathcal{P}} M$ and A be submodule of non-zero prime submodule \mathcal{P}_* . Then by Theorem 3.1, χ_A is fuzzy submodule of non-constant fuzzy prime submodule $\chi_{\mathcal{P}_*}$.

Suppose that $\mathcal{U}^* \cap A = \theta$. Then $(\mathcal{U} \cap \chi_A)^* = \theta$. Hence, $\mathcal{U} \cap \chi_A = \chi_\theta$. But $\mathcal{U} \unlhd_{\mathcal{P}} M$ implies that $\chi_A = \chi_\theta$. Hence, $A = \theta$. Thus, $\mathcal{U}^* \unlhd_{\mathcal{P}_*} M$.

Conversely, assume that $\mathcal{U}^* \leq_{\mathcal{P}_*} M$.

let χ_A be a fuzzy submodule of a non-constant fuzzy prime submodule $\chi_{\mathcal{P}_*}$, then by Theorem 3.1 A is a submodule of non-zero prime submodule \mathcal{P}_* . Suppose, $\mathcal{U} \cap \chi_A = \chi_{\theta}$ implies $(\mathcal{U} \cap \chi_A)^* = \theta$ gives $\mathcal{U}^* \cap A = \theta$. But $\mathcal{U}^* \unlhd_{\mathcal{P}_*} M$, we get $A = \theta$ implies $\chi_A = \chi_{\theta}$. Thus, $\mathcal{U} \unlhd_{\mathcal{P}} M$.

The converse of Remark 3.1 may not be true.

Example 3.1. Consider the ring $R = \mathbb{Z}$ and its module $M = \mathbb{Z}_{24}$. Define fuzzy submodule $\mathcal{U}: M \to [0,1]$ as follows:

$$\mathcal{U}(x) = \begin{cases} 1, & \text{if } x = 0, \\ 0.7, & \text{if } x \in \{6, 12, 18\}, \\ 0, & \text{if } x \notin \{6, 12, 18\}. \end{cases}$$

Then $U^* = \{0, 6, 12, 18\}.$

Also, we define fuzzy submodule $\mathcal{P}: M \to [0,1]$ as follows:

$$\mathcal{P}(x) = \begin{cases} 1, & \text{if } x \in \langle \bar{3} \rangle, \\ 0.5, & \text{otherwise.} \end{cases}$$

Then by Theorem 2.3, \mathbb{P} is fuzzy prime submodule of \mathbb{Z}_{24} and by Corollary 2.1, $\mathbb{P}_* = <\overline{3} >$ is prime submodule of M.

Then \mathbb{U}^* is $<\bar{3}>$ -essential submodule of M, that is $\mathbb{U}^* \trianglelefteq_{<\bar{3}>} M$, as for proper submodules $<\bar{6}>,<\bar{1}2>$ of \mathbb{Z}_{24} are submodules of $<\bar{3}>$ and intersection of these with \mathbb{U}^* is non-zero. Then by Theorem 3.2, $\mathbb{U} \trianglelefteq_{\mathbb{P}} \mathbb{Z}_{24}$. But $\mathbb{U}^* \npreceq \mathbb{Z}_{24}$ as $\mathbb{U}^* \cap <8>=0$. Thus by Theorem 2.2, $\mathbb{U} \npreceq \mathbb{Z}_{24}$.

Remark 3.2. A fuzzy semi-essential submodule may not be \mathcal{P} -essential submodule of M.

Example 3.2. Consider the ring $R = \mathbb{Z}$ and its module $M = \mathbb{Z}_{30}$.

Define fuzzy submodule $\mathcal{V}: M \to [0,1]$ as follows:

$$\mathcal{V}(x) = \begin{cases} 1, & if \ x \in \langle \bar{3} \rangle, \\ 0, otherwise. \end{cases}$$

By example 3.1 of [10], \mathcal{V} is semi-essential submodule of M. Again we define fuzzy submodule $\mathcal{P}: M \to [0,1]$ as follows:

$$\mathcal{P}(x) = \begin{cases} 1, & \text{if } x \in \langle \bar{5} \rangle, \\ 0.8, & \text{otherwise.} \end{cases}$$

Then by Theorem 2.3, \mathcal{P} is fuzzy prime submodule of \mathbb{Z}_{30} and by Corollary 2.1, $\mathcal{P}_* = <\bar{5} > is$ prime submodule of M. Now, $\mathcal{V}^* = <\bar{3} > is$ not \mathcal{P}_* -essential submodule of M as $\{0,10,20\}$ is the only proper submodule of $<\bar{5} > but \,\mathcal{V}^* \cap \{0,10,20\} = 0$. Implies $\mathcal{V}^* \not \triangleq_{<\bar{5}>} M$. Hence by Theorem 3.2, $\mathcal{V} \not \triangleq_{\mathcal{P}} M$.

