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A NOVEL APPROACH ON m-POLAR FUZZY SET WITH DOMBI

POWER AGGREGATION OPERATORS TO SOLVE

MULTI-ATTRIBUTE DECISION-MAKING PROBLEMS

KRISHNA RANI MAITY1, MADHUMANGAL PAL2,3∗, §

Abstract. This article introduces new aggregation operators by combining Dombi and
power operators, resulting in m-polar fuzzy Dombi power averaging and geometric opera-
tors, with several key properties analyzed. A novel approach is then developed using these
combined operators to assist in selecting the best company for stock market investments.
Unlike existing research, which primarily utilizes homogeneous sub-characteristics for
each attribute in the mPF environment, this study emphasizes the use of heterogeneous
sub-characteristic collections in our application to address complex, uncertain decision-
making challenges. Finally, the proposed approach is compared to various established
operators and the MABAC method, with an analysis of its advantages and limitations.

Keyword: m-polar fuzzy set, Dombi and power aggregation operators, MABAC ap-
proach, Multi-attribute decision-making.
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1. Introduction

1.1. Research background and related works. An m-polar fuzzy set extends fuzzy
set theory to address complex scenarios with multiple dimensions of uncertainty and pref-
erence. Zadeh introduced FSs in 1965 [38] to handle vagueness by assigning a membership
degree between 0 and 1 to each element. Atanassov developed IFSs in 1986 [7], adding a
NMV alongside the MV, with their sum not exceeding 1. Later, in 1989, Atanassov and
Gargov introduced IVIFS [32], where both MV and NMV are represented as intervals, ad-
dressing incomplete but not indeterminate information. To handle bipolar perspectives,
Zhang developed the concept of bipolar fuzzy sets (BFSs) [9], where membership has two
parts: a positive degree on [0, 1] and a negative degree on [-1, 0]. BFSs are widely used in
decision-making applications, including medical sciences. Chen later expanded this idea,
proposing mPF sets as a generalization of BFSs, designed to address even more nuanced,
multi-dimensional uncertainty in decision-making. mPFSs provide a robust framework
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for situations where decisions are influenced by multiple criteria, each with unique un-
certainties. This added flexibility makes them ideal for complex real-world applications,
enhancing accuracy in modeling intricate decision-making processes.

AOs are mathematical tools that combine multiple inputs into a single output, widely
applied in fields like data fusion, decision-making, and information retrieval. Commonly
constructed using TN and TCN operators, AOs include those defined by Archimedean
[26], Hamacher [29], Einstein [12], Bonferroni mean [8], Dombi [11], and Frank [33]. Yager
introduced OWA operators in 1988 [36], which have since been applied to various set types,
leading to advances in MADM. Notable works include Beliakov et al. [8], He et al. [13],
and others.

Power averaging operators, introduced by Yager in 2001 [37], inspired further studies,
including those by Wei [30], Wang [28], and Jana [17, 18, 19, 20]. Xu and Yager [35]
later developed a version where weight vectors depend on input values. Dombi’s versatile
operations, proposed in 1982 [11], were later applied by Liu et al. [23] to solve MADM
problems. Jana et al. [22] further used Dombi operations with picture fuzzy numbers
for MADM. In 2024, Ruan and Chen [25] applied power Bonferroni operators to yield
flexible MADM results. Recently, Jana et al. [15, 16] combined Dombi power aggregation
for Pythagorean fuzzy sets, though no one has applied this approach in m-polar fuzzy
environments. Waseem [29] developed mPF Hamacher AOs for MADM, and Akram et al.
[1, 2, 3, 4, 5, 6] solved numerous MADM problems using mPFS-based approaches.

Despite progress, there remains a gap in research on a specific MADMmethod using var-
ied operators for mPFs, especially in developing new mPF aggregation operators with the
combined Dombi power operator. Additionally, in the existing applications, to aggregate
the collections of mPFNs, homogeneous sub-characteristic collections have been utilized.
There is a major problem whether the selection process contains so many attributes in
which every attribute contains different numbers of sub-attributes. To address this gap,
this study uses heterogeneous sub-characteristic collections to select best company in the
stock market in which so many key words.

Notations and symbols In Table 1, some notations and abbreviation forms are given
which are used in the entire paper.

Table 1. List of abbreviations.

Full name Abbreviation Full name Abbreviation
Membership value MV Multi-attribute decision-making MADM

Non membership value NMV Multi-criteria decision-making MCDM
Fuzzy set FS t-norm and t-conorm TN and TCN

Intuitionistic fuzzy set IFS m-polar fuzzy Dombi weighted avaraging mPFDPWA
Interval valued intuitionistic fuzzy set IVIFS m-polar fuzzy Dombi weighted geometric mPFDPWG

Bipolar fuzzy set BFS m-polar fuzzy Dombi power weighted averaging mPFDPWA
m-polar fuzzy set mPFS m-polar fuzzy Dombi power weighted geometric mPFDPWG

Aggregation operator AO m-polar fuzzy Einstein weighted averaging mPFEWA
Ordered weighted aggregation OWA m-polar fuzzy Einstein weighted geometric mPFEWG

1.2. Motivation of the work. To write this article, we are motivated from the following
issues:

(1) The stock market is essential for India’s economic growth, as it provides a plat-
form for companies to raise capital for expansion, innovation, and job creation.
Additionally, the stock market reflects economic stability and investor confidence,
influencing economic policies that aim for sustainable growth. This, collectively,
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strengthens India’s economic development and global competitiveness. So, inves-
tigation in the stock market is very essential. To select the best company in the
market, each company contain so many key words in that case FS, BPFS, and IFS
can not handle, that is why we have used mPFS for this type of decision-making
problems.

(2) Real-world decision problems often involve inter-dependencies among criteria. The
combination of Dombi and power averaging operators can effectively capture these
inter-dependencies, providing a more comprehensive aggregation mechanism that
reflects the true nature of the decision context.

(3) The proposed combination of two operators overcomes the limitations of existing
operators and make the optimal outcomes more accurate and definite.

1.3. Novelty and contribution of the work. The present study focuses to solve
MADM problems by a novel process and combining Dombi and power aggregation op-
erators on mPF information. Unlike previous research, which primarily used homo-
geneous sub-characteristics within each mPFN, our method incorporates heterogeneous
sub-characteristics to aggregate mPF information. This innovation enhances the handling
of complex, uncertain decision-making scenarios and our approach apart from existing
methods.

The primary contributions of this article are as follows:

(1) In relation to some new mPF Dombi power operators, a novel MADM method is
taken into consideration.

(2) A case study is performed for stock market and solved this problem to show ap-
plicability of the proposed method.

(3) At last, the validity and strengths of this combined operator are discussed through
comparative analysis.

1.4. Framework of this paper. The study is organized as follows: First, we present
essential definitions formPFNs and their basic operations. In Section 3, we explore Dombi
and power operators, as well as Dombi operations for mPFNs. Section 4 introduces the
combination of Dombi and power aggregation operators, resulting in new operators like the
mPFDPWA and mPFDPWG operators, along with their properties. Section 5 describes
an algorithm for solving MADM problems using mPFNs and these operators. A very
interesting application is provided in Section 6 to demonstrate feasibility. In Section 7,
we validate the approach using MABAC, followed by a comparison and analysis of its
advantages and limitations in Section 8. The paper concludes in Section 9.

2. Preliminaries

Some required definitions are introduced about mPF set on the finite non empty set ζ.

