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STRONG INCIDENCE DOMINATION INDEX IN FUZZY INCIDENCE

GRAPHS

KAVYA R. NAIR1∗, M. S. SUNITHA1, §

Abstract. This article introduces the concept of the domination index in fuzzy inci-
dence graphs (FIGs) through the use of strong incidence domination. It explores several
related notions, including fuzzy incidence irredundant set, fuzzy incidence independent
set, fuzzy incidence independent dominating set, upper strong incidence domination
number, strong incidence irredundance number, strong incidence upper irredundance
number, strong incidence independent domination number and strong incidence indepen-
dence number. The article examines inequalities involving these terms and introduces
the concept of the strong incidence domination degree. It defines the strong incidence
domination index in FIGs based on the domination degree of vertices and discusses
bounds for the index. The study extends to complete FIGs, complete bipartite FIGs,
fuzzy incidence cycles (FICs), fuzzy incidence trees (FITs), and the union and join of
FIGs.
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1. Introduction

In the field of graph theory, FIGs are a captivating extension of traditional graphs,
incorporating fuzzy set theory to manage uncertainty and vagueness often found in real-
world problems. Unlike traditional graphs, which are based on a clear, binary relationship,
many real-world connections are not strictly binary and can exist to varying degrees. The
FIGs tackle this by allowing extra attributes of vertex-edge relationships and allowing
vertices, edges, and pairs to have different levels of presence, represented by membership
values between 0 and 1. This method effectively captures the uncertainty and imprecision
in fields like social networks, biological systems, and decision-making processes, where
relationships or interactions are not always well-defined. Dinesh [1] introduced the term
FIG in 2016 and explored several of its properties. The concepts of connectivity and fuzzy
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end nodes were further developed by Mordeson et al. [2] Domination in graphs is a crucial
concept in graph theory. A dominating set is a set of vertices D such that every vertex
in V \D has neighbor in D. This concept is important because it helps in understanding
the control and influence within a network, optimizing resources, and solving problems
like network coverage, facility location, and social network analysis. In the context of
fuzzy incidence graphs, domination takes on additional significance due to the varying
degrees of relationships between vertices. Here, domination helps in modeling and ana-
lyzing systems where connections are not binary but exist in degrees, allowing for more
accurate and flexible solutions to real-world problems. There is a significant amount of
research available on fuzzy incidence graphs and the domination in fuzzy incidence graphs
in [1, 2, 3, 4, 5, 6]. Research on domination in vague and vague incidence graphs can be
referred in [20, 21, 22, 23].
A topological index, also referred to as a molecular structure descriptor, is a numerical
value that corresponds to the chemical composition and is utilized to correlate the chem-
ical structure with various physical properties, chemical reactivity, or biological activity.
Currently, numerous such indices exist in the literature. Two primary types of topological
indices are distance-based and degree-based indices. The first distance-based index was
the Wiener index W(G), introduced in 1974 by chemist Harry Wiener [8]. Following this,
many indices emerged due to their applications in chemistry, such as the Zagreb indices,
Randic, Harmonic, Gutman, and Schultz indices. Binu et al. [9] introduced Wiener and
connectivity indices into fuzzy graphs. Other topological indices, including the modi-
fied and hyper-Wiener, Gutman, Schultz, Zagreb, Harmonic, and Randic indices in fuzzy
graphs, are explored in other studies. Extensive research on indices can be found in the
literature [11, 12, 13, 14, 10]. Most of these works have been extended to other types of
fuzzy graphs, such as bipolar fuzzy graphs, fuzzy incidence graphs, and intuitionistic fuzzy
graphs [7, 15, 16, 17].
Due to the significance of domination and topological indices in graph theory, it was rele-
vant to merge these concepts to create a new topological index known as the domination
index [18]. The domination index is the sum of domination degree of vertices. The domi-
nation degree of a vertex is the minimum cardinality of a minimal dominating containing
that vertex. This idea was initially introduced in the context of graphs and fuzzy graphs
[18, 19]. The current work extends this concept to fuzzy incidence graphs. This work
integrates domination theory and topological indices by introducing a domination index
in FIGs based on minimal strong incidence dominating sets. This concept is motivated by
the broad applications of dominating sets across various domains.

A key application lies in facility allocation, where facilities are assigned to entities rep-
resented by vertices in a dominating set, ensuring complete coverage of the graphs. When
a specific vertex must have a facility, it becomes necessary to find a dominating set that
includes this vertex. To meet this requirement while maintaining minimality, identifying
the smallest minimal dominating set containing the vertex is crucial. Although finding a
minimum dominating set containing a specific vertex may not always be achievable, it is
always possible to determine a minimal one, highlighting the flexibility and utility of this
approach.

Furthermore, prioritizing certain vertices often depends on additional information de-
rived from fuzzy graphs, and more precisely, from fuzzy incidence graphs, which provide
a finer level of detail about vertex significance. This makes the extension of the domina-
tion index to fuzzy incidence graphs particularly important, as it allows for more accurate
modeling and decision-making in scenarios where prioritization of vertices is necessary.
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The article introduces the concept of the domination index in FIGs using strong inci-
dence domination. Section 3 explores the notions of fuzzy incidence irredundant set, fuzzy
incidence independent set, fuzzy incidence independent dominating set, upper strong inci-
dence domination number, strong incidence irredundance number, strong incidence upper
irredundance number, strong incidence independent domination number and strong inci-
dence independence number. Inequalities involving these defined terms are examined. The
idea of the strong incidence domination degree is introduced and illustrated. The strong
incidence domination index is defined in FIGs using the strong incidence domination de-
gree of vertices. Bounds for the index are discussed. The index is studied in complete
fuzzy incidence graphs, complete bipartite FIGs, FICs, FITs, and the union and join of
FIGs.

