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ANALYSIS OF SECOND OPTIONAL SERVICE SYSTEM WITH A
COLD STANDBY SERVER THAT IS RELIANT ON THE SYSTEM
SIZE

P. VIJAYA LAXMI'*, G. ANJALIDEVI}, §

ABSTRACT. In this article, we examine a second optional service queueing system using
two types of servers, viz. the main operating server and a reliable standby server. All
arriving customers receive the first essential service (FES), and only a few may thereafter
request a second optional service (SOS) with some probability. During FES and SOS
services, the primary operational server may break down. The server is promptly sent for
repair if a break down arises and the standby server will be replaced only if the system size
is ¢ (> 1); otherwise, customers would queue up while the main server is being repaired
and resumes the service. We also derive the necessary and sufficient condition for the
system to be stable. The model’s steady state solution is discovered using the matrix
geometric approach. Further, multiple system performance measures are obtained and
a cost optimization problem is taken into consideration. Graphs are used to display the
numerical outcomes.
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1. INTRODUCTION

Second optional service (SOS) systems have been the focus of extensive research in
queueing theory for a long time. Particularly, these queues find applications in hospi-
tals, educational system, banking, transport, manufacturing systems, etc. For example,
consider the airport management system, where it carries out major responsibilities such
as passenger processing, arrival and departure operations, baggage tagging and handling,
information dissemination, luggage trolley, bus services etc. Further, the in-flight meal,
commonly known as airline cuisine, restaurants, free internet, ATMs, vehicle rentals, cur-
rency exchange, etc., are few of the services that airports carry out in addition to their
primary duties. Madan [1] first looked into an M/G/1 queueing system with SOS, where
some customers would require an SOS right away once the first essential service (FES) is
finished. Later Jain and Chauhan [2] made an assessment of utilizing the matrix geometric
approach to operate the vacation queue with the SOS and an unreliable server. Vijaya
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Laxmi et al. [3] analyzed correlated reneging in SOS with working vacations in a Markov-
ian queue. Recently, Vijaya Laxmi et al. [4] contemplated SOS and feedback equipped
Markovian batch service queue in both steady and transition states by using the method
of probability generating functions. A few interesting papers include, [5], [6], [7], and the
references therein.

Server breakdown and repair are prominent features in queueing theory. The SOS
system has received more attention recently for both breakdowns and repairs. Due to
their broad usefulness for call centres, communication and computers systems, as well
as manufacturing and production technologies, these systems are extensively investigated.
Gray et al. [8] explored a queueing system with breakdowns and vacations. Later, Tarabia
[9] contemplated on an M/M/1 queue’s transient and steady state analysis including
balking, catastrophes, server breakdowns and repairs. Recently Seenivasan et al. [10]
made an assignment on state-dependent customers in an M /M /1 queue, a failure server,
a single working vacation, and feedback. For some recent papers on M/M/1 queue with
server breakdown and repair, we cite [11], [12], [13], [14], [15] etc.

Standby server is another factor that is generally taken into account in queueing systems.
A queueing system might encounter a sudden failure, causing service to be halted until
the server is repaired. In this case, when a customer’s service is interrupted standby server
might be needed. There is an extensive literature on standby server that has been studied
in various forms by numerous authors. Khalaf et al. [16] explored on a batch arrival
queueing system with a standby server during vacations or when the primary server is
undergoing repair. In this case, the standby server only serves customers during the time
the main server is away on vacation or when the main server is down for repairs due to
an unexpected failure from time to time. Chakravarthy and Kulshrestha [12] studied a
queueing system that accounts for server failures, repair, vacations, and standby server.
Ayyappan and Karpagam [17] first dealt with a bulk queue with an unreliable server,
instant feedback, N-policy, several Bernoulli vacation schedules, and a backup server.
Then, Ayyappan and Karpagam [18] investigated a bulk service queue with a standby
server, several vacations, overloading, and an unreliable server. Recently, Vijaya Laxmi
and Bhavani [19] made an assessment on both warm and cold standbys in a repairable SOS
queueing system. In general, there are three kinds of standby servers available, viz., warm-
standby, hot-standby, and cold-standby servers. When a standby server’s failure rate is
non-zero and lower than that of the primary operating server, it is termed as warm.
A server is called hot standby server if its failure rate is equal to that of the primary
operating server, and it is referred to as cold standby server when it has no failures. We
have employed a cold standby server for this article, as it avoids further delays in services
due to breakdown of main operating server.

