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EXTENSIVE ERROR DERIVATIVE REVIEW OF LSTM MODELS

WITH SIGN LANGUAGE INTERPRETATION

HARAPRIYA KAR1, VISWANATHAN P.1*, §

Abstract. LSTM models are essential for systems that translate sign language, where
the model suffers from error loss when processing data. LSTMs reduce error propa-
gation by continuously calculating gradients, unlike traditional back propagation, which
causes exponential error accumulation. This paper investigates error flow in bidirectional,
hierarchical, and probabilistic long short-term memory models (LSTMs). While hierar-
chical LSTMs employ multitask learning to anticipate inputs and outputs, minimizing
compounding mistakes reliably, bidirectional LSTMs reduce truncation errors. Model
accuracy is increased by optimizing the gradients and parameters. This research offers
a thorough evaluation of LSTM models from 2021 to 2024, examining their effectiveness
in sign language recognition systems by analyzing both accuracy and loss.
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1. Introduction

Sign language recognition systems are multi-dimensional data processing which require
multi-layer networks to optimize the recognition system. The Deep learning models based
on recurrent neural networks will have a high effect on the sign language interpretation
systems [1]. The error analysis of the network model plays a major role in optimizing
the accuracy. The backpropagation algorithm is one of the most used neural learning
techniques that learn weight based on gradient descent [2, 3] in multi-layer [4] networks of
sign recognition systems. It trains the data backward from the output layer to the hidden
layer using the activation function in which neurons are differentiable. The temporal
evolution of the backpropagation error signals flows backwards in time. Recurrent learning
in training the sign language data occurs exponentially due to rapid increases in the
magnitude of the weights which will extend the evaluation of the error rate raises the
training time and complexity.
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Typical Backpropagation Recurrent Neural Network (BPRNN) [5] process the sign data
point in a sequential direction emerged at a high level. It limits the feeding of signals in
temporal [6] periods longer than the massive space in dynamic classification [7]. The er-
ror backpropagation issues and fed-back signal limitations are extended by increasing the
steps based on the network size using Long short-term memory (LSTM). LSTM [8, 30]
with gradient model learned to bridge temporal periods longer than the noisy and incom-
pressible input sequences without limiting the short time lag. It enforces a continuous
flow of errors in the internal states of special units, explodes and vanishes as long as the
gradient process at specific points is terminated which leads to the issue of truncation
error.

The bidirectional LSTM (BiLSTM) [10] architecture is the didactic approach which
raises the storage and retrieval concerns of sign data to avoid the one-step truncation by
the implementation of a total error gradient in the network. It is further optimized by the
phenomena of training the input by propagating forward and backward in two different
LSTM networks connected to the same output layer. However, this architecture fails due
to the segmentation of temporal data which needs probabilistic [11, 12] backward recur-
rence to maintain the variance. The Bayesian LSTM(BaLSTM) reduces the requirement
of backward recurrence by processing the input sequence with activation based on the
context with the help of a probabilistic gate to optimize [13] less training of sign data.
The BaLSTM model evaluates the dynamic data effectively but for multidimensional [14]
aspects of time series [15, 16] require interrelated dynamical data for sign data. The hier-
archical model [17] approach evaluates sign data in time series [18] analysis in the aspect
of multilevel for predicting future input and past output. It can be analyzed coherently
[19] with a co-attention [20] prediction mechanism to decide the future output dynami-
cally. The hierarchical LSTM [21, 22] processes the high-level and low-level context by
connecting two LSTMs at each time step related to multilevel layers and deliberatively
refining sequential input.

Future Intention Estimation (FIE) with sign interpretation improves the forecasting of
viewport transition constructed to capture the temporal [23] correlations between past,
present, and future output estimated using Hierarchical BaLSTM (HBaLSTM) [12]. It is
devised with additional modeling of inter-subject uncertainty in a training system named
Hierarchical Bayesian inference (HBI) using hierarchical joint Gaussian distribution. It ap-
proximates the posterior distribution across network weights, anticipates viewport change
on specific output by combining expected future information with identical temporal de-
pendency. The parameters and computation resources of the conventional units in recur-
rent cells are expensive in deep recurrent nets.