Proposition 3.1. Let M be an R-module, \mathcal{P} be a non-constant fuzzy prime submodule and \mathcal{U} be any fuzzy submodule of M. If $\mathcal{P} \subseteq M$, then $\mathcal{U} \subseteq_{\mathcal{P}} M$ if and only if $\mathcal{U} \subseteq M$.

Proof. Suppose that $\mathcal{U} \leq_{\mathcal{P}} M$.

Let \mathcal{P} be a non-constant fuzzy prime submodule of M and $\mathcal{V} \leq \mathcal{P}$ such that $\mathcal{U} \cap \mathcal{V} = \chi_{\theta}$ implies $\mathcal{U} \cap (\mathcal{P} \cap \mathcal{V}) = \chi_{\theta}$. As $\mathcal{P} \cap \mathcal{V} \leq \mathcal{P}$ and $\mathcal{U} \leq_{\mathcal{P}} M$, then $\mathcal{P} \cap \mathcal{V} = \chi_{\theta}$. By hypothesis, $\mathcal{P} \leq M$, thus $\mathcal{V} = \chi_{\theta}$ implies $\mathcal{U} \leq M$.

The converse is obvious.

Proposition 3.2. Let M be an R-module and $\mathcal{U}_1, \mathcal{U}_2 \in F(M)$ such that $\mathcal{U}_1 \leq \mathcal{U}_2$. If $\mathcal{U}_1 \leq_{\mathbb{P}} M$, then $\mathcal{U}_2 \leq_{\mathbb{P}} M$.

Proof. let \mathcal{V} be fuzzy submodule of a fuzzy prime submodule \mathcal{P} of M such that $\mathcal{U}_2 \cap \mathcal{V} = \chi_{\theta}$. As $\mathcal{U}_1 \leq \mathcal{U}_2$ implies $\mathcal{U}_1 \cap \mathcal{V} \leq \mathcal{U}_2 \cap \mathcal{V} = \chi_{\theta}$. Implies $\mathcal{U}_1 \cap \mathcal{V} = \chi_{\theta}$. But $\mathcal{U}_1 \leq_{\mathcal{P}} M$, so $\mathcal{V} = \chi_{\theta}$. Thus, $\mathcal{U}_2 \leq_{\mathcal{P}} M$.

The following example shows that the converse of Proposition 3.2 need not be true.

Example 3.3. Consider the ring $R = \mathbb{Z}$ and its module $M = \mathbb{Z}_{24}$. Define fuzzy submodules $\mathfrak{U}, \mathfrak{V} : M \to [0,1]$ as follows:

$$\mathcal{U}(x) = \begin{cases} 1, & if \ x = 0, \\ 0.9, if \ x \in \{4, 8, 12, 16, 20\}, \\ 0, if \ x \notin \{4, 8, 12, 16, 20\}. \end{cases}$$

$$\mathcal{V}(x) = \begin{cases} 1, & if \ x = 0, \\ 0.7, if \ x \in \{8, 16\}, \\ 0, if \ x \notin \{8, 16\}. \end{cases}$$

Here we observe that $\mathcal{V} \subseteq \mathcal{U}$. Again we define $\mathcal{P}: M \to [0, 1]$ as,

$$\mathfrak{P}(x) = \begin{cases} 1, & \text{if } x \in \langle \bar{2} \rangle, \\ 0.3, & \text{otherwise.} \end{cases}$$

Then by Theorem 2.3, P is fuzzy prime submodule of

Here $\mathcal{P}_* = \langle \bar{2} \rangle$ is prime submodule of M by Corollary 2.1.

Also, $\mathcal{U}^* = \{0, 4, 8, 12, 16, 20\}$ then $\mathcal{U}^* \leq_{\mathcal{P}_*} M$, then by Theorem 3.2 $\mathcal{U} \leq_{\mathcal{P}} M$.