Definition 2.1. [9] An mPFS χ on the reference set ζ expressed as χ : ζ → [0, 1]m

defined by χ(z) = ⟨ σ1, σ2, . . . , σm ⟩ = ⟨
∑
σ1⟩ , z ∈ ζ where, r-th component σr is defined

by projection mapping pr◦χ(z) : [0, 1]m → [0, 1]. Here,
∑
σ1 is not the sum of components,

it represents all components σ1, σ2, . . . , σm. Here all components of mPFS represent only
membership values and m is any arbitrary positive integer.

Definition 2.2. Let χ = ⟨
∑
σ1⟩ = ⟨σ1, σ2, . . . , σm⟩ and ψ = ⟨

∑
ρ1⟩ = ⟨ρ1, ρ2, . . . , ρm⟩ be

two mPFNs. Then some operations on mPFNs are defined in the following:

(1) χ⊕ ψ = ⟨
∑

(σ1 + ρ1 − σ1ρ1)⟩;
(2) χ⊗ ψ = ⟨

∑
(σ1ρ1)⟩;
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(3) χc = ⟨
∑

(1− σ1)⟩, χc is the complement of χ;
(4) δχ =

〈∑
(1− (1− σ1)

δ)
〉
, δ > 0;

(5) (χ)δ =
〈∑

(σδ1)
〉
, δ > 0;

(6) χ ⊆ ψ iff σγ ≤ ργ , for every γ = 1, 2, . . . ,m;
(7) χ ∩ ψ = ⟨

∑
min{σ1, ρ1}⟩;

(8) χ ∪ ψ = ⟨
∑
max{σ1, ρ1}⟩;.

For ranking any two mPFNs, score and accuracy function are formulated as follow:

Definition 2.3. [4] Let χ be an mPFN. Then score and accuracy function of an mPFN
are respectively defined below:

∆(χ) =
1

m
(

m∑
γ=1

σγ), ∆(χ) ∈ [0, 1], (1)

Γ(χ) =
1

m
(

m∑
γ=1

(−1)γ(σγ − 1), Γ(χ) ∈ [−1, 1]. (2)

Definition 2.4. Any two mPFNs χ and ψ can be ordered from the following ordered
relation that are defined based on the above score function.

(1) χ > ψ if ∆(χ) > ∆(ψ);
(2) χ < ψ if ∆(χ) < ∆(ψ);
(3) If ∆(χ) = ∆(ψ) , then

• χ > ψ if Γ(χ) > Γ(ψ);
• χ < ψ if Γ(χ) > Γ(ψ);
• χ = ψ if Γ(χ) = Γ(ψ).

3. Dombi and power operators

The definitions of Dombi TN and Dombi TCN are provided below.

Definition 3.1. [17] The Dombi TN and TCN between any two real numbers h and k are
defined by

D(h, k) =
1

1 + {(1−h
h )∂ + (1−k

k )∂}
1
∂

, (3)

Dc(h, k) = 1− 1

1 + {( h
1−h)

∂ + ( k
1−k )

∂}
1
∂

, (4)

where, ∂ ≥ 1 is any parameter and h, k ∈ [0, 1].

Along with Dombi TN and TCN some essential Dombi operations on mPFNs are given
below:

Definition 3.2. Let χ = ⟨
∑
σ1⟩ and ψ = ⟨

∑
ρ1⟩ be two mPFNs. Then their some

operations including Dombi operator are defined as:

(1) χ
⊕
ψ =

〈∑(
1− 1

1+{( σ1
1−σ1

)∂+(
ρ1

1−ρ1
)∂}

1
∂

)〉
;

(2) χ
⊗
ψ =

〈∑(
1

1+{( 1−σ1
σ1

)∂+(
1−ρ1
ρ1

)∂}
1
∂

)〉
;

(3) ℏχ =

〈∑(
1− 1

1+{ℏ( σ1
1−σ1

)∂}
1
∂

)〉
, ℏ > 0;



K. R. MAITY, M. PAL: M -POLAR FUZZY SET WITH DOMBI POWER AGGREGATION. . . 2317

(4) (χ)ℏ =

〈∑(
1

1+{ℏ( 1−σ1
σ1

)∂}
1
∂

)〉
, ℏ > 0.

Definition 3.3. [17] Consider f1, f2, . . . , fb be any real numbers. Then power averag-
ing(PA) operator is defined by PA : Rb → R such that

PA(f1, f2, . . . , fb) =

∑b
p=1(1 + S(fp))fp∑b
p=1(1 + S(fp))

, (5)

where, S(fp) =
∑b

p=1,p ̸=q Spt(fp, fq), and Spt(fp, fq) represents the support between fp
and fq and that obeys three conditions :

(1) Spt(fp, fq) ∈ [0, 1],
(2) Spt(fp, fq) = Spt(fq, fp),
(3) Spt(fp, fq) ≥ Spt(fk, fl) if |fp − fq| < |fk − fl|

i.e., third condition says that support between two real numbers is more strong when
two values are more closer.

Definition 3.4. [17] The power geometric operator on the real numbers g1, g2, . . . , gb de-
fined by the expression

PG(g1, g2, . . . , gb) =
b∏

t=1

(gt)
(1+S(gt))∑b
t=1(1+S(gt)) , (6)

where, S(gt) is previously defined.

4. Combination of Dombi and power aggregation operators

Combining the Dombi operator with the power operator, it is possible to leverage their
respective strengths to model complex decision scenarios more effectively. Researchers
have explored the synergy between two aggregation operators. Here, we apply on the set
of mPFNs.

4.1. Arithmetic aggregation operators.

Definition 4.1. Let χp = ⟨σ1p, σ2p, . . . , σmp⟩ = ⟨
∑
σ1p⟩, p = 1, 2, . . . , v, be the collection

of mPFNs. Then mPF Dombi power averaging (mPFDPA) operator is a mapping defined
by

mPFDPA(χ1, χ2, . . . , χv) =

v⊕
p=1

(1 + S(χp))χp∑v
p=1(1 + S(χp))

. (7)

Based on the above combined operator some theories are deduced.

Theorem 4.1. Let χϖ, ϖ = 1, 2, . . . , v be the collections. Then using mPFDPA operator,
the aggregated value of collections is also an mPFN.

Mathematically, mPFDPA(χ1, χ2, . . . , χv) =
⊕v

ϖ=1
(1+S(χϖ))χϖ∑v
ϖ=1(1+S(χϖ))

=

〈(
1− 1

1+{
∑v

ϖ=1
(1+S(χϖ))∑v

ϖ=1(1+S(χϖ))
(

σ1ϖ
1−σ1ϖ

)∂}
1
∂

)
, . . . ,

(
1− 1

1+{
∑v

ϖ=1
(1+S(χϖ))∑v

ϖ=1(1+S(χϖ))
( σmϖ
1−σmϖ

)∂}
1
∂

)〉

=

〈∑1− 1

1 + {
∑v

ϖ=1
(1+S(χϖ))∑v

ϖ=1(1+S(χϖ))
( σ1ϖ
1−σ1ϖ

)∂}
1
∂

〉 (8)
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Proof: This can be easily proved from the first and third operations of Definition 3.2.