2. Preliminaries

The concepts and definitions are referred from [1, 2, 3, 4, 5, 6, 7].
In this article, the minimum operator is denoted by ∧, and the maximum operator is
denoted by ∨. An incidence graph(IG) is a triple G = (V, E , I) such that V is non-empty,
E ⊆ V × V and I ⊆ V × E .
The set I consists of elements of the form (a, ab) such that a ∈ V and ab ∈ E and are called
incidence pairs or simply pairs. An incidence subgraph, H of G is an IG having all its
vertices, edges, and pairs in G. An incidence walk from a′ to b′ where a′, b′ ∈ V∪E consists
of a sequence of vertices, edges and pairs starting at a′ and ending at b′. An incidence
path is an incidence walk with distinct vertices. A connected IG is such that each vertex
is joined to every other vertex by a path. A maximally connected incidence subgraph of
an IG is a component of the IG. Let G = (V, E) be a graph. Let ψ and τ be fuzzy subsets
of V and E respectively. Then G = (V, ψ, τ) is fuzzy graph(FG) of G if τ(cd) ≤ ψ(c)∧ψ(d)
for all c, d ∈ V. Also, if ξ(v′, e′) ≤ ψ(v′) ∧ τ(e′), for all v′ ∈ V and e′ ∈ E , then ξ is the

fuzzy incidence of G. And, G̃ = (ψ, τ, ξ) is called fuzzy incidence graph (FIG) of G. Here,
ψ∗, τ∗ and ξ∗ are defined as ψ∗ = {c ∈ V : ψ(c) > 0}, τ∗ = {e′ ∈ E : τ(e′) > 0}, and
ξ∗ = {(c, cd) ∈ I : ξ(c, cd) > 0}. If |ψ∗| = 1, then the FIG is called trivial. Let cd ∈ τ∗, if

(c, cd), (d, cd) ∈ ξ∗, then cd is an edge in G̃. A FIG is connected if each vertex is connected

to every other vertex by a path. A fuzzy incidence subgraph H̃ = (φ, η, ζ) of G̃ is such that

φ ⊆ ψ, η ⊆ τ, and ζ ⊆ ξ and H̃ is a fuzzy incidence spanning subgraph of G̃ if φ = ψ. If
φ = ψ, η = τ, and ζ = ξ for elements in φ∗, η∗, ζ∗ respectively, then H̃ is a subgraph of G̃.
A complete fuzzy incidence graph (CFIG) G̃ is such that ξ(c, cd) = ∧{ψ(c), τ(cd)} for all
(c, cd) ∈ V × E and τ(cd) = ψ(c)∧ ψ(d) for all (c, d) ∈ V × V. A pair (c, cd) is an effective

pair if ξ(c, cd) = ∧{ψ(c), τ(cd)}. In a FIG G̃, a path from s′ to t′ where s′, t′ ∈ ψ∗ ∪ τ∗, is
called an incidence path. The incidence strength of an incidence path is the minimum ξ
values of pairs in the path. Here, ξ∞(a, cd) or ICONNG̃(a, cd) is denoted as the incidence

strength of path from a to cd of greatest incidence strength. If G̃∗ = (ψ∗, τ∗, ξ∗) is a cycle,

then G̃ is a cycle. If in addition there exists no unique edge in G̃ with least weight then, G̃ is
a fuzzy cycle(FC). A fuzzy incidence cycle(FIC) is a FC G̃ = (ψ, τ, ξ) such that there is no

unique pair with the least weight. A FIG, G̃ = (ψ, τ, ξ) is a forest if (ψ∗, τ∗, ξ∗) is a forest

and a tree if it is also connected. If the FIG, G̃ = (ψ, τ, ξ) has a fuzzy incidence spanning

subgraph F̃ = (ψ, τ, ζ) which is a forest and ξ(c, cd) < ζ∞(c, cd) for (c, cd) ∈ ξ∗ \ ζ∗,
then G̃ is called a fuzzy incidence forest (FIF) and a fuzzy incidence tree (FIT), if it is

also connected. The spanning subgraph F̃ is uniquely determined for FITs and is called
unique maximum spanning tree. Let G̃ = (ψ, τ, ξ) be a FIG, ξ′∞(a, cd) is the greatest

incidence strength among the incidence strength of all paths from a to cd in G̃ \ (a, cd).
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If ξ(c, cd) > ξ′∞(c, cd), then the pair (c, cd) is α− strong. Pair (c, cd) is β− strong if
ξ(c, cd) = ξ′∞(c, cd), and is a δ− pair if ξ(c, cd) < ξ′∞(c, cd). A strong pair is α− strong
or β− strong pair. A strong incidence path(SIP) is a path consisting of only strong pairs.
A strong fuzzy incidence graph is a FIG consisting of only strong pairs. Two vertices c
and d are called strong incidence neighbors (SIN) if (c, cd) and (d, cd) are strong. The
strong incidence neighborhood of c, NIS(c) = {d ∈ V : dis SIN ofc}. Vertex c dominates d

if either c = d or c is SIN of d. Isolated vertex x is such that NIS(x) = ϕ. A set D̃ ⊆ V in

G̃ is a strong incidence dominating set (SIDS) if for any c ∈ V − D̃, ∃ some d ∈ D̃ such

that, c is a SIN of d. Here, W (D̃) is the weight of SIDS, D̃, defined as

W (D̃) =
∑
c∈D̃

ξ(c, cd)

where ξ(c, cd) is minimum weight of strong pairs at c and d ∈ NIS(c). The strong inci-

dence domination number (SIDN), denoted as γIS(G̃) or γIS is the minimum weight of

the SIDSs in the FIG, G̃. A minimum SIDS is a SIDS with minimum weight. A minimal
SIDS(MSIDS) D̃ is such that no other SIDS is properly contained by D̃. The Wiener index

(WI) of FIG G̃ is defined as:

WI(G̃) =
∑
c,d∈ξ∗

ψ(c)ψ(d)ds(c, d)

where ds(c, d) is the weight of the strong geodesics from c to d whose sum is minimum.