Thus $\mathcal{V} \leq_{\mathcal{P}} M$, as for $\zeta: M \to [0,1]$

$$\zeta(x) = \begin{cases} 1, & if \ x = 0, \\ 0.5 & if \ x \in \{6, 12, 18\}, \\ 0, otherwise. \end{cases}$$

We observe that $\mathcal{V} \cap \zeta = \chi_{\theta}$ but $\zeta \neq$

Corollary 3.1. Let M be an R-module and $\mathcal{U}_1, \mathcal{U}_2 \in F(M)$. If $\mathcal{U}_1 \cap \mathcal{U}_2 \leq_{\mathbb{P}} M$, then $\mathcal{U}_1 \triangleleft_{\mathbb{P}} M \text{ and } \mathcal{U}_2 \triangleleft_{\mathbb{P}} M.$

Proof. We know that $\mathcal{U}_1 \cap \mathcal{U}_2 \leq \mathcal{U}_1$ and $\mathcal{U}_1 \cap \mathcal{U}_2 \leq \mathcal{U}_2$ and given that $\mathcal{U}_1 \cap \mathcal{U}_2 \leq_{\mathcal{P}} M$, then by Proposition 3.2, $\mathcal{U}_1 \leq_{\mathcal{P}} M$ and $\mathcal{U}_2 \leq_{\mathcal{P}} M$. П

The following example shows that the converse of Cor 3.1 need not be true.

Example 3.4. Consider the ring $R = \mathbb{Z}$ and its module $M = \mathbb{Z}_{24}$. Define fuzzy submodules $U_1, U_2 : M \to [0, 1]$ as follows:

$$\mathcal{U}_1(x) = \begin{cases} 1, & if \ x = 0, \\ 0.9, & if \ x \in \{4, 8, 12, 16\}, \\ 0, & if \ x \notin \{4, 8, 12, 16\}. \end{cases}$$

$$\mathcal{U}_2(x) = \begin{cases} 1, & if \ x = 0, \\ 0.6, & if \ x \in \{6, 12, 18\}, \\ 0, & if \ x \notin \{6, 12, 18\}. \end{cases}$$

Then $\mathcal{U}_1^* = \{0, 4, 8, 12, 16\}$ and $\mathcal{U}_2^* = \{0, 6, 12, 18\}$

Also, we define fuzzy submodule $\mathfrak{P}: M \to [0,1]$ as follows:

$$\mathcal{P}(x) = \begin{cases} 1, & if \ x \in \langle \bar{2} \rangle, \\ 0.5, otherwise. \end{cases}$$

Then $\mathcal{P}_* = \langle \bar{2} \rangle$ is prime submodule by Corollary 2.1. Also, \mathcal{P} is fuzzy prime submodule by Theorem 2.3. Then $\mathcal{U}_1^* \leq_{\mathcal{P}_*} M$ and $\mathcal{U}_2^* \leq_{\mathcal{P}_*} M$. But $\mathcal{U}_1^* \cap \mathcal{U}_2^* \nleq_{\mathcal{P}_*} M$ and here we observe that $\mathcal{U}_1^* \cap \mathcal{U}_2^* = (\mathcal{U}_1 \cap \mathcal{U}_2)^*$. Thus, $(\mathcal{U}_1 \cap \mathcal{U}_2)^* \not \preceq_{\mathcal{P}_*} M$. Then by Theorem 3.2, $\mathcal{U}_1 \leq_{\mathbb{P}} M$, $\mathcal{U}_2 \leq_{\mathbb{P}} M$ and $\mathcal{U}_1 \cap \mathcal{U}_2 \not\leq_{\mathbb{P}} M$.

Proposition 3.3. Let M be an R-module and $\mathcal{U}_1, \mathcal{U}_2 \in F(M)$. If $\mathcal{U}_1 \subseteq M$ and $\mathcal{U}_2 \subseteq_{\mathcal{P}} M$, then $U_1 \cap U_2 \leq_{\mathcal{P}} M$.

Proof. Let \mathcal{P} be a fuzzy prime submodule of M and $\chi_{\theta} \neq \mathcal{V} \subseteq \mathcal{P}$.

Since, $\mathcal{U}_2 \leq_{\mathcal{P}} M$, then $\mathcal{U}_2 \cap \mathcal{V} \neq \chi_{\theta}$.

Again as $\mathcal{U}_1 \subseteq M$, then $\mathcal{U}_1 \cap (\mathcal{U}_2 \cap \mathcal{V}) \neq \chi_{\theta}$, so $(\mathcal{U}_1 \cap \mathcal{U}_2) \cap \mathcal{V} \neq \chi_{\theta}$.

This implies $\mathcal{U}_1 \cap \mathcal{U}_2 \leq_{\mathcal{P}} M$.

Proposition 3.4. Let f be an R-module epimorphism from M to M_1 . If $\mathfrak{U} \leq_{\mathbb{P}} M_1$, then $f^{-1}(\mathcal{U}) \leq_{\mathcal{P}} M$.