Theorem 4.2. Let χϖ, ϖ = 1, 2, . . . , v be a collections of mPFNs. Then after use of
mPFDPWA operator with weight vector ϑ = (ϑ1, ϑ2, . . . , ϑv)

T (ϑϖ ∈ [0, 1]) and (
∑v

ϖ=1 ϑϖ =
1) on mPFNs, the aggregated value is also a mPFN.

mPFDPWAϑ(χ1, χ2, . . . , χv) =
v⊕

ϖ=1

(ϑϖ(1 + S(χϖ))χϖ)∑v
ϖ=1(ϑϖ(1 + S(χϖ)))

=

〈∑1− 1

1 + {
∑v

ϖ=1
(ϑϖ(1+S(χϖ)))∑v

ϖ=1(ϑϖ(1+S(χϖ)))
( σ1ϖ
1−σ1ϖ

)∂}
1
∂

〉 (9)

where,

S(χϖ) =

v∑
ϖ=1,ϖ ̸=ς

ϑϖSpt(χϖ, χς). (10)

Proof: Use mathematical induction technique to prove this theorem.
First consider v = 2, then we get,
mPFDPWAϑ(χ1, χ2) = χ1

⊕
χ2 = ⟨

∑
σ11⟩

⊕
⟨
∑
σ12⟩

= ⟨σ11, σ21, . . . , σm1⟩
⊕

⟨σ12, σ22, . . . , σm2⟩

=

〈∑1− 1

1+{ (ϑ1(1+S(χ1)))∑2
ϖ=1(ϑϖ(1+S(χϖ)))

(
σ11

1−σ11
)∂+

(ϑ2(1+S(χ2)))∑2
ϖ=1(ϑϖ(1+S(χp)))

(
σ12

1−σ12
)∂}

1
∂

〉 (by equation (8))

=

〈∑1− 1

1+{
∑2

ϖ=1
(ϑϖ(1+S(χϖ)))∑2

ϖ=1(ϑϖ(1+S(χϖ)))
(

σ1ϖ
1−σ1ϖ

)∂}
1
∂

〉
So, equation (9) is valid for v = 2.
Next assume, the equation (9) is valid for v = d, i.e.,

mPFDPWAϑ(χ1, χ2, . . . , χd) =
d⊕

ϖ=1

(ϑϖ(1 + S(χϖ))χϖ)∑d
ϖ=1(ϑϖ(1 + S(χϖ)))

=

〈∑1− 1

1 + {
∑d

ϖ=1
(ϑϖ(1+S(χϖ)))∑d

ϖ=1(ϑϖ(1+S(χϖ)))
( σ1ϖ
1−σ1ϖ

)∂}
1
∂

〉 (11)

Next, for v = d+ 1,

mPFDPWAϑ(χ1, . . . , χd, χd+1) =
⊕d

ϖ=1
(ϑϖ(1+S(χϖ))χϖ)∑d
ϖ=1(ϑϖ(1+S(χϖ)))

⊕(
ϑd+1(1+S(χd+1))χd+1

(ϑd+1(1+S(χd+1)))

)
=

〈∑1− 1

1+{
∑d

ϖ=1
(ϑϖ(1+S(χϖ)))∑d

ϖ=1(ϑϖ(1+S(χϖ)))
(

σ1ϖ
1−σ1ϖ

)∂}
1
∂

〉⊕
〈∑1− 1

1 + { (ϑd+1(1+S(χd+1)))
(ϑd+1(1+S(χd+1)))

(
σ1(d+1)

1−σ1(d+1)
)∂}

1
∂

〉

=

〈∑1− 1

1 + {
∑d+1

ϖ=1
(ϑϖ(1+S(χϖ)))∑d+1

ϖ=1(ϑϖ(1+S(χϖ)))
( σ1ϖ
1−σ1ϖ

)∂}
1
∂

〉 (12)

This shows that the equation (9) is valid for v = d+ 1.
Therefore, by mathematical induction process the equation (9) is true for all natural
number v.
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Theorem 4.3. Let χϖ, ϖ = 1, 2, . . . , v be a collections of mPFNs. If every mPFN is
same to a mPFN χ then mPFDPWAϑ(χ1, χ2, . . . , χv) = χ.

Proof: Here, χϖ = χ = ⟨
∑
σ1, σ2, . . . , σm⟩, for every ϖ = 1, 2, . . . , v.

Now from the equation (9) we get,

mPFDPWAϑ(χ1, χ2, . . . , χv) =
⊕v

ϖ=1
(ϑϖ(1+S(χϖ))χϖ)∑v
ϖ=1(ϑϖ(1+S(χϖ)))

=

〈∑(
1− 1

1+{
∑v

ϖ=1
(ϑϖ(1+S(χϖ)))∑v

ϖ=1(ϑϖ(1+S(χϖ)))
(

σ1ϖ
1−σ1ϖ

)∂}
1
∂

)〉

=

〈∑(
1− 1

1+{
∑v

ϖ=1
(ϑϖ(1+S(χϖ)))∑v

ϖ=1(ϑϖ(1+S(χϖ)))
(

σ1
1−σ1

)∂}
1
∂

)〉

=

〈∑(
1− 1

1+{( σ1
1−σ1

)∂}
1
∂

)〉
= ⟨
∑
σ1⟩ = χ.

Theorem 4.4. Let χϖ, ϖ = 1, 2, . . . , v, be the collections. Let
A =

〈∑
σA1
〉
= min(χ1, χ2, . . . , χv), and B =

〈∑
σB1
〉
= max(χ1, χ2, . . . , χv) then

A ≤ mPFDPWAϑ(χ1, χ2, . . . , χv) ≤ B.

Proof: Consider σA1 = minϖ{σ1ϖ}, and σB1 = maxϖ{σ1ϖ}, ϖ = 1, 2, . . . , v.
Then we have,

1− 1

1 + {
∑v

ϖ=1
(ϑϖ(1+S(χϖ)))∑v

ϖ=1(ϑϖ(1+S(χϖ)))
(

σA
1

1−σA
1
)∂}

1
∂

≤ 1− 1

1 + {
∑v

ϖ=1
(ϑϖ(1+S(χϖ)))∑v

ϖ=1(ϑϖ(1+S(χϖ)))
( σ1ϖ
1−σ1ϖ

)∂}
1
∂

≤ 1− 1

1 + {
∑v

ϖ=1
(ϑϖ(1+S(χϖ)))∑v

ϖ=1(ϑϖ(1+S(χϖ)))
(

σB
1

1−σB
1
)∂}

1
∂

,

Similar inequalities hold for m components of mPFN and this implies that

A ≤ mPFDPWAϑ(χ1, χ2, . . . , χv) ≤ B.

Theorem 4.5. Consider the two collections of mPFNs be χϖ = ⟨
∑
σ1ϖ⟩, and χ′

ϖ =
⟨
∑
σ′1ϖ⟩, ϖ = 1, 2, . . . , v. If χϖ ≤ χ′

ϖ, ∀ϖ, then

mPFDPWAϑ(χ1, χ2, . . . , χv) ≤ mPFDPWAϑ(χ
′
1, χ

′
2, . . . , χ

′
v). (13)

Definition 4.2. The mPF Dombi power ordered weighted avaraging(mPFDPOWA) op-
erator for v number of mPFNs χϖ = ⟨

∑
σ1ϖ⟩, ϖ = 1, 2, . . . , v, is defined by

mPFDPOWAϑ(χ1, χ2, . . . , χv) =
v⊕

ϖ=1

(ϑϖ(1 + S(χϱ(ϖ)))χϱ(ϖ))∑v
ϖ=1(ϑϖ(1 + S(χϱ(ϖ))))

=

〈∑1− 1

1 + {
∑v

ϖ=1
(ϑϖ(1+S(χϱ(ϖ))))∑v

ϖ=1(ϑϖ(1+S(χϱ(ϖ))))
(

σ1ϱ(ϖ)

1−σ1ϱ(ϖ)
)∂}

1
∂

〉 (14)

where (ϱ(1), ϱ(2), . . . , ϱ(v)) is a permutation of (ϖ = 1, 2, . . . , v), such that χϱ(ϖ−1) ≥
χϱ(ϖ), ∀ϖ = 1, 2, . . . , v.
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By the help of the above mPFDPOWA operator we can easily prove the subsequent
theorems.