Many authors have employed the matrix geometric technique in their works. EL-Rayes
et al. [20] studied through the use of matrix geometric techniques, an infinite stochastic
process algebra models. Lakshmi and Ramanath [21] investigated an M /M /1 two-phase
multi-optional retrial queue with Bernoulli feedback, impatient users, and a server that
is prone to failure and repair is solved by using the matrix geometric technique. Joshi
et al. [22] made an assessment on method using matrix geometric method to investigate
the M/M/1 model that is being repaired. Matrix geometric technique was studied for
performance evaluation of multiple service systems by Shah et al. [23]. A few interesting
papers include Jain and Chauhan [2], [19], [12], [3] etc.

The behaviour of an M/M/1 queue in steady state is examined in this paper with
two types of servers (main server and cold standby server), two types of services (FES
and SOS), breakdown and repair. In this article, a new form of standby server has been
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developed and examined. When a certain threshold value for system length is reached,
the standby server is replaced by the main server, and continue the service. If the system
length falls below the threshold value, then the remaining customers will have to wait for
the main server to resume the service.

The following is how the remaining paper is set up: Practical application of the model
is given in Section 2. Model description can be found in Section 3. In Section 4, the
mathematical formulation, equations for steady states and the matrix geometric solution
are provided. Performance indicators are listed in Section 5. Section 6 includes the cost
analysis and results of numerical analyses. Finally, conclusions are presented in Section 7.

2. PRACTICAL APPLICATION OF THE PROPOSED MODEL

Consider a call center of a major telecommunications company that provides customer
support for a variety of services including billing, technical issues, and account manage-
ment. This call center operates with a primary group of highly trained agents (main
server) who handle a wide range of customer inquiries. These agents are proficient in
resolving basic customer service queries (FES) such as billing questions, account updates,
and general service information. However, some customer issues require more specialized
knowledge, such as resolving complex technical problems or handling high priority cases
(SOS). These specialized tasks are typically handled by the same group of primary agents.

Breakdown scenario: Imagine a scenario where a sudden technical disrupts the main
server’s operations, rendering the primary group of highly trained agents unavailable.
This could be due to issues like a system outage, network failure, or other technical
difficulties that prevent the agents from accessing the necessary tools and information to
assist customers.

Standby server activation: To ensure continuity of service, the call center has a sec-
ondary group of less experienced agents or automated systems (standby server) on standby.
These secondary agents are capable of handling basic inquiries but may not be as adept
at resolving more complex issues. The standby server is activated only when the call
volume exceeds a certain threshold (g), ensuring that the call center’s resources are uti-
lized efficiently. When the primary group of agents becomes unavailable, the standby
server is immediately activated if the number of incoming calls exceeds the predetermined
threshold. Customers who need basic support are directed to the secondary agents, while
more complex issues are queued until the primary agents are back online. This system
ensures that basic customer service continues uninterrupted, minimizing wait times and
maintaining a satisfactory level of service.

For example, during a system outage, customers calling with simple billing inquiries
or requests for account information are quickly solve by the standby server. Meanwhile,
those with more complex technical issues are informed of the delay and their concerns will
be addressed once the primary system is restored. This approach not only helps manage
customer expectations but also maintains a level of operational efficiency even during
disruptions. This model allows the call center to maintain service levels and customer
satisfaction by efficiently balancing the workload between primary and standby servers. By
implementing such a queuing system, the company can ensure that basic customer service
remains uninterrupted during technical difficulties, thereby reducing customer frustration
and maintaining trust in the company’s support services.