The stackable recurrent cell [24] can reduce the parameters by evaluating the weight
factor < 1, leads to zero mean symmetric distribution of sign data. It shrinks the overall
gradient and multiplicatively affects the Jacobean parameter [8], avoids output gates to
carry the similar information. It reduces the parameters of the stackable Recurrent (STAR)
unit of the input gate, and output gate which merges with the forget gate [25, 26]. It
further preserves the reduction of the gradient [3] magnitude of deep RNN [27] lattice,
with fewer parametric updates that induce the non-linearity to saturate; large gradients
can sometimes represent the prelude to vanishing gradients, reducing the computation
resources.

The literature review deals with various LSTM models concerning error flow with the
directional, time series, probabilistic, and multi-layer with parametric principles in sign
language interpretation system. Our extensive review of the LSTM models derives the
emerging challenges faced in sign data in the context of error signals and are reported
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theoretically and experimentally in our paper. LSTM models are analyzed in various as-
pects of computing consistent gradient with the error flow analyses using loss and accuracy
function to define the efficiency of the model. The main objectives of the review is

(1) To scrutinise the gradient flow error analysis of the loss function for the various
LSTM models.

(2) To derive the complexity of the error flow analysis from the previous LSTM models
to current LSTM model in the aspects of single level to multilevel.

(3) To analyze the impact of loss functions with the prediction accuracy of LSTM
models using sign language interpretation system with 2D to 3D dataset.

The Section 1 explains the introduction of the various LSTM models. The design of
the directional and the probabilistic[11] LSTM with reduction of error back propagation
issues and the limitations of the error signals with future prediction is derived in Section 2.
Section 3 derives the evaluation of multidimensional data in interrelated dynamics within
the time series context using a multilevel LSTM approach with reduction of computational
resources by limiting the parameters. Section 4 discusses the comparative analysis of sign
language using multiple LSTM models. In Section 5 derives an accurate experimental
evaluation of different LSTM models for sign language is presented in terms of accuracy
and loss metrics. Ultimately, Section 6 delivers a summary of the outcomes drawn from the
study of the survey in order to determine the issues with the LSTM model. These issues
include the incompatibility of the dataset’s size and shape, the inability to comprehend
the error flow, and the processing of 3-dimensional video and signs while interacting with
real-world situations.

2. Single Level RNN and LSTM

The BPRNN architecture [24] integrated with a robust gradient-based learning algo-
rithm [2] helps learn to bridge temporal encompasses longer than a thousand times with-
out sacrificing its short-time lag capabilities. The BPRNN [28] improves the sensitivity in
output depend on the area of network. The objective function minimizes overall area of
network within timestamp (T) t′ ≤ T ≤ tof the non input unit (N) of the network unit
(I, J) by evaluating the distance metric between prior weighted output dN and the target
yN .

E(T ) =
1

2

∑
N∈I

[dN (T )− yN (T )]2 (1)

The total error EA in equation (1) is the sum of the error rate of the epochs which is called
gradient descent error equation (2) evaluated based on the gradient error weight update
[29].

∇w EA

(
t′, t+ 1

)
= ∇wEA

(
t′, t

)
+ ∇wE (t+ 1) (2)

The sensitivity of the output is determined by pN equation (3) and avoids the back prop-
agation [29] with respect to time (T), for the new data. Where W[I,J ] defines the weight
of the gradient descent equation (4).

pN =
∂yN (T )

∂W[I,J ]
(3)

∆W[I,J ](T ) = −η
∑
k∈I

∂E(T )

∂yk(T )
pN

= −η
∑
k∈I

EA × pN

(4)
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The weight is updated at the time(T) makes the backpropagation error signal equation
(5) of unit cell Ii for the input X.

ZN,Ii(t+ 1) =) =
∑
l

W[(N,Ii),l]X[(N,Ii),l](t+ 1))

with l ∈ pre(N)

=
∑
Ji∈I

W[NJi]yJ i(t)) +
∑
i∈I

W[N,i]yi(t+ 1)

(5)

JIi(T ) = f ‘Ii(zIi(T )
∑
J∈I

W[I,J ](T + 1)) (6)