Let G̃1 = (ψ1, τ1, ξ1) and G̃2 = (ψ2, τ2, ξ2) be two FIGs. Then the join of G̃1 and G̃2 denoted

as G̃1 + G̃2 is the FIG, G̃ = (ψ, τ, ξ) such that:

ψ(c) =

{
ψ1(c) if c ∈ G̃1

ψ2(c) if c ∈ G̃2

τ(cd) =


τ1(cd) if c, d ∈ G̃1

τ2(cd) if c, d ∈ G̃2

ψ1(c) ∧ ψ2(d) if c ∈ G̃1 and d ∈ G̃2

ξ(c, cd) =


ξ1(c, cd) if (c, cd) ∈ G̃1

ξ2(c, cd) if (c, cd) ∈ G̃2

ψ1(c) ∧ ψ2(d) ∧ ξ1(c, cci) if c, ci ∈ G̃1 and d ∈ G̃2

where ci ∈ G̃1

3. Strong incidence domination index in fuzzy incidence graphs

The section begins with the definitions of fuzzy incidence irredundant set, fuzzy inci-
dence independent set, fuzzy incidence independent dominating set, upper strong incidence
domination number, strong incidence irredundance number, strong incidence upper irre-
dundance number, strong incidence independent domination number, and strong incidence
independence number. These terms are explained and illustrated using examples. Some
properties of the defined sets are explored. The notion of strong incidence domination
degree and strong incidence domination index are introduced. Some inequalities involving
the defined parameters are discussed. The study is extended to FIGs such as complete
fuzzy incidence graphs, complete bipartite fuzzy incidence graphs, FICs, FITs. Operations
such as join and union are also considered in the study.

Definition 3.1. Let G̃ be a FIG. The private neighborhood of a vertex c with respect to
set S̃ ⊆ V denoted as PNIS

[c, S̃] = NIS [c] \
⋃

d∈ϕ∗\c
NIS [d]. A set S̃ is called fuzzy incidence
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Figure 1. Illustration for irIS , IRIS , γIS ,ΓIS , iIS and βIS .

irredundant set (FIIRS) if for all c ∈ S̃ PNIS
[c, S̃] ̸= ϕ. A maximal fuzzy incidence irre-

dundant set (MFIIRS) S̃ is a FIIRS such that for any d ∈ V \ S̃, S̃ ∪ {d} is not a FIIRS.
If any one pair between vertices c and d is not strong then c and d are fuzzy incidence in-
dependent. A fuzzy incidence independent set (FIIS) M̃, is a set of vertices such that that

every pair of vertex in M̃ are fuzzy incidence independent. A fuzzy incidence independent
dominating set (FIIDS) is a set that is both fuzzy incidence independent and SIDS.

A SIDS S̃ is called maximal if S̃ is not properly contained in any other SIDS. The maxi-
mum weight of all MSIDSs is called the upper strong incidence domination number denoted
as ΓIS. The minimum of weight of maximal fuzzy incidence irredundant sets of a FIG,
G̃ is called strong incidence irredundance number irIS(G̃). The maximum of weight of

fuzzy incidence irredundant sets of a FIG, G̃ is called strong incidence upper irredundance
number IRIS(G̃). The minimum of weight of fuzzy incidence independent dominating sets

in FIG, G̃ is called strong incidence independent domination number iIS(G̃). The max-

imum of weight of fuzzy incidence independent sets in FIG, G̃ is called strong incidence
independence number βIS(G̃).

Example 3.2 gives the illustration of definitions in Definition 3.1.

Example 3.2. For the FIG, G̃ in Figure 1, a MFIIRS with minimum weight is {a2, a3,
a8, a9}. Hence irIS(G̃) = 0.8. A SIDS with minimum weight is {a2, a8, a6, a4, a10} with
weight 1. Hence γIS = 1. Similarly iIS = 1. Now, a FIIS with maximum weight is
{a1, a7, a5, a11, a9, a3} with weight 1.2. Hence βIS = 1.2. Similarly the set {a1, a7, a5, a11,
a9, a3} is a MSIDS having maximum weight as well as a FIIRS having maximum weight.
Therefore ΓIS = IRIS = 1.2.

Theorem 3.3. [6] Let G̃ be a FIG without isolated vertices and S̃ be a MSIDS in G̃. Then

V \ S̃ is a SIDS.

Now, some properties of the sets defined in Definition 3.1 is discussed.

Theorem 3.4. Let S̃ be a FIIS in G̃. Then S̃ is maximal iff it is a SIDS.

Proof. Suppose S̃ be a maximal FIIS. Let u be any vertex in V \ S̃. Then S̃ ∪ {u} is not

a FIIS. Therefore there exists a v ∈ S̃ such that (u, uv) and (v, uv) are strong pairs which

implies S̃ is a SIDS.
Conversely suppose that S̃ is a FIIS which is a SIDS. Clearly, since S̃ is SIDS, for any
vertex u in V \ S̃ there exists a v ∈ S̃ such that (u, uv) and (v, uv) are strong pairs. Hence

S̃ ∪ {u} is not a FIIS. Therefore S̃ is maximal FIIS. Hence the result. □

Theorem 3.5. Let S̃ be a maximal FIIS. Then S̃ is MSIDS.
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Proof. Suppose S̃ be a maximal FIIS. From Theorem 3.4, S̃ is a SIDS. Suppose S̃ is not
minimal. Then there exists a v ∈ S̃ such that S̃ \ {v} is a SIDS. This implies that there

exists a u ∈ S̃ which is a SIN of v. And this contradicts the fact that S̃ is a FIIS. Hence
S̃ is a MSIDS. □

Theorem 3.6. Let G̃ be a FIG without isolated vertices. If S̃ is a FIIRS, then V \ S̃ is a
SIDS.

Proof. Suppose G̃ be a FIG without isolated vertices and S̃ is a FIIRS. If V \ S̃ is not

a SIDS, there exists a vertex v ∈ S̃ that has no SIN in V \ S̃. Since S̃ is a FIIRS,

PNIS
[v, S̃] = {v}. It implies that v is isolated which is a contradiction. Hence V \ S̃ is a

SIDS. □

Theorem 3.7. Let S̃ be a SIDS in FIG G̃. Then S̃ is a MSIDS iff it is a FIIRS.