3. MODEL INFORMATION

Consider an endless single server queue with a cold standby server that is introduced
based on the system size and a second alternative service system. Arrivals take place via
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FIGURE 1. General structure of the model

the Poisson process with arrival rate A. All arriving customers receive FES from the main
server and after FES, customers may choose to leave the system with probability (1 — r)
or request SOS with probability r. The service times during FES and SOS are distributed
exponentially with rates 1 and pg, respectively. Main server may break down during busy
period of FES or SOS and immediately it is sent for repair. Failure times during FES and
SOS are distributed exponentially with rates 81 and (52, respectively and repair time is also
distributed exponentially with rate v. The standby server will become operational only
if the number of customers in the system reaches a particular threshold value ¢, ¢(>1).
However, when the system size is smaller than ¢ and main server is broken down, those
customers must have to wait in the system until the main server resumes service.
The following cases are explained below when the main server is in break down state.

e Case (i) : The system size is smaller than q.

Customers in this situation will have to wait for the main server to resume service
because the standby server would not be provided.

e Case (ii): The system size exceeds or is equal to gq.

In this case, a standby server will continue to provide the service and is deactivated
whenever the the system size goes down the threshold value q.

e Case (iii): It may be noted that during the break down state of the main server
(FES or SOS), the standby server will be providing service with a service rate s,
which is generally lower than the main server’s service rates. It is assumed that the
standby server provides only one type of service and after completion of service,
the customers depart from the system.

Figure 2 depicts the state transition diagram for the model under consideration.
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4. MATHEMATICAL FORMULATION AND MATRIX GEOMETRIC SOLUTION OF THE
MODEL

Let N(t) represent the system’s total number of customers. S(t¢) represent the server’s
current state, where

S(t)= 0, server is in breakdown state,
~ | 1, server is in normal busy state.

and K (t) be the type of the service given by

K(t)= {

Evidently, this system defined by the process {N(t), S(t), K(t),t > 0} forms a continuous-
time Markov process with state space x ={(n,s,k):n >0, s=0,1, k=1,2}.

Let P, 11 represent the probability that there are n customers in the system, the main
server in normal busy period and renders FES, n > 0.

Let Qn1,1 represent the probability that there are n customers in the system, the main
server in normal busy period and render SOS, n > 1.

The probability that there are n customers in the system, the main server is broken down
during FES, and the standby server is not be replaced is given by P, 01,0 <n <gq— 1.
The probability that there are n customers in the system, the main server is broken down
during SOS and standby server is not replaced is given by Qn01, 1 <n <gq—1.

The probability that there are n number of consumers in the system, the main server in
break down state, and service provided by standby server is given by P, 02, n > q.

1, standby server is not replaced,
2, standby server is replaced.

4.1. Steady State Probabilities. The following Kolmogorov forward difference equa-
tions are written in steady state:
1. Main server is in normal busy period and providing FES

APoiy = (I=r)urPrag+ peQr, (1)
A+ +51)Pui1 = AP+ (1 =) P + poQnii11 (2)
+7 P01, 1 <n<q—1,
A+ pu1+p1)Pui1 = AP+ (1 —r)pPogi1a + p2Qni1,1,1 (3)
+vPnp2,m > q.

2. Main server is in normal busy period and providing SOS

A+p2+52)Qi11 = ruPiii+vQi01, (4)
A+ p2+52)Qnig = riPuig +7Qno1 +AQn-11,1,2<n<q—1, (5)
A+ p2+B82)Qunii = TP +AQn-111,n>q. (6)
3. Main server is broken down during FES and standby server is not replaced
A+7)Pro1 = AP, (7)
A+7)Pro1 = BiPai1+AP101,2<n<q—2, (8)
A+7)Pro1 = BiPaii+ APu101 + p3Prt102,m=¢q— 1. 9)

4. Main server is broken down during SOS and standby server is not replaced

A+7)Q101 = B2Q11,1, (10)
A+7Qno1 = B2Qni1+ AQn-101,<n<q—1 (11)
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5.The service is replaced by a backup server after the main server breaks down.