The (Ii) propagated fully in the time slack factor ranges (T − Ti) > 1 in between the
output layer neuron and the arbitrary neuron Ji (6) causes the exponential flow of error.
The vanishing error in the time lag affects the weight resulted in dynamic error flow on
RTRL. The LSTM bridges [30] the minimum time lag, computes discrete time steps which
reduced the time steps based on preserved error constant error carousels (CEC) [9] handled
by multiplicative gates. To ensure the constant error flow, derivative of (7) is initialized
with 1 defines fI linear. It uses the special unit cell in yI(8) makes constant error flow
directly accesses the network handled by multiplicative gate units. It is emerged itself in
the single connection directly proportional to the error flow of next time step (t+1). Hence
the error flow yI becomes linear, derives the activation function zI acting as constant error
flow with the weight W that ranges to 1.0, since the weighted magnitude is not affected
and it enhances the storage of LSTM over the maximum period of time steps.

fI(zI(T )) =
zI(T )

W[I,J ]
(7)

Hence the function (f) becomes linear and it activated over the constant time stamp(T)

YI(T + 1) = fI(zI(T + 1) (8)

fI(yI(T )W [I, I] (9)

The CEC backflow remains constant even though there is a need of additional weight
input and output. It makes the confliction in weight update when it stores and ignores
the input is having the same weight. In order to handle conflicting weight updates, the
LSTM optimizes [31] the CEC by updating input and output gates which connects extra
memory cells with the network layers. The activation function ranged from [0, 1] for
the sigmoid threshold units YI is initialized in the input YIn (10) and output YO (11)
control the signals in the input and output gates, the gate closes when activation is nearly
zero. Gates can also learn to protect the data kept in memory cell from interruption due
to unrelated impulses. It solves the confliction of weight but leads to the exploding of
vanishing error [32] which can be resolved by the initialization of the forget gate [25, 26].
The signal is scaled from network to memory cell effectively in the activation function of
the forget gate Yf (12), states to 0 or 1.0 preserves the memory cell over time whereas
0 removes the memory cell such that it acts like RNN. It increases the complexity of an
LSTM unit, also referred to as a block of memory.

YIn(T + 1) = f(σ(W[IJ ] ∗ [J[it] − z[J−1]] + Y[In](T ))) (10)

YO(T + 1) = f(σ(W[IJ ] ∗ [J[it] − z[J−1]] + Y[O](T ))) (11)

Yf (T + 1) = f(σ(W[IJ ] ∗ J[it] − z[J−1] + Y[f ](T ))) (12)

By learning how to regulate access to the content of memory cells, the output gates
are capable of protecting neighbouring memory cells from disruptions enriching from the
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unit cell I. In order to regulate the access, the first layer of the LSTM gate is started
sequentially by the input, output, and forget gates. This hidden state is referred to as
short-term memory YH (14) if the output gate and the cell state initiated in the hidden
state which turns out to long term memory cell state YC (13) and generate the current
output. An activation function called tanh exists in the cell state, and it ranges from -1
to 1.

YC(T + 1) = Yf (T )× YC(T ) + YIn(T )×Nt (13)

YH(T + 1) = YO(T )× tanh(YC) (14)

YN = tanh(wN × [It − zI−1] + fN ) (15)

The forget and input gates employ a sigmoid activation function that oscillates between
0 and 1, allowing the cell state to be added and subtracted from the memory cell. This
memory cell serves as a long-term memory for making further predictions. The cell state
YC (13) is the memory cell functions as a new state YN (15) which follows the stacking
function. Thus, it is evident that the primary purpose of multiplicative gated units’
main function is to allow or prohibit continuous error flow via the CEC. If the unit u
is similar to the output gate of the memory block stops the propagation of error due
to truncation. It leads to restrict the updating of weight during backward propagation
making inconsideration of recurrent connection. The multiplicative gates are the issues
that it may permit or prohibit the continuous error flow via CEC in dynamic Environment
[7, 33]. The Bidirectional LSTM[10] overcomes the limitation of time series data over the
input and output vectors. Bidirectional LSTM splits the neuron into the input vector
Xi(16) in forward time direction.

Xi(T ) = x1, x2, x3, .........x(t− 1), x(t) (16)

The output vector (Yi) (17)in backward direction

Yi(T ) = y1, y2, y3, ..........y(t− 1), y(t) (17)