Proof. From Theorem 3.6 of [2], if \mathcal{U} is an fuzzy prime submodule of M_1 , then $f^{-1}(\mathcal{U})$ is an fuzzy prime submodule of M. let $\chi_{\theta} \neq \mathcal{V} \subseteq \mathcal{P}$ and $f^{-1}(\mathcal{U}) \cap \mathcal{V} = \chi_{\theta}$.

To prove, $\mathcal{V} = \chi_{\theta}$.

As $\mathcal{U} \cap f(\mathcal{V}) = \chi_{\theta}$ and as $\mathcal{U} \leq_{\mathcal{P}} M_1$ and $f(\mathcal{V}) \subseteq \mathcal{P}$, then $f(\mathcal{V}) = \chi_{\theta}$ implies $\mathcal{V} \subseteq f^{-1}(\chi_{\theta}) = \ker f \leq f^{-1}(\mathcal{U})$. But, $f^{-1}(\mathcal{U}) \cap \mathcal{V} = \chi_{\theta}$, gives $\mathcal{V} = \chi_{\theta}$. Thus, $f^{-1}(\mathcal{U}) \leq_{\mathcal{P}} M$.

Proposition 3.5. Let M be an R-module and $\mathcal{U}, \mathcal{V}, \mathcal{W} \in F(M)$ such that $\mathcal{U} \leq \mathcal{V} \leq \mathcal{W}$. If $\mathcal{U} \leq_{\mathcal{P}} \mathcal{V}$ and $\mathcal{V} \leq_{\mathcal{P}} \mathcal{W}$, then $\mathcal{U} \leq_{\mathcal{P}} \mathcal{W}$.

Proof. Let \mathcal{P} be a fuzzy prime submodule of \mathcal{W} and \mathcal{A} be a fuzzy submodule of \mathcal{P} such that $\mathcal{U} \cap \mathcal{A} = \chi_{\theta}$.

Also we can write,

$$\chi_{\theta} = \mathcal{U} \cap \mathcal{A}$$
$$= (\mathcal{U} \cap \mathcal{A}) \cap \mathcal{V}$$
$$= \mathcal{U} \cap (\mathcal{A} \cap \mathcal{V}).$$

If $\mathcal{V} \subseteq \mathcal{A}$, then $\chi_{\theta} = \mathcal{U} \cap (\mathcal{A} \cap \mathcal{V}) = \mathcal{U} \cap \mathcal{V}$, hence $\mathcal{U} \cap \mathcal{V} = \chi_{\theta}$. But $\mathcal{U} \leq \mathcal{V}$, so $\mathcal{U} \cap \mathcal{V} = \mathcal{U}$ implies that $\mathcal{U} = \chi_{\theta}$, a contradiction. Thus, $\mathcal{V} \nleq \mathcal{A}$ and $\mathcal{A} \cap \mathcal{V} = \mathcal{P}$. But $\mathcal{U} \leq_{\mathcal{P}} \mathcal{V}$, therefore $\mathcal{A} \cap \mathcal{U} = \chi_{\theta}$ and since $\mathcal{V} \leq \mathcal{W}$, then $\mathcal{A} = \chi_{\theta}$, that is, $\mathcal{U} \leq_{\mathcal{P}} \mathcal{W}$.

The following example shows that the converse of Proposition 3.5 need not be true.

Example 3.5. Consider the ring $R = \mathbb{Z}$ and its module $M = \mathbb{Z}_{24}$. Define fuzzy submodules $\mathcal{U}, \mathcal{V} : M \to [0, 1]$ as follows:

$$\mathcal{U}(x) = \begin{cases} 1, & \text{if } x = 0, \\ 0.5, & \text{if } x \in \{6, 12, 18\}, \\ 0, & \text{if } x \notin \{6, 12, 18\}. \end{cases}$$

$$\mathcal{V}(x) = \begin{cases} 1, & \text{if } x = 0, \\ 0.7, & \text{if } x \in \{2, 4, 6, ..., 22\}, \\ 0, & \text{if } x \notin \{2, 4, 6, ..., 22\}. \end{cases}$$

Here we observe that $\mathcal{U} \subseteq \mathcal{V}$.