Theorem 4.6. If the collections of mPFNs χϖ, ϖ = 1, 2, . . . , v are identical to a mPFN
χ then mPFDPOWAϑ(χ1, χ2, . . . , χv) = χ.

Theorem 4.7. Let χϖ, ϖ = 1, 2, . . . , v, be the collections. If A = minϖ(χϖ), and
B = maxϖ(χϖ) then A ≤ mPFDPOWAϑ(χ1, χ2, . . . , χv) ≤ B.

Theorem 4.8. If the two collections of mPFNs be ordered i.e. if χϖ ≤ χ′
ϖ,∀ϖ =

1, 2, . . . , v, then their ordered aggregation operator could be ordered i.e.,

mPFDPOWAϑ(χ1, χ2, . . . , χv) ≤ mPFDPOWAϑ(χ
′
1, χ

′
2, . . . , χ

′
v). (15)

Theorem 4.9. Consider two collections χϖp, and χςp , ∀p = 1, 2, . . . , v. If ςp,∀p is any
permutation of ϖp then,

mPFDPOWAϑ(χϖ1 , χϖ2 , . . . , χϖv) = mPFDPOWAϑ(χς1 , χς2 , . . . , χςv). (16)

4.2. Geometric aggregation operators.

Definition 4.3. Let χϖ = ⟨
∑
σ1ϖ⟩ , ϖ = 1, 2, . . . , v, be the collection of mPFNs. Then

mPFDPG operator is a mapping defined by

mPFDPG(χ1, χ2, . . . , χv) =
v⊗

ϖ=1

(χϖ)
(1+S(χϖ))∑v

ϖ=1(1+S(χϖ)) , (17)

where, S(χϖ) =
∑v

ϖ=1,ϖ ̸=ς Spt(χϖ, χς), and Spt(χϖ, χς) represents the support of χϖ

along with χς .

Now we develop some theories on the basis of the above combined geometric Dombi
power AO and we can easily proof as the above theorems for mPFDPWA operator.

Theorem 4.10. Let χϖ, ϖ = 1, 2, . . . , v be the collections. Then using mPFDPWG op-
erator, the aggregated value of collections is also an mPFN.

Mathematically, mPFDPWGϑ(χ1, χ2, . . . , χv) =
⊗v

ϖ=1(χϖ)
(1+S(χϖ))∑v

ϖ=1(1+S(χϖ))

=

〈∑ 1

1 + {
∑v

ϖ=1
(1+S(χϖ))∑v

ϖ=1(1+S(χϖ))
(1−σ1ϖ

σ1ϖ
)∂}

1
∂

〉 (18)

Theorem 4.11. If all the collections of mPFNs χϖ, ϖ = 1, 2, . . . , v are similar to another
mPFN χ then mPFDPWGϑ(χ1, χ2, . . . , χv) = χ.

Theorem 4.12. Let χϖ, ϖ = 1, 2, . . . , v, be the collections. If C = minϖ(χϖ), and
D = maxϖ(χϖ), we have, C ≤ mPFDPWGϑ(χ1, χ2, . . . , χv) ≤ D.

Theorem 4.13. If the two collections of mPFNs be ordered i.e. if χϖ ≤ χ′
ϖ, ∀ϖ =

1, 2, . . . , v, then their ordered aggregation operator could be ordered i.e.,

mPFDPWGϑ(χ1, χ2, . . . , χv) ≤ mPFDPWGϑ(χ
′
1, χ

′
2, . . . , χ

′
v). (19)

5. Novel approach for MADM using mPFS

Here to solve the MADM problem we provide a novel approach according the above
proposed combined Dombi power aggregation operator using mPF information and de-
scribed a very nice numerical explanation concerning best company selection for buying
and selling shares of publicly listed companies at the stock market.
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Let L = (L1, L2, . . . , Lu) represent a finite set of alternative and β = (β1, β2, . . . , βv)
denote a finite set of attributes. For an mPFS, there are one or more than one at-
tribute and every attribute contains some sub-criteria or sub-attributes, here for novelty
we have utilized heterogeneous sub-attributes collection that means here the number of
sub-attributes in each attribute may not be equal. Also each sub-attribute contains the
weight, let Ω = (Ω1,Ω2, . . . ,Ωm) be the weight for the sub-attributes in each attribute
such that every Ωx ∈ [0, 1] and

∑m
x=1Ωx = 1, the weight vector Ω is distinct for each main

attribute. Also ϑ = (ϑ1, ϑ2, . . . , ϑv) is the weight vector for the main attribute satisfies

every ϑy ∈ [0, 1] and
∑v

y=1 ϑy = 1. Let M̃ = (aij)u×v be the mPF decision matrix consid-

ered by the decision-makers, where aij = ⟨σij1, σij2, . . . , σijm⟩ is an mPFN at which the
alternate Li satisfy the attribute βj , i = 1, 2 . . . , u and j = 1, 2, . . . , v.

Algorithm.
Step 1. Identify the alternatives and criteria and construct an mPF decision-matrix
M̃ = (aij)u×v in such a way that for benefit type sub-attribute consider the points for the
alternatives at increasing order, i.e. the best alternate gets highest point and for cost type
attribute consider the points for alternatives at decreasing order, i.e. the best alternate
gets lowest point, so that there are no need to normalize the decision-matrix, which is
displayed in Table 1.
Step 2. Consider every mPFN aij is the collection of 1-polar fuzzy number(1PFN) then
proceed to compute normalized Hamming distance d(σijx, σijy) for every aij , where

d(σijx, σijy) = |σijx − σijy|, x, y = 1, . . . ,m, x ̸= y; (20)

then compute the weighted support S(σijx) for every component of the element aij ,

S(σijx) =
m∑

y=1,y ̸=x

ΩxSpt(σijx, σijy),∀x = 1, 2, . . . ,m; (21)

Spt(σijx, σijy) = 1− d(σijx, σijy); (22)

where Spt(σijx, σijy) represents the support of σijx along with σijy described in the above
Definition 3.3.
Step 3. Assuming every mPFN aij is the collection of 1PFN, utilize the equation (9) i.e.
use mPFDPWA operator for every mPFN aij to reduce into a FN and hence create 1-PF

decision-matrix B̃ = (bij)u×v i.e. for every i = 1, . . . , u, j = 1, . . . , v we have,

bij = mPFDPWA(σij1, σij2, . . . , σijm) =

m⊕
x=1

(Ωx(1 + S(σijx))σijx)∑m
x=1(Ωx(1 + S(σijx)))

=

〈
1− 1

1 + {
∑m

x=1
(Ωx(1+S(σijx)))∑m
x=1(Ωx(1+S(σijx)))