()\ + v+ ,U,g)Pq7072 = )\Pq_17071 + ,U«3Pq+170,2 + )\Qq_l,o,l + 51Pq,1,1 + /BQQq,l,lv (12)
A+~v+wu3)Pro2 = APr—102+ p3Pot102+ S1Puig + B2Qni1,n>qg+ 1. (13)

4.2. Matrix Geometric Method. Now, in order to ascertain the stationary probabil-
ities, we employ the matrix geometric method. According to Neuts [24], The process’s
infinitesimal generator @) could be represented as follows using the system of equations (1)
o (13):

Ay G
B, A C
B, A, G,
Q= Bq—l Ag—l Ag—l .
B, AAq Qq .
Byt AAq Qq ~
B Ay Gy
(1—"”)M1
where Ag=( =X ),Co=(-X 0 0 0),B; =
—(A 41+ 51) T b1
A 0 —(A+ p2 + B2) 0
J— <1 <q-—
A, 5 0 (A +7) , 1 <1< qg—1,
0 ~y 0 /\+’y
(I—=7r)ur 0 0 0O
5 142 0 00 . _
BZ_ O 0 O 0 72<Z§q 17
0 0 00
X (1—=r)upr 0 0 O X (I—=r)ur 0 O
B, = 75 0 0 0 ],B;= 1% 0 0 , 0> q+1,
0 0 M3 0 0 0 U3
X —(A+p1+ 1) T A1
A= 0 (A +p2 + B2) B2 ;12> 4,
gl 0 —(A 7+ ps3)
A0 0 0 A0 0
A 00
A 0 A 00 0 A O A
C, = 00 A 0 1<i<qg—2,C,_1 = 00 A , G = 8 E)\ (/)\ ,1>q
0 0 0 A 0 0 A

4.2.1. Stability Condition. The topic of stability is of utmost importance in queue theory
particularly dealing with the infinite buffer queues. As there is a possibility of system
overflow or instability, one has to impose some conditions on the parameters. Below we
derive a stability condition which will be used for the systems stability.
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Theorem 4.1. The necessary and sufficient condition for the system to be stable is that

Ay (pe + B2) + rpi(y + B2) + Bi(pe + B2)]
Ypape +vB2(1 = r)pr + ps[rpaBe + Bi(pe + B2)]

Proof. Let us define the matrix & :Bq+1 + Aq + Cq given by

—(rp1 + B1) T B
§= 112 —(n2+B2) B2
gl 0 -7
there exists a stationary probability vector Y= (yo, y1,y2) of £ such that
Yé=0 and Yesz =1, (14)

< 1.

where ez =[1,1,1]7. Generally, e, is the column vector of dimension n with each element
set to one. By using Neuts [24], the necessary and sufficient condition for the stability is
as follows:

Yéqe3 < YBq+1e3. (15)
Solving equations (14) and (15), we get
(1 = r)pyo + paye + p3ys > AMyo + y1 + y2). (16)
A[y(p2 + B2) +rpa(y + B2) + Bi(p2 + Ba)] <1 (17)
Y pz 4+ yB2(1 — r)py + pa[rps Be + Bi(pe + B2)]
where
e+ B2)  qyrpr ypaPe 4 Bi(pe + B2)
Yo = ——— Y1 = y Y2 = ’
w w w
w = (p2+ B2) +rua(y + B2) + Bi(p2 + B2)
O

4.2.2. Steady State Solution. Let P represent the stationary probability vector of the gen-
erator Q, where 0 is the row vector with all elements set to zero and e, is the col-
umn vector of dimension n with each element set to one. The vector P is divided as
P = [Po, P1,P2, ], where P():[P07171},

P,=[Pn11,Qn1,1, Pro1,Qnoal, 1 <n<q—1,

P.=[Py1,1,Qn1,1,Pno2l, n>q.

Clearly, the sub-vectors of P corresponding to different levels satisfy the following equa-
tions when the stability condition is satisfied.