Also, we define fuzzy submodule $\mathcal{P}: M \to [0,1]$ as follows:

$$\mathcal{P}(x) = \begin{cases} 1, & \text{if } x \in \bar{3} >, \\ 0.5, & \text{otherwise.} \end{cases}$$

Then $\mathcal{P}_* = <\bar{3}>$ is prime submodule by Corollary 2.1. Also, \mathcal{P} is fuzzy prime submodule by Theorem 2.3. Here, $\mathcal{U}^* = \{0,6,12,18\} = <\bar{6}>$, then $\mathcal{U}^* \trianglelefteq_{\mathcal{P}_*} M$. Then by Theorem 3.2, $\mathcal{U} \trianglelefteq_{\mathcal{P}} M$. Again, $\mathcal{V}^* = \{0,2,4,6,...,22\} = <\bar{2}>$. We observe that $\mathcal{U}^* \npreceq_{\mathcal{P}_*} M$ and $\mathcal{V}^* \trianglelefteq_{\mathcal{P}_*} M$. Again by applying Theorem 3.2, $\mathcal{U} \npreceq_{\mathcal{P}} M$ and $\mathcal{V} \trianglelefteq_{\mathcal{P}} M$.

Proposition 3.6. Let M be an R-module and $\mathcal{U}_1, \mathcal{U}_2 \in F(M)$ such that $\mathcal{U}_1 \unlhd_{\mathbb{P}} M$, $\mathcal{U}_2 \unlhd_{\mathbb{P}} M$ and $\mathcal{U}_1 \cap \mathcal{U}_2 \neq \chi_{\theta}$, then $\mathcal{U}_1 \cap \mathcal{U}_2 \unlhd_{\mathbb{P}} M$.

Proof. Let \mathcal{P} be fuzzy prime submodule of M and $\mathcal{V} \in F(M)$ such that $\mathcal{V} \leq \mathcal{P}$ and $(\mathcal{U}_1 \cap \mathcal{U}_2) \cap \mathcal{V} = \chi_{\theta}$. This can be written as $\mathcal{U}_2 \cap (\mathcal{U}_1 \cap \mathcal{V}) = \chi_{\theta}$. If $\mathcal{U}_1 \leq \mathcal{V}$, then we get a contradiction to the assumption, so $\mathcal{U}_1 \nleq \mathcal{V}$. This implies $\mathcal{U}_1 \cap \mathcal{V}$ is a submodule of M. As $\mathcal{U}_2 \leq_{\mathcal{P}} M$ and $\mathcal{U}_1 \cap \mathcal{V}$ is a submodule of M, then $\mathcal{U}_1 \cap \mathcal{V} = \chi_{\theta}$. But $\mathcal{U}_1 \leq_{\mathcal{P}} M$, therefore $\mathcal{V} = \chi_{\theta}$, hence $\mathcal{U}_1 \cap \mathcal{U}_2 \leq_{\mathcal{P}} M$.

4. P-ESSENTIAL SUBMODULES IN FUZZY MULTIPLICATION MODULES

In this section we study some properties of \mathcal{P} -essential submodules concerning fuzzy multiplication modules over a ring.

Theorem 4.1. Let M be a faithful fuzzy multiplication R-module, $\mathfrak{I} \leq R$ and $\mathfrak{U} \leq M$. Then $\mathfrak{U} \leq_{\mathfrak{P}} M$ if and only if $\mathfrak{I} \leq_{\mathfrak{P}} R$.

Proof. Assume $\mathcal{U} \leq_{\mathcal{P}} M$.

let \mathcal{V}_1 be a fuzzy ideal and \mathcal{P} be a fuzzy prime ideal of R such that $\mathcal{V}_1 \leq \mathcal{P}$ and $\mathcal{I} \cap \mathcal{V}_1 = \chi_{\theta}$. Since, M is faithful fuzzy multiplication module, then $(\mathcal{I} \cap \mathcal{V}_1)\chi_M = \mathcal{I}\chi_M \cap \mathcal{V}_1\chi_M = \chi_{\theta}$. Now by Theorem 17 of [3], $\mathcal{V}_1\chi_M$ is fuzzy prime submodule of M.