(
σijx

1−σijx
)∂}

1
∂

〉
, (23)

or, use mPFDPWG operator in that case,

bij = mPFDPWG(σij1, σij2, . . . , σijm) =
m⊗

x=1

(Ωx(1 + S(σijx))σijx)∑m
x=1(Ωx(1 + S(σijx)))

=

〈
1

1 + {
∑m

x=1
(Ωx(1+S(σijx)))∑m
x=1(Ωx(1+S(σijx)))

(
1−σijx

σijx
)∂}

1
∂

〉
. (24)
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Step 4. Again use mPFDPWA operator on the 1-PF decision matrix B̃ for each alternate
Li with the weight vector ϑ we have, for i = 1, . . . , v,

Γi = mPFDPWA(bi1, bi2, . . . , biv) =

〈
1− 1

1 + {
∑v

x=1
(ϑx(1+S(bix)))∑v
x=1(ϑx(1+S(bix)))

( bix
1−bix

)∂}
1
∂

〉
(25)

For mPFDPWG operator we have,

Γi = mPFDPWG(bi1, bi2, . . . , biv) =

〈
1

1 + {
∑v

x=1
(ϑx(1+S(bix)))∑v
x=1(ϑx(1+S(bix)))

(1−bix
1−bix

)∂}
1
∂

〉
(26)

where,

S(bix) =
v∑

y=1,y ̸=x

ϑxSpt(bix, biy), ∀x = 1, 2, . . . , v; (27)

Spt(bix, biy) represents the support of bix along with biy described in the above Definition
3.3.
Step 5. According to the values of 1PFN Γi, rank all the corresponding alternative Li,
i = 1, . . . , u, therefore the choice having the highest value is selected as the best performing
alternative.
Step 6.
End.

The time complexity of the above algorithm is calculated below:
Step 1 takes (uv) times. The eq. (20), (21) and (22) need O(uvm) times. Similarly, step
3 takes (uvm) times. But, eq. (25) and (26) can be computed only using (v2) times. The
last step 5 can be computed in (u).

Finally, the time complexity of the entire algorithm is O(uvm+ v2).
Flowchart of the above algorithm is shown below.

6. Numerical application

The stock market, also known as the share market, is vital to the global economy. The
stock market facilitates the exchange of ownership in companies through shares. Investors
participate in this market to grow their wealth, hedge against inflation, and fund corpo-
rate expansion. Understanding the stock market is essential for both individual investors
and policymakers. It serves as a platform for buying and selling shares of publicly listed
companies. Companies go public by issuing shares through an initial public offering(IPO).
Stock exchanges like the New York stock Exchange(NYSE) and NASDAQ offer a plat-
form for trading shares. Buyers and sellers interact through brokers or electronic trading
systems.

Table 2. Fuzzy decision matrix with heterogeneous sub-characteristics.

β1 β2 β3 β4 β5
L1 ⟨0.7, 0.62, 0.5.0.57⟩ ⟨0.9, 0.6, 0.8, 0.7, 0.52⟩ ⟨0.8, 0.8, 0.6, 0.5⟩ ⟨0.9, 0.3, 0.9⟩ ⟨0.04, 0.03, 0.01, 0.02, 0.01⟩
L2 ⟨0.4, 0.56, 0.6, 0.73⟩ ⟨0.5, 0.62, 0.2, 0.5, 0.4⟩ ⟨0.5, 0.6, 0.3, 0.53⟩ ⟨0.8, 0.3, 0.5⟩ ⟨0.03, 0.02, 0.01, 0.01, 0.01⟩
L3 ⟨0.3, 0.66, 0.4, 0.63⟩ ⟨0.8, 0.69, 0.6, 0.6, 0.51⟩ ⟨0.8, 0.6, 0.7, 0.66⟩ ⟨0.78, 0.35, 0.1⟩ ⟨0.02, 0.01, 0.01, 0.01, 0.01⟩
L4 ⟨0.6, 0.42, 0.5, 0.9⟩ ⟨0.6, 0.3, 0.2, 0.55, 0.45⟩ ⟨0.3, 0.4, 0.1, 0.4⟩ ⟨0.7, 0.4, 0.1⟩ ⟨0.02, 0.01, 0.01, 0.01, 0.01⟩
L5 ⟨0.3, 0.68, 0.55, 0.74⟩ ⟨0.8, 0.68, 0.3, 0.61, 0.5⟩ ⟨0.7, 0.62, 0.62, 0.6⟩ ⟨0.67, 0.2, 0.5⟩ ⟨0.02, 0.01, 0.01, 0.01, 0.01⟩
L6 ⟨0.3, 0.72, 0.45, 0.62⟩ ⟨0.6, 0.65, 0.4, 0.53, 0.53⟩ ⟨0.6, 0.58, 0.61, 0.5⟩ ⟨0.3, 0.2, 0.56⟩ ⟨0.02, 0.01, 0.01, 0.01, 0.01⟩
L7 ⟨0.25, 0.6, 0.3, 0.73⟩ ⟨0.6, 0.7, 0.35, 0.5, 0.45⟩ ⟨0.61, 0.6, 0.6, 0.5⟩ ⟨0.2, 0.2, 0.55⟩ ⟨0.02, 0.01, 0.01, 0.01, 0.01⟩
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Step1. Create a fuzzy 

decision matrix 𝑀̃ 

Step2. Normalize the 

decision matrix(if 

needed) 

Step3. Compute 

weighted support for 

each component of the 

every 𝑚PFN by 

considering each 𝑚PFN 

is the collection of 1PFN 

Step4. Reduce every 

𝑚PFN to 1PFN by 

using 𝑚PFDPA or 

𝑚PFDPG operator 

Step5. Again 

compute 

aggregation values 

for every alternative 

Step6. Select the best 

alternative having 

highest aggregate 

value 

Figure 1. Flowchart of the approach

Figure 2. Several data for seven Indian Banks

When selecting a share of a company to invest in the stock market, especially aiming
for a company considered one of the best, there are some criteria you should think. Here
are some key factors to watch:
Revenue and Earnings growth: Look for consistent growth in earnings and revenue
over time. These are the benefit factors for a company.
Profitability: Check the company’s profit margins and return on equity (ROE), return
on capital employed(ROCE) to assess how efficiently it generates profits. So, these are the
benefit factors.
Debt levels: Ensure the company has manageable levels of debt. A high debt-to-equity
ratio can be risky. So this is the cost factor for a company.
Cash flow: Evaluate the operating cash flow of the company to see if it consistently gener-
ates enough cash to support its operations. So, the factor price to free cash flow(CMP/FCF)
is the benefit factor.
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Price to earnings ratio (P/E): Compare P/E ratio of a company to its historical av-
erage and industry peers to evaluate if it’s undervalued or overvalued. This is the cost
factor.
Price-to-book value ratio (CMP/BV): Consider the CMP/BV ratio to evaluate if
the stock price is reasonable relative to the book value of a company. This is the cost
factor.
Dividend history: If you are interested in dividends, examine the company’s dividend
yield, payout ratio, and potential for future dividend growth. These are the benefit fac-
tors.
Understand risks: Identify and understand credit risk, market risk, regulatory risk,
liquidity risk, geopolitical risks associated with the company’s business model, industry,
or economic factors.
However, to choose the best one for buying shares in seven companies, we consider seven
companies {L1 = St. Bank of India(SBI), L2 =Punjab Nati. Bank(PNB), L3 = Bank of
Baroda(BOB), L4 = Union Bank(UB), L5 = Indian Overseas Bank(IOB), L6 = Canara
Bank(CB), L7 = Indian Bank(IB)} as the set of alternatives. Our choice is according to
the some criteria, the criteria are the attributes under consideration. Here for calculation
we chose five attributes as {β1 = Company fundamentals, β2 = Macroeconomic factors,
β3 = Valuation metrics, β4 = Financial health, β5 = Risk}. Now to formulate fuzzy

decision-matrix M̃ = (aij)7×5 = (⟨σij1, σij2, . . . , σijm⟩)7×5, in which every every elements
of the 1st, 2nd,3rd, 4-th and 5-th columns are respectively 4PFN, 5PFN, 4PFN, 3PFN
and 5PFN. For this case we consider as follows:

• The ”Company fundamental” includes four sub-criteria as revenue growth, earn-
ings yield ratio, net profit, promoter holding and suppose Ω = {Ω1 = 0.25,Ω2 =
0.25,Ω3 = 0.25,Ω4 = 0.25} be the weight vector for these corresponding sub-
criteria.

• The ”Macroeconomic factors” includes five sub-criteria as interest coverage ratio,
sales growth 5 years, profit growth 5 years, return on equity(ROE), return on
capital employed(ROCE) and in this case chose corresponding weight Ω = {Ω1 =
0.2,Ω2 = 0.2,Ω3 = 0.2,Ω4 = 0.2,Ω5 = 0.2}.

• The ”Valuation metrics” includes four sub-criteria as price to earning(P/E) ratio,
price to book value(P/B) ratio, dividend yield, price to sales(CMP/Sales) ratio
and corresponding weight vector is Ω = {Ω1 = 0.2,Ω2 = 0.2,Ω3 = 0.4,Ω4 = 0.2}.

• The ”Financial health” includes three sub-criteria as market capitalization, debt
to equity, price to free cash flow(CMP/FCF) and the corresponding weight vector
is Ω = {Ω1 = 0.4,Ω2 = 0.2,Ω3 = 0.4}.

• The ”Risk” factor includes five sub-criteria as credit risk, market risk, regula-
tory risk, liquidity risk, geopolitical risk and in this factor Ω = {Ω1 = 0.2,Ω2 =
0.2,Ω3 = 0.2,Ω4 = 0.2,Ω5 = 0.2} is the corresponding weight.

Now we follow the above algorithm.
Step 1. The decision-matrix Ã (shown in Table 2 ) is formulated from the Picture 1(pic-
ture is collected from website) according to the above process that described in step 1 of
algorithm so that there are no need to normalize the decision matrix.
Step 2. Using the equations (21), (22), (23) we compute the weighted support for every
component of the element aij of the decision matrix.
For the element a11 = ⟨σ111, σ112, σ113, σ114⟩, we already chose the weight Ω = {Ω1 =
0.25,Ω2 = 0.25,Ω3 = 0.25,Ω4 = 0.25} and this weight is chosen for computing weighted
support for all elements of the 1st column.
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Table 3. B̃(Aggregated
values for ∂ = 2 using
mPFDPWA operator)

β1 β2 β3 β4 β5
L1 ⟨0.6220⟩ ⟨0.8202⟩ ⟨0.7244⟩ ⟨0.8921⟩ ⟨0.0251⟩
L2 ⟨0.6297⟩ ⟨0.5046⟩ ⟨0.4872⟩ ⟨0.7235⟩ ⟨0.0180⟩
L3 ⟨0.5751⟩ ⟨0.6957⟩ ⟨0.7168⟩ ⟨0.6920⟩ ⟨0.0127⟩
L4 ⟨0.8168⟩ ⟨0.4916⟩ ⟨0.3098⟩ ⟨0.6033⟩ ⟨0.0127⟩
L5 ⟨0.6555⟩ ⟨0.6867⟩ ⟨0.6366⟩ ⟨0.5929⟩ ⟨0.0127⟩
L6 ⟨0.6139⟩ ⟨0.5688⟩ ⟨0.5899⟩ ⟨0.4625⟩ ⟨0.0127⟩
L7 ⟨0.6088⟩ ⟨0.5803⟩ ⟨0.5900⟩ ⟨0.4422⟩ ⟨0.0127⟩

Table 4. Aggregated
values for ∂ = 2 using
mPFDPWG operator

β1 β2 β3 β4 β5
L1 ⟨0.5783⟩ ⟨0.6424⟩ ⟨0.6111⟩ ⟨0.5183⟩ ⟨0.0143⟩
L2 ⟨0.5200⟩ ⟨0.3344⟩ ⟨0.3707⟩ ⟨0.4598⟩ ⟨0.0122⟩
L3 ⟨0.4110⟩ ⟨0.6079⟩ ⟨0.6795⟩ ⟨0.1454⟩ ⟨0.0108⟩
L4 ⟨0.5197⟩ ⟨0.3152⟩ ⟨0.1389⟩ ⟨0.1471⟩ ⟨0.0108⟩
L5 ⟨0.4458⟩ ⟨0.4603⟩ ⟨0.6267⟩ ⟨0.3599⟩ ⟨0.0108⟩
L6 ⟨0.4245⟩ ⟨0.5127⟩ ⟨0.5771⟩ ⟨0.3030⟩ ⟨0.0108⟩
L7 ⟨0.3398⟩ ⟨0.4664⟩ ⟨0.5780⟩ ⟨0.2408⟩ ⟨0.0108⟩

For example, S(σ111) = Ω1(Spt(σ111, σ112) + Spt(σ111, σ113) + Spt(σ111, σ114)) = 0.6475,
S(σ112) = Ω2(Spt(σ112, σ111) + Spt(σ112, σ113) + Spt(σ112, σ114)) = 0.6875, S(σ113) =
0.6525, S(σ114) = 0.6875; Similarly all other weighted supports are computed.
Observe that, the weight vectors for the 2nd, 3rd, 4th, and 5th columns are respectively
Ω = {Ω1 = 0.2,Ω2 = 0.2,Ω3 = 0.2,Ω4 = 0.2,Ω5 = 0.2}, Ω = {Ω1 = 0.2,Ω2 = 0.2,Ω3 =
0.4,Ω4 = 0.2}, Ω = {Ω1 = 0.4,Ω2 = 0.2,Ω3 = 0.4}, Ω = {Ω1 = 0.2,Ω2 = 0.2,Ω3 =
0.2,Ω4 = 0.2,Ω5 = 0.2}.

Step 3. Using the equation (23) i.e. using mPFDPWA operator we have formulated

1PF decision-matrix B̃ = (bij)7×5, i = 1, 2, . . . , 7, j = 1, 2, . . . , 5, that is presented in the
Table 3.
Using the equation (24) i.e. using mPFDPWG operator also we get 1PF decision matrix

B̃ that is displayed in the Table 4.