P, =P, R n> 41, (18)

where R is the minimal non-negative solution of the matrix quadratic equation represented
as

C,+RA,+R’B,;; = 0. (19)

Indeed, the Quasi-birth—death process can only be positive recurring if and only if the
spectral radius Sp(R) < 1. Neuts [24] created an iterative approach for computing R
numerically. We determine the successive approximation using the starting iteration Rg =
0, and calculate the successive approximations using the recurrence relation

R, = —(Cq + Rqu+1)A;1,n > 0.



P. VIJAYA LAXMI, G. ANJALIDEVI: ANALYSIS OF SECOND OPTIONAL SERVICE SYSTEM... 2277

The sequence {R,,} is non-decreasing and converges monotonically to the rate matrix
R. We terminate the iteration and return with the solution R when || R,,+1 — R, [|< €,
where € is tolerance error.

The governing set of differential equations is represented by equation PQ = 0 which is
expanded to generate the following set of equations

P()AO + P1B1 =0, (20)
Po1Cht + PrAy + PriBrn =0,1<n < g, (21)
P, 1Cy +PA, + P, 1By = 0,0 > g+ 1, (22)
and the normalizing condition
o0
Z P,e, = 1. (23)
n=0
From equations (20) to (22), after some mathematical manipulations, we get
Pn—l = Pn¢na 1<n< q+ 17 (24)
Pq+1[¢q+lcq + Aq + RBqH] =0, (25)

where
¢1=-Bi(Ag"), ¢n=-Bu(An_1+¢n1Cr2) !, 1<n< g+ 1
Using equations (23) and (24), we obtain

q+1g+1
}en = 1 (26)

Pg1 [Z [[ei+@-rR)™

1=1 i=l
Solving equations (25) and (26), yields Py11. The remaining steady state probabilities
can be obtained recursively in terms of P, using (18).

5. PERFORMANCE MEASURES

We provide several performance measures in this part that can reflect the behaviour of
the model for slight changes in the parameters.

e The likelihood that the backup server will replace the primary server is

00 q—1
Pms = § Pn,O,Q + § Qn,O,l
n=q n=1

e the likelihood of the main server getting repaired is

q—1 q—1
PT = § Pn,O,l + § Qn,O,l
n=1 n=1

e The likelihood that the system being empty is
Po=Foaa

e Expected system size when the main server is in normal busy periods of both FES
and SOS only is

oo oo
ElL)) =Y nPuii+ Y nQuia
n=1 n=1
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e When the service is delivered through a backup server only, the expected system
size is

e’} q—1
E[L = Z nPy, o2+ Z nQn,o,1
n=q n=1

e Total expected system size regardless of the state of the server is given by
E[L] = E[Ly) + E[Ly]

e The expected system size is when the primary server fails without replacing the
backup server.

q—1 q—1
Lgmp = E nPn,O,l + § nQn,O,l
n=1 n=1

6. COST ANALYSIS AND NUMERICAL INVESTIGATIONS

6.1. Cost Analysis. In this section, we construct a function of total estimated cost per
unit of time based on system parameters. It is crucial to minimize the cost as much as
possible by determining the optimal service rate. For the concerned queueing system, we
define the cost factors relative to the main activities, denoting the cost per unit of time
as follows:

c1 = while the main server is typically busy,

co = when a standby server is used in place of the main server,
c3 = when a server is idle,

c4 = the main server is being repaired,

c5 = the fixed cost per unit of time for the standby server.
Using these cost definitions, the total expected cost function per unit of time is given
by:
fl] = a1 E[Ly] + c2qE[Ls] + capipa Py + caPr + cs B Lgyp].
The cost minimization problem can then be expressed as:

flm] = minimize flpl.

The minimization of the total cost function depends on the performance measures and
system parameters. The cost components FE[Ly|, E[Ls]|, P., E[Lsny] and Py reflect the
probabilistic behavior of the system and directly affect the overall cost function based on
system utilization and repair rates.