Also, $\mathcal{V}_1\chi_M \subseteq \mathcal{P}\chi_M$ and $\mathcal{I}\chi_M = \mathcal{V}_1$ is \mathcal{P} -essential submodule of M, implies $\mathcal{V}_1\chi_M = \chi_\theta$. Since M is faithful fuzzy multiplication module, then $\mathcal{V}_1 = \chi_\theta$. Therefore, $\mathcal{I} \preceq_{\mathcal{P}} R$. Conversely, assume $\mathcal{I} \preceq_{\mathcal{P}} R$.

let \mathcal{P} be fuzzy prime submodule of M and \mathcal{V}_2 fuzzy submodule of \mathcal{P} such that $\mathcal{U} \cap \mathcal{V}_2 = \chi_{\theta}$. Now by Proposition 5 of [3] there exists an fuzzy ideal ζ of R with $\zeta(0)_R = 1$ such that $\mathcal{V}_2 = \zeta \chi_M$. Hence, $\mathcal{U} \cap \mathcal{V}_2 = \mathcal{I}\chi_M \cap \zeta \chi_M = (\mathcal{I} \cap \zeta)\chi_M = \chi_{\theta}$, as M is faithful so $\mathcal{I} \cap \zeta = \chi_{\theta}$. But $\mathcal{I} \leq_{\mathcal{P}} R$, then $\zeta = \chi_{\theta}$ therefore $\mathcal{V}_2 = \zeta \chi_M = \chi_{\theta}$. Thus, $\mathcal{U} \leq_{\mathcal{P}} M$.

Proposition 4.1. Assume M is faithful fuzzy multiplication R-module. If $\mathfrak{C} \leq_{\mathfrak{P}} \mathfrak{F}$, then $\mathfrak{C}\chi_M \leq_{\mathfrak{P}} \mathfrak{F}\chi_M$, for every fuzzy ideal \mathfrak{C} and \mathfrak{F} of R.

Proof. Let \mathcal{P} be a fuzzy prime submodule of $\mathcal{F}\chi_M$ such that $\mathcal{P} = \mathcal{D}\chi_M$ for some fuzzy prime ideal \mathcal{D} of R and $\mathcal{D} \leq \mathcal{F}$. Let \mathcal{U} be a fuzzy submodule of \mathcal{P} such that

$$\mathfrak{C}\chi_M \cap \mathfrak{U} = \chi_\theta \tag{4.1}$$

Since, M is fuzzy multiplication R-module, then $\mathcal{C} = \mathcal{E}\chi_M$ for some fuzzy ideal \mathcal{E} of R. So equation (4.1) becomes $\mathcal{C}\chi_M \cap \mathcal{E}\chi_M = \chi_\theta$ this can be written as $(\mathcal{C} \cap \mathcal{E})\chi_M = \chi_\theta$. Since, M is faithful R-module, then $\mathcal{C} \cap \mathcal{E} = \chi_\theta$. Since, $\mathcal{C}\chi_M \subseteq \mathcal{D}\chi_M$, $\mathcal{D}\chi_M \neq \chi_M$ and as M is faithful fuzzy multiplication R-module, then by Proposition 18 of [3], $\mathcal{E} \subseteq \mathcal{D}$. Since, $\mathcal{C} \preceq_{\mathcal{P}} \mathcal{F}$, then $\mathcal{E} = \chi_\theta$ and hence $\mathcal{U} = \chi_\theta$. Thus, $\mathcal{C}\chi_M \preceq_{\mathcal{P}} \mathcal{F}\chi_M$.

Theorem 4.2. let M be a faithful fuzzy multiplication R-module. If there exists an fuzzy essential ideal U of F(R) such that $C = U\chi_M$, where C is fuzzy submodule of M, then C is essential.

Proof. Let $\mathcal{V} \in F(M)$ such that $(\mathcal{U}\chi_M) \cap \mathcal{V} = \chi_\theta$. There exists an fuzzy ideal \mathcal{F} of F(R) with $\mathcal{V} = \mathcal{F}\chi_M$ and hence, $(\mathcal{U} \cap \mathcal{F})\chi_M \subseteq (\mathcal{U}\chi_M) \cap \mathcal{V} = \chi_\theta$. Since M is faithful, it follows that $\mathcal{U} \cap \mathcal{F} = \chi_\theta$ and hence, $\mathcal{F} = \chi_\theta$. Thus, $\mathcal{U}\chi_M$ is fuzzy essential submodule of M. \square

Definition 4.1. A non-zero ring R is called fuzzy fully \mathcal{P} -essential if every non-constant fuzzy \mathcal{P} -essential ideal of R is essential ideal of R.

Definition 4.2. let M be an non-zero module over a commutative ring R. M is called fuzzy fully \mathbb{P} -essential if every non-constant fuzzy \mathbb{P} -essential submodule of M is essential submodule of M.

Remark 4.1. Every fuzzy fully essential submodule is fully \mathcal{P} -essential but converse may not be true.