Proof. Suppose S̃ be a MSIDS in G̃. Assume v ∈ S̃ and PNIS
[v, S̃] = ϕ. It implies that

v and its SINs are dominated by vertices of S̃. Hence S̃ \ {v} is also a SIDS which is a
contradiction.
Conversely suppose that S̃ is a SIDS which is also a FIIRS. Assume that S̃ is not minimal.
Then there exists a vertex v ∈ S̃ such that S̃ \{v} is a SIDS. It implies that PNIS

[v, S̃] = ϕ
which is a contradiction to the assumption. Hence the result. □

Theorem 3.8. Let S̃ be a MSIDS in FIG G̃. Then S̃ is MFIIRS.

Proof. Suppose that S̃ is a MSIDS in FIG G̃. From Theorem 3.7, S̃ is a FIIRS. Assume
that S̃ is not MFIIRS. Then there exists v ∈ V \ S̃ such that S̃ ∪{v} is a FIIRS. It implies

that PNIS
[v, S̃ ∪ {v}] ̸= ϕ, i.e, there exists a vertex w which is a private neighbor of v with

respect to the set S̃ ∪ {v}. Hence w is not dominated by any other vertex in S̃ which is a

contradiction to the fact that S̃ is SIDS. Therefore S̃ is MFIIRS. □

From Theorem 3.4,3.5,3.6,3.7, and 3.8, Proposition 3.9 follows.

Proposition 3.9. For a FIG G̃, irIS ≤ γIS ≤ iIS ≤ βIS ≤ ΓIS ≤ IRIS .

Example 3.10. For FIG in Figure 1, S̃1 = {a1, a7, a5, a11, a9, a3} is a FIIRS with maxi-

mum weight. Now, V\S̃1 = {a2, a4, a8, a10, a6} is a SIDS. Similarly S̃2 = {a2, a8, a4, a6, a10}
is a minimum SIDS, hence a MSIDS. Clearly, PNIS

[ai, S̃2] ̸= ϕ, ∀ai ∈ S̃2. Therefore S̃2 is

a FIIRS. Now, if a1 is added to S̃2 then, PNIS
[a2, S̃2 ∪ {a1}] = ϕ. Similarly if a7 is added

to S̃2 then, PNIS
[a8, S̃2 ∪ {a7}] = ϕ. And if a5 or a11 is added PNIS

[a4, S̃2 ∪ {a5}] and
PNIS

[a10, S̃2∪{a11}] will be empty respectively. By the same argument if a3 or a9 is added

to S̃2 then, PNIS
[a6, S̃2 ∪ {ai}] = ϕ, i = 3 or 9. Hence S̃2 is a MFIIRS.

Theorem 3.11. Let G̃ be a FIG and u be a vertex in G̃ then, there always exists a MSIDS
containing u.

Definition 3.12 introduces the concept of the domination degree of a vertex in FIG. Here
the notion of SID is used.

Definition 3.12. Let G̃ be a FIG and u ∈ V(G̃). The strong incidence domination degree
(SIDD) of vertex u is minimum weight of MSIDSs containing u, denoted as siddG̃(u) or
simply sidd(u). Hence,

sidd(u) = ∧{W(D̃) | D̃ is a MSIDS containing u}.
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Figure 2. Illustration of SIDD

The maximum and minimum SIDD of a FIG can accordingly defined as

sidδ(G̃) = ∧{sidd(u) : u ∈ V(G̃)}

sid∆(G̃) = ∨{sidd(u) : u ∈ V(G̃)}.

Example 3.13 is the illustration of Definition 3.12.

Example 3.13. Consider the FIG in Figure 2. All pairs except (c, bc), (g, fg) and (h, hg)
are strong pairs. For vertex a the MSIDS containing a with minimum weight is {a, e, c}
and the weight of the MSIDS is 0.5 + 0.3 + 0.6 = 1.4. Hence sidd(a) = 1.4. For vertex b
the MSIDS containing b with minimum weight is {b, h, c} and the weight of the MSIDS is
0.4 + 0.3 + 0.6 = 1.3. Hence sidd(b) = 1.3. By the same argument sidd(c) =sid d(e) =sid

d(h) = 1.3, sidd(d) = 1.7, sidd(f) = 1.5 and sidd(g) = 1.4. Therefore, sidδ(G̃) = 1.3 and

sid∆(G̃) = 1.7.

From the definition of SIDD of a vertex Proposition 3.14 follows.

Proposition 3.14. Let G̃ be a FIG. Then

irIS ≤ γIS ≤sid d(u) ≤ ΓIS ≤ IRIS

∀u ∈ V(G̃).

Definition 3.15. A FIG, G̃ is w-strong incidence domination regular fuzzy incidence
graph (w-SIDRFIG) or simply SIDRFIG if every vertex in G̃ has equal SIDD, i.e, if for

every u ∈ V(G̃), sidd(u) = w.

Example 3.16. For the FIG in Figure 3, the pair (d, df) is a δ− pair. Here to dominate
vertex a either a or d is required. The case is similar for vertices b and c. Hence, a
SIDS contains at least 3 vertices. Suppose it is required to find a MSIDS with the least
weight consisting of vertex a, then the set {a, e, f} is a required set with weight 0.3. Hence,

sidd(a) = 0.3. A MSIDS containing vertex b with the least weight is {b, d, f}, with weight
0.3. Similarly for all vertices, the SIDD is 0.3. Hence the given FIG is 0.3− SIDRFIG.

Theorem 3.17. Let G̃ be a FIG. If u is a vertex not dominated by a MFIIRS M̃. Then
for some x ∈ M̃,

(1) PNIS
[x,M̃] ⊆ NIS(u).
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Figure 3. Strong incidence domination regular fuzzy incidence graph.

(2) For x1, x2 ∈ PNIS
[x,M̃], such that x1 ̸= x2, either (x1, x1x2) and (x2, x1x2) are

strong pairs or ∃ ai ∈ M̃ \ {x}, for i = 1, 2 such that xi is SIN of each vertex in

PNIS
[ai,M̃].