6.2. Numerical Investigation. Graphs are used to illustrate various numerical examples
in this section. The model’s parameters are presumed to be A = 1.0, yu; = 6.0, u2 = 3.0,
ps =20, r=0.6,v=038, 51 =0.7, B2 = 0.4, q = 6, wherever necessary. For the cost
benefit evaluation of the system, we fix the various costs as ¢;=15, c0=20, c3=12, c4=25,
and c5=8.

Figure 3 depicts the effect of A on expected system size when the main server is in busy
period of FES (or) SOS (E[Ly]) for various SOS service rates of main server (ug). We
can see from the graph that for any ps, E[Ly| expectedly increases with the increase of \.
Furthermore, for fixed A, opposite effect is observed with increase of uo because of faster
services.

Figure 4 presents the impact of arrival rate A\ on expected system size when standby
server is working (E[Ls]) for different values of service rates of standby server (usz). The
graph shows that as A rises, F[L;] rises as well with fixed service rate pg. Further, for
fixed A, increase of p3 results in decrease of E[Lg], which is indeed true. Figure 5 shows
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Figure 6 illustrates the influence of repair rate () on the anticipated system size when
main server is broken down and the standby server is not operational (Lgy;). We can
observe from the graph that as 7 increases, Lgy,, decreases. This is due to the fact that
increase in the repair rate has a positive effect on the availability of the main server for
resuming his service, thereby decreases the system size and waiting time. For fixed ~y, the
system size increases due to the higher threshold value gq.
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FIGURE 7. Impact of uy on E[L] for various v values

Figure 7 presents the effect of service rate of main server during FES(u1) on E[Ly)
for various values of repair rate(y). It can be observed that for fixed ~, E[L| drops as
expected as pp increases. Additionally, with fixed w1, a rise in 7 increases the presence of
the primary server, resulting in a decrease in E[L|

Figure 8 illustrates the effect of the service rate u; on the total cost function f(u;) for
three different values of r. For each value of r, the cost initially decreases as the service
rate p; increases, reaching a minimum, and then starts to rise again as p; continues to
increase. This behavior is typical in queueing systems, where there is an optimal service
rate that minimizes total costs, balancing the trade-off between low and high service rates.
For r = 0.6, the system achieves the lowest minimum cost at a relatively lower service
rate. This suggests that with a smaller r, the system operates more efficiently, allowing



P. VIJAYA LAXMI, G. ANJALIDEVI: ANALYSIS OF SECOND OPTIONAL SERVICE SYSTEM... 2281

for cost minimization at a lower service rate. As r increases, both the minimum cost and
the optimal service rate rise, indicating that higher values of » make it more difficult to
minimize costs, thus requiring a higher service rate to achieve optimal performance.
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Figure 9 demonstrates the relationship between the arrival rate A and the cost function
for different breakdown rate values ;. As the arrival rate A increases, the cost function
consistently increases, regardless of the breakdown rate. This trend suggests that higher
arrival rates lead to increased costs due to higher system utilization and the increased
likelihood of system breakdowns or inefficiencies. The graph shows this behavior across
three different values of 51, where a higher breakdown rate generally results in a higher cost
for a given arrival rate. Thus, both the arrival rate and the breakdown rate significantly
influence the overall cost of the system.

7. CONCLUSIONS

This study focused on a Markovian queueing system that has cold standby servers,
SOS, server failures. We derived important theoretical and practical insights. Below,
we summarize the key results, practical implications and potential directions for future
research:
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e Key results and practical implications: The study employed a matrix geometric
approach to solve the solution, taking advantage of its block structure to obtain
steady state probabilities and performance measures. The stability condition and
the cost functions were derived. Graphs were depicted to analyze the influence of
various factors on the performance of the system.

e Future work: Potential extension of our model could more complex queueing sce-
narios, such as queue-dependent multi-server systems, differentiated vacation poli-
cies for servers, inclusion of customer impatience behaviors such as reneging, balk-
ing, and jockeying, as these phenomena can significantly affect system performance
and customer satisfaction.
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