Example 4.1. Consider the ring $R = \mathbb{Z}$ and its module $M = \mathbb{Z}_{12}$. Define fuzzy submodules $\mathcal{U}, \mathcal{P} : M \to [0, 1]$ as follows:

$$\mathcal{U}(x) = 1, \text{ for all } x \in \mathbb{Z}_{12}.$$

$$\mathcal{P}(x) = \begin{cases} 1, & \text{if } x \in \langle \bar{3} \rangle, \\ 0, & \text{if } x \notin \langle \bar{3} \rangle. \end{cases}$$

Then $\mathfrak{P}_* = <\bar{3}>$ is prime submodule by Corollary 2.1. Then by Theorem 2.3, \mathfrak{P} is fuzzy prime submodule of M.

Here we observe that \mathcal{U} is not fuzzy fully \mathcal{P} -essential because if we define fuzzy submodules $\mathcal{V}: \mathbb{Z}_{12} \to [0,1]$ by:

$$\mathcal{V}(x) = \begin{cases} 1, & if \ x = 0, \\ 0.7, & if \ x \in \langle \bar{6} \rangle, \\ 0, & if \ x \notin \langle \bar{6} \rangle. \end{cases}$$

Then $\mathcal{V}^* = \{0,6\}$ and $\mathcal{V}^* \leq_{\mathcal{P}_*} \mathbb{Z}_{12}$. Then by Theorem 3.2, $\mathcal{V} \leq_{\mathcal{P}} \mathbb{Z}_{12}$. But if we define a fuzzy submodule $\mathcal{W}: \mathbb{Z}_{12} \to [0,1]$ by:

$$\mathcal{W}(x) = \begin{cases} 1, & if \ x = 0, \\ 0.3, & if \ x \in \{4, 8\}, \\ 0, & if \ x \notin \{4, 8\}. \end{cases}$$

Here we observe that $\mathcal{V} \cap \mathcal{W} = \chi_{\theta}$ but $\mathcal{V} \neq \chi_{\theta}$.

Theorem 4.3. let M be a faithful fuzzy multiplication R-module where R is fuzzy fully P-essential ring. Then M is fully P-essential.

Proof. Let \mathcal{U} be a non-constant fuzzy submodule of M such that $\mathcal{U} \leq_{\mathcal{P}} M$.

Since M is faithful fuzzy multiplication R-module then $\mathcal{U} = \mathcal{V}\chi_M$ for some fuzzy \mathcal{P} -essential ideal \mathcal{V} of R. By hypothesis, \mathcal{V} is fuzzy essential ideal of R. But M is faithful fuzzy multiplication module, then \mathcal{U} is essential submodule of M, by Theorem 4.2. Thus, M is fully \mathcal{P} -essential module.

Definition 4.3. A fuzzy module M is called \mathcal{P} -uniform if every non-constant submodule of M is \mathcal{P} -essential.

Remark 4.2. Each fuzzy uniform R-module is P-uniform but converse is not true.

Example 4.2. Consider the ring $R = \mathbb{Z}$ and its module $M = \mathbb{Z}_{15}$.

Define fuzzy submodules $\mathcal{U}, \mathcal{P}: M \to [0,1]$ as follows:

$$\mathcal{U}(x) = 1, \quad for \ all \ x \in \mathbb{Z}_{15}$$

$$\mathcal{P}(x) = \begin{cases} 1, & \text{if } x \in \langle \bar{3} \rangle, \\ 0, & \text{if } x \notin \langle \bar{3} \rangle. \end{cases}$$

Then $\mathcal{P}_* = <3 > is prime submodule of M by Corollary 2.1.$

Also by Theorem 2.3 \mathbb{P} is fuzzy prime submodule of M and $\mathbb{U}^* = \mathbb{Z}_{15}$. Then $\mathbb{U}^* \leq_{\mathbb{P}_*} M$. Hence by Theorem 3.2, $\mathbb{U} \leq_{\mathbb{P}} M$ implies \mathbb{U} is \mathbb{P} -uniform.

Now define fuzzy submodule $\mathcal{V}: M \to [0,1]$ such that $\mathcal{V} \subseteq \mathcal{U}$ as follows:

$$\mathcal{V}(x) = \begin{cases} 1, & \text{if } x = 0, \\ 0.7, & \text{if } x \in \{5, 10\}, \\ 0, & \text{if } x \notin \{5, 10\}. \end{cases}$$

we observe that $\mathfrak{P} \cap \mathfrak{V} = \chi_{\theta}$ but $\mathfrak{V} \neq \chi_{\theta}$. Thus, $\mathfrak{V} \not \subseteq M$. Hence, \mathfrak{U} is not uniform.