Step 4. Again use mPFDPWA operator on the 1PF decision matrix B̃ (given in Table
3) for every alternative Li and using the equations (25), (27) we get, α(L1) = ⟨0.8295⟩,
α(L2) = ⟨0.6256⟩, α(L3) = ⟨0.6801⟩, α(L4) = ⟨0.6981⟩, α(L5) = ⟨0.6455⟩, α(L6) =
⟨0.5679⟩, α(L7) = ⟨0.5673⟩. Here, α(L1) having the highest value.
For the geometric operator using the equations (26), (27) and from Table 4 we get, α(L1) =
⟨0.0847⟩, α(L2) = ⟨0.0721⟩, α(L3) = ⟨0.0612⟩, α(L4) = ⟨0.0608⟩, α(L5) = ⟨0.0641⟩,
α(L6) = ⟨0.0639⟩, α(L7) = ⟨0.0632⟩. In this case, α(L1) having the highest value.
Step 5. Based on the values of α we order all the alternatives Li, i = 1, 2, . . . , 7 as
L1 > L4 > L3 > L5 > L2 > L6 > L7 for mPFDPWA operator and L1 > L2 > L5 > L6 >
L7 > L3 > L4 for mPFDPWG operator.
In both cases the best alternative for this approach is L1.

Next we compare the above result with MABAC approach.

Table 5. The values of ξij

β1 β2 β3 β4 β5
L1 ⟨.2468, .2528, .2476, .2528⟩ ⟨.1932, .2005, .2005, .2029, .2029⟩ ⟨.1773, .1773, .4728, .1726⟩ ⟨.4216, .1567, .4216⟩ ⟨.1994, .20, .20, .2003, .2003⟩
L2 ⟨.2432, .2556, .2556, .2456⟩ ⟨.2051, .1964, .1882, .2051, .2051⟩ ⟨.1828, .1795, .4548, .1828⟩ ⟨.3989, .1698, .4313⟩ ⟨.1993, .20, .2002, .2002, .2002⟩
L3 ⟨.2447, .2502, .2526, .2526⟩ ⟨.1925, .2003, .2024, .2024, .2024⟩ ⟨.1718, .1736, .4782, .1764⟩ ⟨.3969, .1850, .4180⟩ ⟨.1995, .2001, .2001, .2001, .2001⟩
L4 ⟨.2576, .2512, .2576, .2335⟩ ⟨.1990, .2015, .1941, .2027, .2027⟩ ⟨.1827, .1827, .4519, .1827⟩ ⟨.4091, .1818, .4091⟩ ⟨.1995, .2001, .2001, .2001, .2001⟩
L5 ⟨.2362, .2562, .2562, .2514⟩ ⟨.1953, .2042, .1884, .2060, .2060⟩ ⟨.1716, .1752, .4789, .1743⟩ ⟨.4086, .1648, .4226⟩ ⟨.1995, .2001, .2001, .2001, .2001⟩
L6 ⟨.2430, .2470, .2550, .2550⟩ ⟨.2015, .1980, .1940, .2032, .2032⟩ ⟨.1755, .1755, .4771, .1719⟩ ⟨.4288, .1693, .4019⟩ ⟨.1995, .2001, .2001, .2001, .2001⟩
L7 ⟨.2496, .2537, .2537, .2431⟩ ⟨.2017, .1945, .1957, .2041, .2041⟩ ⟨.1748, .1753, .4790, .1708⟩ ⟨.4317, .1729, .3953⟩ ⟨.1995, .2001, .2001, .2001, .2001⟩

7. Justification by MABAC approach

Now, we justify the previous result of themPFDPWA operator using MABAC approach.
For this, we apply MABAC approach on the same problem, i.e. the data described in the
Table 2. The following steps are as follows:
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Table 6. The values of ξij

β1 β2 β3 β4 β5
L1 ⟨.2571, .2170, .1577, .1921⟩ ⟨.3592, .1678, .2758, .2167, .1383⟩ ⟨.2482, .2482, .3516, .1127⟩ ⟨.6212, .0544, .6212⟩ ⟨.0081, .0061, .002, .004, .002⟩
L2 ⟨.1168, .1892, .2088, .2750⟩ ⟨.1325, .1731, .0411, .1325, .0995⟩ ⟨.1190, .1517, .1497, .1289⟩ ⟨.4738, .0588, .2584⟩ ⟨.0061, .004, .002, .002, .002⟩
L3 ⟨.0836, .2365, .1210, .2221⟩ ⟨.2664, .2091, .1693, .1693, .1344⟩ ⟨.2416, .1471, .4377, .1732⟩ ⟨.4518, .0766, .0431⟩ ⟨.004, .002, .002, .002, .002⟩
L4 ⟨.2103, .1279, .1635, .4159⟩ ⟨.1667, .0693, .0424, .1494, .1141⟩ ⟨.0631, .0891, .0465, .0891⟩ ⟨.3889, .0887, .0422⟩ ⟨.004, .002, .002, .002, .002⟩
L5 ⟨.0808, .2531, .1850, .2873⟩ ⟨.2698, .2076, .0650, .1763, .1330⟩ ⟨.1867, .1559, .3709, .1476⟩ ⟨.3643, .0361, .2560⟩ ⟨.004, .002, .002, .002, .002⟩
L6 ⟨.0830, .2698, .1414, .2186⟩ ⟨.1686, .1877, .0944, .1422, .1422⟩ ⟨.1485, .1412, .3619, .1123⟩ ⟨.1418, .0371, .2810⟩ ⟨.004, .002, .002, .002, .002⟩
L7 ⟨.0693, .2074, .0865, .2726⟩ ⟨.1687, .2087, .0808, .1319, .1148⟩ ⟨.1518, .1484, .3553, .1117⟩ ⟨.0918, .0378, .2707⟩ ⟨.004, .002, .002, .002, .002⟩

Step 1. We use the decision-matrix shown in Table 2.
Step 2. In this step normalization is required, for this case no need to normalize the
decision-matrix.
Step 3. Next, the weighted normalization matrix ΩM̃ (shown in Table 6) is formulated.

For the normalized matrix M̃ = (aij)7×5, aij = ⟨
∑
σij1⟩, i = 1, 2, . . . , 7, j = 1, 2, . . . , 5.

We compute normalized fuzzy weighted matrix ΩM̃ = (Ωaij)7×5 (shown in Table 6) by

using the equation: ΩM̃ = Ω ⊕ M̃ =
〈∑

σ′ij1

〉
=
〈∑

(1− (1− σij1))
ξij1
〉
, where ξijx =

Ωx(1+S(σijx))∑m
x=1(Ωx(1+S(σijx)))

, ξ = (ξij)7×5 = (⟨
∑
ξij1⟩)7×5 is shown in Table 5.

Notice that, the respectively weights Ω = {Ω1 = 0.25,Ω2 = 0.25,Ω3 = 0.25,Ω4 = 0.25}
Ω = {Ω1 = 0.2,Ω2 = 0.2,Ω3 = 0.2,Ω4 = 0.2,Ω5 = 0.2}, Ω = {Ω1 = 0.2,Ω2 = 0.2,Ω3 =
0.4,Ω4 = 0.2}, Ω = {Ω1 = 0.4,Ω2 = 0.2,Ω3 = 0.4}, Ω = {Ω1 = 0.2,Ω2 = 0.2,Ω3 =
0.2,Ω4 = 0.2,Ω5 = 0.2} for the 1st, 2nd, 3rd, 4th, and 5th columns have been utilized.
Step 4. In this step, we formulate the border approximation areas (BAA) matrix N =

[n1 n2 n3 n4 n5]1×5, where nj =
(∏7

i=1Ωaij

)1/7
= ⟨σ′′1 , σ′′2 , . . . , σ′′m⟩ , j = 1, 2, . . . , 5,

i.e., n1 =

〈(∏7
i=1 σ

1/7
i11 , . . . ,

∏7
i=1 σi14

)1/7〉
= ⟨0.1137, 0.2093, 0.1469, 0.2615⟩ , similarly

n2 = ⟨0.2069, 0.1656, 0.0878, 0.1575, 0.1243⟩, n3 = ⟨0.1522, 0.1487, 0.2437, 0.1225⟩,
n4 = ⟨0.3049, 0.0525, 0.1781⟩, n5 = ⟨0.0047, 0.0026, 0.0020, 0.0022, 0.0020⟩.
Step 5. Next the distance matrix T = (tij)7×5 is evaluated (shown in Table 7). The
distance tij between BAA matrix and every alternative is calculated by the following
condition:

tij =

 d(Ωaij , nj) if Ωaij > nj ;
0 if Ωaij = nj ;
−d(Ωaij , nj) if Ωaij < nj .