Proof. Let G̃ be a FIG and M̃ be a MFIIRS in G̃. Let u be the vertex not dominated
by M̃. Then M̃ ∪ {u} is a fuzzy incidence redundant set. Since u is not dominated

by M̃ u ∈ PNIS
[u,M̃ \ {u}]. Hence for some x ∈ M̃, PNIS

[x,M̃ ∪ {u} = ϕ. It implies

that NIS [x] \ NIS [{M̃ ∪ {u}} \ {x}] = ϕ. Therefore, NIS [x] ⊆ NIS [M̃ \ {x}] ∪ NIS [u],

i.e, NIS [x] \NIS [M̃ \ {x}] ⊆ NIS [u]. Since u /∈ PNIS
[x,M̃], it follows that PNIS

[x,M̃] =

NIS [x] \NIS [M̃ \ {x}] ⊆ NIS(u).

Now, let x1 ̸= x2 be two vertices in PNIS
[x,M̃] such that either (x1, x1x2) or (x2, x1x2) is

a non strong pair. Also, suppose for all ai ∈ M̃ \ {x} there exists bi ∈ PNIS
[ai,M̃] such

that either (x1, x1bi) or (bi, x1bi) is a non- strong pair. Now, consider the set M̃ ∪ {x1}.
The following are the observations:

x2 ∈ PNIS
[x,M̃ ∪ {x1}]

u ∈ PNIS
[x1, {x1} ∪ M̃] [ since x1, x2 ∈ PNIS

[x,M̃] ⊆ N(u)]

for each ai ∈ M̃ \ {x}, bi ∈ PNIS
[ai,M̃ ∪ {x1}].

The observations imply that the set M̃ ∪ {x1} is a FIIRS which is a contradiction. □

Definition 3.18 is the definition of strong incidence domination index of a FIG. Example
3.19 is the illustration for Definition 3.18. Theorem 3.20, Propositions 3.21, and 3.30 give
some bounds for SIDI of a FIG.

Definition 3.18. The strong incidence domination index (SIDI) of a FIG, G̃ is the sum

of SIDD of vertices of G̃, i.e,

SIDI(G̃) =
∑

u∈V(G̃)
sidd(u).

Example 3.19. For the FIG in Figure 2, 4 vertices have SIDD 1.3, 2 vertices have SIDD
1.4, and one vertex each with SIDD 1.5 and 1.7. Hence the SIDI of FIG in Figure 2 is
1.3× 4 + 1.4× 2 + 1.5 + 1.7 = 11.2.
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Theorem 3.20. For a FIG G̃ with SIDN γIS and USIDN ΓIS,

γIS(G̃) ≤
SIDI(G̃)

n
≤ ΓIS(G̃),

where n = |ψ ∗ |.

Proof. From Theorem 3.14, γIS(G̃) ≤ sidd(v) ≤ ΓIS(G̃), ∀v ∈ V(G̃). Hence,
∑

v∈V(G̃)
γIS(G̃) ≤∑

v∈V(G̃)
sidd(v) ≤

∑
v∈V(G̃)

ΓIS(G̃). Therefore, nγIS(G̃) ≤ SIDI(G̃) ≤ nΓIS(G̃). □

From Proposition 3.14, Proposition 3.21 follows:

Proposition 3.21. Let G̃ be a FIG with |ψ∗| = n, then

irIS ≤ γIS ≤ SIDI(G̃)
n

≤ ΓIS ≤ IRIS .

The SIDI is studied in CFIG, CBFIG, FICs, FITs in Theorem 3.22, 3.24, 3.26, and
3.27.

Theorem 3.22. Let G̃ be a CFIG with n vertices. Then,

SIDI(G̃) = nψ(v),

where v is the vertex with least weight, and n = |ψ∗|.

Proof. Let G̃ be a FIG with |ψ∗| = n. Let v be the vertex with the least weight. Then
any pair of the form (v, vu) or (u, vu) for any other vertex u ∈ ψ∗ will have weight ψ(v).

Since G̃ is a CFIG every vertex u ∈ ψ∗ has a pair of weight ψ(v) incident at u. Also,
each set {u}, u ∈ ψ∗ is a MSIDS. Hence the SIDD sidd(u) is ψ(v), ∀u ∈ ψ∗. Therefore,

SIDI(G̃) = nψ(v). □

Definition 3.23. A FIG G̃ = (ψ, τ, ξ) is said to be k−partite if the vertex set V can be
partitioned into r non-empty sets V1,V2, ...,Vr such that τ(uv) = 0 if u, v ∈ Vi, for i =
1, 2, ..., r. Also, if τ(uv) = ψ(u)∧ψ(v), ξ(u, uv) = ψ(u)∧τ(uv) and ξ(v, uv) = ψ(v)∧τ(uv)
for all u ∈ Vi and v ∈ Vj , i ̸= j, then G̃ is called a complete k− partite FIG. A complete
bipartite fuzzy incidence graph (CBFIG) is a complete 2-partite FIG.

Theorem 3.24. Let G̃ be a complete k-partite FIG with partitions M1,M2, ...,Mk with
|M1| > 1, | |M2| > 1,..., |Mk| > 1. Let the vertices in each partition be labeled as
u11, u12, ...u1m1 , u21, u22, ...u2m2 ,
...,uk1, uk2, ...ukmk

respectively such that ψ(u11) ≤ ψ(u12) ≤ ... ≤ ψ(u1m1), ψ(u21) ≤
ψ(u22) ≤ ... ≤ ψ(u2m2),..., ψ(uk1) ≤ ψ(uk2) ≤ ... ≤ ψ(ukmk

). Then

SIDI(G̃) = [2(m2 +m3 + ...+mr + 1) + (m1 − 1)]ψ(u11) + ψ(u12) + ...