Proposition 4.2. Let M be an R-module. Then M is uniform if and only if M is \mathcal{P} -uniform and fully \mathcal{P} -essential.

Theorem 4.4. let M be a faithful fuzzy multiplication R-module. Then M is \mathcal{P} -uniform R-module if and only if R is a \mathcal{P} -uniform ring.

Proof. Assume M is P-uniform and let \mathcal{U} be a non-constant fuzzy ideal of R.

Then $\mathcal{U}\chi_M$ is \mathcal{P} -essential submodule of M. By Theorem 4.1, \mathcal{U} is \mathcal{P} -essential ideal of R.

Conversely, assume that R is a \mathcal{P} -uniform ring and $\mathcal{V} \in F(M)$. Since, M is fuzzy multiplication R-module, then there exists an fuzzy ideal \mathcal{I} of R such that $\mathcal{V} = \mathcal{I}\chi_M$. But R is a \mathcal{P} -uniform, so \mathcal{I} is \mathcal{P} -essential. Thus, \mathcal{V} is \mathcal{P} -essential by Theorem 4.1. \square

5. Conclusion

In this article, we have defined \mathcal{P} -essential submodules and some of its properties are investigated. Also, some properties of \mathcal{P} -essential submodules concerning fuzzy multiplication modules over a ring are studied.

6. Acknowledgement

The authors are thankful to the referee for helpful suggestions, which improved the paper.

References

- [1] Abbas, H. H. and Al-Aeashi, S. N., (2012), A fuzzy semi-essential submodules of a fuzzy module, J. of Kufa for Math. and Computer, 1(5), pp. 31-37.
- [2] Acar, U., (2005), On L-fuzzy prime submodules, Hacettepe Journal of Mathematics and Statistics, 34, pp. 17-25.
- [3] Atani, S.E. and Sarai, F. E. K., (2017), On L-fuzzy multiplication modules, Discuss. Math. Gen. Algebra Appl., 37, pp. 209-221.
- [4] Kalita, M. C., (2007), A study of fuzzy algebraic structures: Some Special Types, Ph.D Thesis, Gauhati University, Gauhati, India.
- [5] Khubchandani P. A. and Khubchandani J. A., (2024), Fuzzy biatomic pair in fuzzy lattices, TWMS J. App and Eng. Math., 14(4), pp. 1485-1494.
- [6] Moderson, J. N. and Malik D. S., (1998), Fuzzy commutative algebra, World scientific, River Edge, NJ, USA, 1998.
- [7] Nagoita, C. V. and Ralesca, D. A., (1975), Applications of fuzzy sets in system analysis, Birkhauser, Basel, Switzerland.
- [8] Nimbhorkar, S. K. and Khubchandani, J. A., (2022), Fuzzy essential submodules with respect to an arbitrary fuzzy submodule, TWMS J. App. and Eng. Math., 12(2), pp. 435-444.
- [9] Nimbhorkar S. K. and Khubchandani J. A., (2020), Fuzzy semi-essential submodules and fuzzy small-essential submodules, Journal of hyperstructures, 9(2), pp. 52-67.
- [10] Nimbhorkar S. K. and Khubchandani J. A., (2023), Fuzzy semi-essential submodules and fuzzy semi-closed submodules, TWMS J. App and Eng. Math., 13(2), pp. 568-575.
- [11] Nimbhorkar S. K. and Khubchandani J. A., (2024), L-fuzzy hollow modules and L-fuzzy multiplication modules, Kragujevac Journal of Mathematics, 48(3), pp. 423-432.
- [12] Rosenfeld, A., (1971), Fuzzy groups, J. Math. Anal. Appl. 35, pp. 512-517.
- [13] Wasadikar M. P. and Khubchandani P. A., (2022), Fuzzy distributive pairs in fuzzy Lattices, Discuss. Math. Gen. Algebra Appl., 42(1), pp. 179-199.
- [14] Wasadikar M. P. and Khubchandani P. A., (2022), 'Del' relation and parallelism in fuzzy lattices, TWMS J. App and Eng. Math., 12(3), pp. 864-875.
- [15] Zadeh, L. A., (1965), Fuzzy sets, Inform. and Control, 8, pp. 338-353.

Jyoti Ashok Khubchandani holds a Ph. D. in Mathematics. She has more than ten years of experience in teaching. Here research area is Algebra and Fuzzy set theory.

Payal Ashok Khubchandani holds Ph.D. degree in Mathematics. She has more than twelve years of teaching experience. Her research area is Lattice Theory and Fuzzy set theory.