(28)

where d(Ωaij , nj) is the mean distance between Ωaij and nj , i.e.,

d(Ωaij , nj) =
1

m

[
|σ′ij1 − σ′′1 |+ . . .+ |σ′ijm − σ′′m|

]
. (29)

Step 6. Next, for each alternative the sums of the distances Vi =
∑5

j=1 tij , i =
1, 2, . . . , 7 are evaluated. So, from Table 7 we get,
V1 = 0.5358, V2 = 0.1502, V3 = 0.1134, V4 = −0.1769, V5 = 0.1526, V6 = −0.2128,
V7 = −0.2307. From the magnificent evaluation of Vi we get the order list of alternatives
as L1 > L5 > L2 > L3 > L4 > L6 > L7. L1 is the most desirable option.

8. Comparative analysis with merits and demerits

In this article, we compare our proposed approach, which utilizes Dombi and power ag-
gregation operators, with existing four recent operators such as mPFDWA, mPFDWG[4],
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Table 7. Distance between every alternative and BAA

β1 β2 β3 β4 β5
L1 0.0578 0.0831 0.0783 0.1805 0.1361
L2 0.0246 −0.0357 −0.0341 0.1318 0.0636
L3 −0.0306 −0.0413 0.0839 0.1246 −0.0232
L4 0.0872 −0.0400 −0.0948 −0.1038 −0.0255
L5 0.0351 0.0310 0.0485 0.0957 −0.0577
L6 −0.0349 −0.0200 0.0349 −0.1299 −0.0629
L7 −0.0294 −0.0247 0.0308 −0.1464 −0.0610

Table 8. Final aggregated values of different operators and sum of dis-
tances in MABAC method

Different AO and method L1 L2 L3 L4 L5 L6 L7 Ranking orders
mPFDWA[4] 0.8277 0.6268 0.6799 0.7084 0.6437 0.5647 0.5657 L1 > L4 > L3 > L5 > L2 > L7 > L6

mPFDWG[4] 0.0675 0.0579 0.0511 0.0505 0.05164 0.05160 0.0515 L1 > L2 > L5 > L6 > L7 > L3 > L4

mPFEWA[14] 0.7114 0.5151 0.4907 0.4457 0.5719 0.5030 0.4796 L1 > L5 > L2 > L6 > L3 > L7 > L4

mPFEWG[14] 0.6044 0.4372 0.4562 0.3202 0.4886 0.4333 0.3983 L1 > L5 > L3 > L2 > L6 > L7 > L4

Proposed mPFDPWA 0.8295 0.6256 0.6801 0.6981 0.6455 0.5679 0.5673 L1 > L4 > L3 > L5 > L2 > L6 > L7

Proposed mPFDPWA 0.0847 0.0721 0.0612 0.0608 0.0641 0.0639 0.0632 L1 > L2 > L5 > L6 > L7 > L3 > L4

MABAC method[17] 0.5358 0.1502 0.1134 −0.1769 0.1526 −0.2128 −0.2307 L1 > L5 > L2 > L3 > L4 > L6 > L7

mPFEWA[14] and mPFEWG[14] operators, as well as the MABAC approach. The fi-
nal aggregation values and ranking orders of different approaches are given in Table 8.
Here we observe that, for mPFDWA and mPFDPWA operators the ranking orders almost
same; andmPFDWG andmPFDPWG operators show exactly same ranking orders in this
application but aggregated values inmPFDPWG operator are greater thanmPFDWG op-
erator; for mPFEWA and mPFEWG operators, the ranking orders almost same though
values are different. However, from all AOs and MABAC approach, observe that L1 hav-
ing highest value, therefore L1 is the most desirable company to invest money although
their ranking orders are slightly different in different approaches. Thus proposed opera-
tors implement a new flexible and reliable measure for decision-makers to control mPF
information in MADM problems. For buying or selling the shares of that company we
must watch the market price. So, our proposed approach is stable and effective. The pro-
posed approach on mPF environment in this article is fully different from the the existing
methods.

Several merits of the proposed approach are given below:

(1) In the existing approach, all researchers have used homogeneous sub-characteristics
in every attribute in mPF environment, but in our novel approach heterogeneous
sub-characteristics could be used. This is very essential and beneficial for multi-
polar environment.

(2) The operational parameter ∂ in the combined operations for this article offers
significant flexibility advantages for aggregation.

(3) Our developed aggregation process is more effective and stable with multi-polar
information.

Despite some advantages in our approach, there are some limitations which are listed
below:

(1) If two alternatives have equal final aggregate values then we cannot choose the
best alternative between them.
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(2) Final ranking orders of the alternatives may vary by removing or adding more
attributes with their weights to the existing decision matrix.

(3) By using different operators and different methods we get different values, ranking
orders may vary that shown in a comparative study.

(4) There is another major limitation is the calculation process is very lengthy.

9. Conclusions

By extending the fuzzy set theory to accommodate multiple membership functions,
mPFSs offer enhanced flexibility and accuracy in modeling real-world problems. In this
article, we have developed a novel process for solving the MADM problem. From the moti-
vation of Dombi power operations we proposed some arithmetic and geometric aggregation
operators as mPF Dombi power average and mPF Dombi power geometric aggregation
operators. Additionally, we have proposed some of their properties including commuta-
tivity, idempotency, boundedness and monotonicity properties. However, our developed
operators are stable and effective for dealing with mPF environments. In real world, most
of all get confused which company is the best for buying the shares in the stock market.
Understanding the stock market requires continuous learning and adaptability. Investors
must stay informed, diversify their portfolios and make informed decisions based on re-
search and analysis. our method offers significant benefits for selection the best company
to invest money in the stock market. The comparison analysis highlights the usefulness of
the decision-making process by evaluating the proposed operators against existing ones.
Finally, the merits and demerits of our proposed approach are discussed.

Future scopes

In the future, our research will focus on developing new combined aggregation opera-
tors of Hamachar norm, Heronian mean, Bonferroni mean, and Maclaurin mean weighted
aggregation operators etc. to effectively aggregate multi polar uncertain information. In
future work, we can apply these operators in other domains, such as mPF soft set, mPF
neutrosophic set, mPF cubic set etc. We will also explore the application of our framework
in various fields, including image clustering, pattern recognition, fault analysis, medical
diagnosis etc. Furthermore, we intend to investigate statistical methods such as time
series analysis, regression analysis, and forecasting to complement our framework. mPF
information may be processed further using a variety of hybrid theories, including hesitant
FSs, COPRAS, EDAS, ELECTRE-I and ELECTRE-II method etc.
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