+ ψ(u1r−1) + (m1 − (r − 1))ψ(ui)

where u11 is the vertex with least weight and ui is the rth minimum vertex in Mn n ̸= 1
such that ψ(u1r) ≤ ψ(ui) ≤ ψ(u1r+1) or ψ(u1r−1) < ψ(ui) ≤ ψ(u1r).

Proof. Let G̃ be a complete k-partite FIG with partitions M1,M2, ...,Mk with |M1| >
1, | |M2| > 1,..., |Mk| > 1. The least weight vertex u11 belongs to M1. To dominate
the entire vertex set only two vertices from different partitions are required. Now, any
pair of the form (u11, u11uj) or (uj , u11uj), for any uj /∈ M1 will have weight ψ(u11).
Hence for vertex u11 and uj the set {u11, uj} is a MSIDS having the least weight 2ψ(u11).
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Now consider the vertices in M1. Suppose the next minimum weight vertex is u12, then
weight of the pair at u12 is ψ(u12). Also, {u12, ui} is a MSIDS containing u12 having
weight ψ(u12) +ψ(u11). Similarly the weight of pair at u13,...,u1r−1 is ψ(u13), ..., ψ(u1r−1)
respectively. Suppose the rth minimum vertex ui ∈Mn, n ̸= 1. Then the weight of the pair
incident at vertices u1r, u1r+1, ..., u1m1 is ψ(ui). Also, the set {u1l, ui}, l ∈ {r, r+1, ...,m1}
is a MSIDS containing u1l, l ∈ {r, r + 1, ...m1} with the least weight ψ(ui) + ψ(u11). And
hence

SIDI(G̃) = [2(m2 +m3 + ...+mr + 1) + (m1 − 1)]ψ(u11) + ψ(u12) + ...

+ ψ(u1r−1) + (m1 − (r − 1))ψ(ui).

□

Definition 3.25. A FIC is β−saturated if every vertex has a β−pair incident to it.

Theorem 3.26. Let G̃ be a β−saturated FIC, such that the weight of the β−pair is ϖ.
Then

SIDI(G̃) = n

⌈
n

3

⌉
ϖ,

where n = |ψ∗|.

Proof. Let G̃ be a β−saturated FIC. In a FIC the weight of the β−pair will always be less
than the weight of an α−pair. Hence the weight contributed by each vertex to the MSIDS
is the weight of the β−pair which is ϖ. The domination number of a cycle on n vertices

is

⌈
n
3

⌉
. The SIDD of each vertex is

⌈
n
3

⌉
×ϖ. Hence SIDI(G̃) = n

⌈
n
3

⌉
ϖ. □

Theorem 3.27. Let G̃ be a FIG. If (u, uv) is a δ− pair, then SIDI(G̃) = SIDI(G̃ \
(u, uv)).

Proof. In a FIG a vertex u dominates vertex v if both (u, uv) and (v, uv) are strong
pairs. Also the weight of a pair (u, uv) is contributed to a SIDS only if u and v are SIN.
Therefore deletion of a β−pair will not affect the SID of the FIG. Hence, if (u, uv) is a

β−pair SIDI(G̃) = SIDI(G̃ \ (u, uv)). □

Moreover if (u, uv) is a β− pair SIDI(G̃) = SIDI(G̃ \ {(u, uv), (v, uv)}).

Corollary 3.28. Let G̃ be a FIT such that the underlying graph is not a tree. Then there
exists at least one pair (u, uv) ∈ ξ∗ such that SIDI(G̃ \ (u, uv) = SIDI(G̃).

Proof. Let G̃ be a FIT such that the underlying graph is not a tree. Hence G̃ contains
α−pairs and at least one δ−pair. Suppose that the pair (u, uv) is one δ− pair. Then by

Theorem 3.27, SIDI(G̃ \ (u, uv) = SIDI(G̃). Hence there exists at least one pair (u, uv)

such that SIDI(G̃ \ (u, uv) = SIDI(G̃). □

Corollary 3.29. Let G̃ be a FIT, if T̃ is the unique maximum spanning tree of G̃, then
SIDI(G̃) = SIDI(T̃ ).

Proof. The unique maximum spanning tree T̃ is obtained from G̃ by deleting the pair
(u, uv) of a cycle such that ξ(u, uv) < ICONNG̃\(u,uv)(u, uv), i.e, by deleting all the δ−
pairs of G̃. By Theorem 3.27, the deletion of a δ− pair does not affect the SIDI of G̃.
Applying Theorem 3.27 to each δ− pair in G̃, the SIDI of T̃ is obtained as SIDI(G̃) =

SIDI(T̃ ). □
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Proposition 3.30. Let G̃ be a connected SFIG, then SIDI(G̃) ≤ |ψ∗|WI(G̃), where
ψ(v) = 1 ∀v ∈ ψ∗ and |ψ∗| > 1

Proof. Let G̃ be a connected SFIG such that ψ(v) = 1∀v ∈ ψ∗. Let v be any vertex in ψ∗

and D̃u be a MSIDS containing v with the least weight.
Suppose that D̃v = {v, v1, v2, ..., vn}. Since D̃v is minimal each vertex in D̃v has a pri-

vate neighbor, i.e, for each x ∈ D̃v, either there exists y such that y ∈ PNIS
[x, D̃v] or

PNIS
[x, D̃v] = {x}. Among v, v1, v2, ...vk let x1, x2, ..., xl be vertices having at least one

distinct vertex say z1, z2, ...zl respectively in the private neighborhood and let y1, y2, ...yl′
be vertices such that PNIS

[yi, D̃v] = {yi}, l + l′ = k + 1, i = 1, 2, ..., l′. For the vertices in

D̃ the minimum of weight of pairs incident at each vertex is contributed to the weight of
D̃. The minimum of weight of pairs at xi is less than or equal to (xi, xizi). Now, consider
any two vertices among y1, y2, ..., yl′ . Any path from yi to yj , 1 ≤ i, j ≤ l′, i ̸= j contains
at least one vertex yi′ such that yi′ /∈ NIS [z], z ∈ {z1, z2, ..., zl}. Therefore, ∃ at least two

edges in each path. Suppose there is only one vertex y such that PNIS
[y, D̃v] = {y}. Then

y is isolated in G̃[D̃v]. Since G̃ is connected, consider any path from y to vi, then ∃ at least
two edges in such paths. And the pair weight contributed by y is distinct from ψ(xizi).