The projected outputs from the forward pass feed the BRU over all of the input data for
a single time stamp (t) from t=1 to T and backward from T to 1. In backward pass, it
feeds performing the output neurons forward pass from t=T to 1 and backward states to
the signal from 1 to T. When two LSTM networks connected to the same output layer
are enhanced by the process of forward and backward passes, the whole error gradient
calculation is implemented throughout the recursive time stamp (t). With both time
directions maintain the past input information and current future time frame minimizes
the objective function without delay. As the forward and backward signal recursively
flows over, the time stamp (t) removes one step truncation leading to the occurrence of
unimodal regression and estimation of the conditional probability for all the available
input data, in a full series of classes for the duration time (t). The outputs derived are
statistically dependent which makes difficulties in the evaluation of the temporal data. The
Bayesian LSTM [12, 34] avoids the limitation of the segmentation of temporal output data
over the two-pass algorithm (forward pass and backward pass) with the aspect of future
predictions. The feature’s presence or absence throughout the entire input sequence is
processed by the BRU but still, the LSTM shows that it is necessary to assume that the
entire input sequence contains the feature, or it does not contain the same feature [35].
It permits various responses from an activation indecency of context-specific inputs based
on the conditional probability leading to probabilistic input gate (18) for the temporal
observations.

p(Ct|Xt,t−1) ∝ p(Xt|Ct)p(Ct|Xt−1) (18)
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The Ht is the observed sequence of the event for the feature [36] Φt with conditional prior
probability p(Φt|Xt) of the feature ft up to the time stamp (t). The inverse of the observed
sequence (1−Ht) = p(Φt|Xt) is not time dependent. Hence it derives the independent of
probability for the given parameter θ. The joint probability with θ (19) condition is as
follows.

Ht = p(Φt|(θ,Xt) (19)

To improve the correctness, condition θ is dropped resulting in bi which are sigmoid
function and multiplicative feedback (20) derived as follows.

P (Φ̄t|Xt−1)

P (Φt|Xt−1)
=

1−Ht−1

Ht−1

= log(Ht−1)− log(1−Ht−1)

(20)

Probabilistic forget and input The dependency of the context with the prior context
throughout the storage unit is improved by the forget probabilistic approach. The in-
dicative event characteristics of the cell state YC over the ϕi is initialized with 0 or 1 based
on the relevancy and irrelevancy of the context. The storage unit of zt = P (YC = 1|Xt)
and inverse of 1−zt = P (YC = 0|Xt) foreseeable by the network is based on the probability
assigned. The relevant context with the cell state=1 which is by default independent but
due to prior probabilistic constant derived from ϕi makes it dependent on the context in
time stamp t and t-1 prediction of the network.

The layer-wise and unit recurrence of the probabilistic forget gate derives the conven-
tional linear aggregation of prior outcomes and a prior probability P with the input gate
P (YI) and follows with hidden gate P (YH). It derives the output zt for the input and
hidden unit where the prior probability Pi is applied with the logistic regression F (zt)
recursively concerning the current and previous terms of Yht with weighted input. It
simplifies the process of memory cell state YC with the context if it is relevant then the
feature which is retained and flows towards recurrence can lead to predict the dynamic
data.

F (zt) = logit([1− (zt−1)]P + zt−1(YHt− 1, I)

= logit(zt−1(WtYHt− 1 + c− P ) + P )

= logit(zt−1(WtYHt− 1 + c− P ) + P ) + β

(21)

The single recurrence is applied with unit-wise and layer-wise probabilistic approach equa-
tion (22) to make the network robust and the adhoc gate is retained back. The linear
function with the recursive approach with the hidden probabilistic gate works with the
context of 0 and 1, the approximation of the log h function estimated for the unknown
propagation of h with the prior and constant β (23) The weight factor W is initialized
with various gates of LSTM and it is not normalized in the forward pass using bias vector
b which emerges backward pass with the probabilistic approach derive the hidden and new
state gate as follows

PYHt = σ(WHYIn + bH + zt−1)⊙ (WHYHt−1 + br) (22)

PYNt = tanh(WNYIn + bIn + zt−1)⊙ (WHNYHt−1 + bH) (23)

The probabilistic forget gate derivations aim at formalizing the LSTM’s CEC, resulting
in the resemblance of a GRU’s reset gate(r). It is determined and upgraded of the gate
in the Gated recurrent unit. On considering a binary state variable, r with a value of 1
implies that there is no relevancy in current input, and a value of 0 means irrelevancy.
Such that the probability rt = P (pt = 1|Xt) and the inverse is (1 − rt) = P (pt = 0|Xt)
(24) in which there is no relevancy in current input, then ϕt it is depending on ϕt−1 a
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specific event feature ϕi to estimate the probability of the input prediction using equation
(26) and probability of the hidden is estimated by using equation (15).