Hence sidd(v) ≤ WI(G̃). □

Definition 3.31. Two FIGs, G̃1 = (ψ1, τ1, ξ1) and G̃2 = (ψ2, τ2, ξ2) are fuzzy incidence
isomorphic if there exists a bijective map ξ : V1 → V2 such that ψ1(u) = ψ2(ξ(u)), τ1(uv) =
τ2(ξ(u)ξ(v)), and ξ1(u, uv) = ξ2(ξ(u), ξ(u)ξ(v)) ∀u, v ∈ V1.

Theorem 3.32. Let G̃1 = (ψ1, τ1, ξ1) and G̃2 = (ψ2, τ2, ξ2) be fuzzy incidence isomorphic.

Then SIDI(G̃1) = SIDI(G̃2).

Proof. Let G̃1 = (ψ1, τ1, ξ1) and G̃2 = (ψ2, τ2, ξ2) be fuzzy incidence isomorphic and ξ
be the bijection from V1 to V2 such that ψ1(u) = ψ2(ξ(u)), τ1(uv) = τ2(ξ(u)ξ(v)), and

ξ1(u, uv) = ξ2(ξ(u), ξ(u)ξ(v)) ∀u, v ∈ V1. Since G̃1 and G̃2 are isomorphic the weight of
pairs incident at v and ξ(v) are same. Hence, the minimum of weight of pairs incident at
u and ξ(v) are same. Hence sidd(v) =sid d(ξ(v)).

SIDI(G̃1) =
∑

u∈V(G̃1)

sidd(u)

=
∑

ξ(u)∈V(G̃2)

sidd(ξ(u))

= SIDI(G̃2)

Therefore, SIDI(G̃1) = SIDI(G̃2). □

Now, SIDI is explored in union and join of FIGs in Theorem 3.34, 3.35, and 3.36.

Definition 3.33. Let G̃1 = (V1, E1, I1, ψ1, τ1, ξ1) and G̃2 = (V2, E2, I2, ψ2, τ2, ξ2) be two

FIGs. The the union G̃ = G̃1 ∪ G̃2 is a FIG with V = V1 ∪V2, E = E1 ∪E2 and I = I1 ∪I2.
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Here V1 ∩ V2 = ϕ. Also ψ = ψ1 ∪ ψ2, τ = τ1 ∪ τ2 and ξ = ξ1 ∪ ξ2 are defined as follows:

ψ(a) =

{
ψ1(a) if a ∈ V1

ψ2(a) if a ∈ V2

τ(ab) =

{
τ1(ab) if ab ∈ E1
τ2(ab) if ab ∈ E2

ξ(a, ab) =

{
ξ1(a, ab) if (a, ab) ∈ I1
ξ2(a, ab) if (a, ab) ∈ I2

Theorem 3.34. Let G̃ =
m⋃
i=1

G̃i be the disjoint union of FIGs G̃1, G̃2, ..., G̃m, then

SIDI(G̃) =
m∑
i=1

SIDI(G̃i) +
m∑
i=1

(
n \ |V(G̃i)|

)
γIS(G̃i),

where n = |V(G̃)| and |V(G̃i)| is the number of vertices in each component G̃i.

Proof. Let G̃ =
m⋃
i=1

G̃i be the disjoint union of FIGs G̃1, G̃2, ..., G̃m. Consider any compo-

nent G̃j of G̃ and let v be a vertex of G̃j . A SIDS of G̃ is a disjoint union of SIDSs of each

component G̃i. Let D̃v be the MSIDS corresponding to sidd(v). For all other components

other than G̃j , the SIDS contributed from each G̃j is the minimum SIDS since it is the
least weight SIDS satisfying the minimality condition. And, the SIDS contributed from
G̃j is the SIDS corresponding to sidd(v) in G̃j . Hence, by adding sidd(v) of each vertex in

G̃j , the SIDI(G̃j) is obtained with the SIDN of each other components G̃j being added

n \ |V(G̃j)| times. Therefore

SIDI(G̃)

=

m∑
i=1

SIDI(G̃i) + V(G̃1)(γIS(G̃2) + γIS(G̃3) + ...+ γIS(G̃m)) + V(G̃2)(γIS(G̃1)+

γIS(G̃3) + ...+ γIS(G̃m)) + ...+ V(G̃m)(γIS(G̃1) + γIS(G̃2) + ...+ γIS(G̃m−1))

=
t∑
i=1

SDI(G̃i) + γIS(G̃1)(V(G̃2) + V(G̃3) + ...V(G̃m)) + γIS(G̃2)(V(G̃1) + V(G̃3)+

...V(G̃m)) + ...+ γIS(G̃m)(V(G̃1) + V(G̃2) + ...V(G̃m−1))

=
t∑
i=1

SDI(G̃i) +
m∑
i=1

(
n \ |V(G̃i)|

)
γIS(G̃i).

□

Theorem 3.35. Let G̃1 and G̃2 be two FIGs with m and n vertices respectively such that
the join G̃1 + G̃2 is strong. Then,

SIDI(G̃) =
∑

ui∈V (G̃1)
1≤i≤m

∧{W({ui, v}),W(D̃ui)}+
∑

vi∈V (G̃2)
1≤i≤n

∧{W({u, vi}),W(D̃vi)}

where v in the first summation is vertex in G̃2 having the least weight pair incident at it
and u in the second summation is vertex in G̃1 having the least weight pair incident at
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it. And D̃ui is any MSIDS containing ui in G̃1 with least weight and D̃vi is any MSIDS

containing vi in G̃2 with least weight.

Proof. Let G̃1 and G̃2 be two FIGs with m and n vertices respectively such the join G̃1+ G̃2

is strong. Let {u1, u2, ..., um} be the vertices of G̃1. Let D̃ui , 1 ≤ i ≤ m be a MSIDS in

G̃1 containing ui with least weight. Also assume that v is a vertex in G̃2 having the least
weight pair incident at it. If W (D̃ui) < W ({ui, v}) then, since the join is strong D̃ui can

be considered as the MSIDS containing ui in G̃ also. If W (D̃ui) > W ({ui, v}) then, {ui, v}
is a MSIDS with least weight in G̃. The argument follows for the vertices in G̃2. The case
is similar for G̃2 also. Hence, the

SIDI(G̃) =
∑

ui∈V (G̃1)
1≤i≤m

∧{W ({ui, v}),W (D̃ui)}+
∑

vi∈V (G̃2)
1≤i≤n

∧{W ({u, vi}),W (D̃vi)}

□

Theorem 3.36. Let G̃1 and G̃2 be two SFIGs with m and n vertices respectively such that
the join G̃ = G̃1 + G̃2 is strong. Then, SIDI(G̃) ≤ SIDI(G̃1) + SIDI(G̃2).

Proof. Let G̃1 and G̃2 be two SFIGs with m and n vertices respectively such that join
G̃ = G̃1 + G̃2 is strong. Since the join is strong, every MSIDS of G̃1 or G̃2 is a SIDS of G̃.
Hence the MSIDS containing vertex a, a ∈ V(G̃1) or (V(G̃2)) considered while calculating

the SIDI of G̃1 or (G̃2) is also a SIDS containing a in G̃. Also, since the join is strong all

sets of the form {u, v} where u ∈ (G̃1) and v ∈ (G̃2) are also SIDSs in G̃. Since the sidd(a)
of a vertex a is the minimum of weight of MSIDSs containing a, siddG̃(a) ≤sid dG̃i

(a), i =

1, 2. Also, since the vertices of G̃ is the union of vertices of G̃1 and G̃2, it follows that
SIDI(G̃) ≤ SIDI(G̃1) + SIDI(G̃2). □

4. Application

Suppose a state is suddenly dealing with an outbreak of a contagious disease. The gov-
ernment is trying to provide the necessary resources for testing in labs located in various
parts of the city. If a part of the city is highly active, with significant incoming and out-
going of people, it has a higher chance of becoming a containment zone. Therefore, these
areas require more testing resources than others. By using the strong incidence domination
degree, it can be determined where resources should be allocated to ensure that labs in the
most likely containment zones receive the necessary support. This method also ensures
that people from all other parts of the city benefit, either directly or through labs in the
nearby areas. Consider a FIG model of a city as in Figure 4. Let the vertices represent
prominent parts of the city, with the vertex weight corresponding to the population of each
part, assumed to be one for simplicity. The edges represent the connectivity between these
parts, and their weights indicate the number of people testing for the contagious disease
between the connected parts. A pair weight (b1, b1b2) represents the number of people
between parts b1 and b2 testing if resources are provided at the labs in part b1. Suppose
there is a condition that the labs in part b1 must receive all the resources, as b1 is a very
prominent and high-risk area of the city. To meet this requirement while ensuring that
people from other parts also benefit, we need to find a MSIDS containing b1. The weight
of the MSIDS represents the minimum number of people testing at the corresponding labs
in the MSIDS.
Here a MSIDS containing b1 with the least weight is {b1, b7} with weight 0.6 which means
if the resources are provided at b1 and b7 the minimum number of people testing from
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Figure 4. FIG model of a city.

b1 and b7 is 0.6. However, it is always necessary to ensure that the maximum number of
people benefit from the provided resources. Therefore, we also need to consider other pos-
sibilities. The set {b1, b4, b5} is a MSIDS containing b1 with maximum weight 1.2. Hence if
the resources are provided at b1, b4, and b5 maximum number of people will get the benefit.

The concept of SIDD extends naturally to various practical applications, such as facility
allocation and network security. For instance, in a data flow network, vertices represent
components like servers, routers, and their weights correspond to their data capacities.
Edges represent the data flow between these components, with edge weights indicating
normalized data flow. The pair weight between vertex u and edge uv signifies the data
flow from u to v. In scenarios where network protection is critical, and specific nodes, such
as u, demand maximum security, SIDD proves invaluable. By identifying the MSIDS that
contains u, monitoring devices can be strategically placed at these nodes. This ensures
comprehensive network protection while SIDD quantifies the minimum data safeguarded.

Thus, the concept of SIDD is broadly applicable to any situation requiring domination-
based strategies with an added priority condition for specific vertices. It provides a robust
framework for addressing practical problems like network monitoring, resource allocation,
and secure communication.

5. Conclusion

The article integrates two fundamental concepts in graph theory- domination and topo-
logical indices through the introduction of the domination index in FIGs defined using
MSIDSs. The extension to FIGs, effectively addresses ambiguity and uncertainty, en-
hancing its applicability to real-world problems such as facility allocation. The ability to
prioritize specific vertices using information derived from FIGs underscores the flexibility
and significance of this approach. The incorporation of parameters like strong incidence
domination and their associated bounds enhances the analytical capabilities within FIG
theory, enabling a deeper understanding of relationships and dependencies in systems
characterized by imprecision.

The article studies the concept of the domination index within FIGs, particularly
through the framework of strong incidence domination. It extends traditional graph-
related terms in domination and irredundance, such as the fuzzy incidence irredundant
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set, fuzzy incidence independent set, fuzzy incidence independent dominating set, upper
strong incidence domination number, strong incidence irredundance number, strong inci-
dence upper irredundance number, strong incidence independent domination number, and
strong incidence independence number. The study also examines inequalities and bounds
for these parameters, offering valuable insights into their mathematical properties and
potential applications.

Extending the analysis, the study applies these concepts to various FIG structures,
including CFIGs, CBFIGs, FICs, FITs, and their unions and joins. This comprehensive
approach provides a robust framework for future research in fuzzy graph theory while lay-
ing the groundwork for practical applications in graph-based models involving uncertainty
and prioritization.
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