rt = PYInP (ϕtYIn|Xt) + (1− rt, YIn)YHt−1, YIn (24)

F (PYHt) = ((1− zt)⊙ YNt + ztYHt−1) (25)

F (PYIn) = σ(WzY Int+ bH +WHYHt−1 + bH)) (26)

Using a prior probabilistic method, the single-level LSTM model based on Bayesian prob-
ability efficiently assesses the dynamical data. Prediction is greatly aided by the assessing
of the interconnected dynamics when dealing with multidimensional data flows. The use of
a single-level LSTM model in the asses of multi-dimensional dynamics leads to an inability
to perform optimal prediction in the time stamp (t) due to the compounding of error.

3. Multilevel LSTM Models

Hierarchical LSTM [22] combines low-level and high-level fusion of time series [18] anal-
ysis and employs multitask learning which can avoid the compounding of error. Hierar-
chical LSTM [37] memory concurrently works with the subsequent interrelated dynam-
ics over the time stamp(t) and output of the sub-memory cell (YCt), which emerged
with the concurrent LSTM. The concurrent LSTM fused with the new cell state gate
(YN t), sub-storage unit co-memory cells. Rather than using single-level coherent motion,
HLSTM selectively integrates and stores the information in synchronous LSTM units us-
ing multiple sub-memory units. The single sub-memory hidden state (YHt) is determined
by the input (YT ) for the time stamp T of various levels of inputs. Thus, evaluating
of the single dynamic yields the single inter-related dynamics at each time stamp (t).
Y1 ∈ R|T = 1, Y2 ∈ R|T = 2....Yp ∈ R|T = 1, 2...t where p is the interacting unit For the
inputs Y s

H |T = 1, 2, ...t Each sub memory unit (s) initiated with input gates, forget gates,
and sub-memory cells at the time stamp (t). Cell gates transfer interrelated motion mem-
ories from sub-memory units to a new co-memory cell defined in all the hidden states.
The co-memory cell selectively integrates memories and interrelated information treated
as single-level coherence related with interrelated dynamics over the time stamp(t) by
stacked co-LSTM units. It coherently added with the input gateYIn

s using equation (27)
and the forget gate YF

s using equation (28) with the additional integration of input mod-
ulation gate (YN )s using equation (29) and sub memory cell gate (YC)

s using equation
(30) over the time stamp(t) derives the interrelated dynamics it does not lead to analyze
the future intention of the multidimensional data.

Y s
In = σ(WY s

In · Y s
H +WYInY

s
H · YHt−1 + bsY In) (27)

Y s
F = σ(WY s

F · Y s
H +WYFY

s
H · YHt− 1 + bsY F ) (28)

Y s
N = ϕ(WY s

N · YH +WY s
N · YHt−1 + bsY N ) (29)

Y s
C = Y s

F ⊙ Y s
Ct−1 + YInt

s ⊙ YN ts (30)

Where s=1,2...p The temporal co-relation between the past, present, and future eval-
uations are abstained in the Hierarchical LSTM model leading to performance loss of
the predicted outcome in the optimal time stamp(t). The future intention estimation is
based on two factors viewport transition and subject-specific variation. The Hierarchi-
cal Bayesian LSTM model derives the above factors to forecast the previous output and
future input. It leads to a reduction of error in time series analysis which is acquired
from Bayesian fully connected layer (FC) layers. The process of transition in the tempo-
ral domain provides variations between the parameters of hierarchical Bayesian LSTM.
It evaluates a cell with unique Hierarchical Bayesian Inference (HBI) trained to learn in-
terrelated subject uncertainty. The HBI is derived by evaluating the minimum posterior
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distribution with relative entropy divergence (Drn) using equation (31) used to analyze the
optimal variation distribution for the approximation of interactable posterior distribution.

min
µγ ,σγ ,µη

DrnoJ(WL, γL, η)∥|DP (WL, γL, η∥D) (31)

Where oJ(WL, γL, η) is considered as the variational approximation to DP (WL, γL, η|D),
and µγ , σγ , µη are the corresponding parameters to be learned. The variable approximation
is typically structured in a hierarchy of 3,1 and 2 as oJ(WL, γL, η), oJγL, and oJη HBI is
executed arbitrarily to process the multidimensional data in the particular period (t) using
the weights derived from the inferred Gaussian distributions to evaluate the interrelated
subject uncertainty. The hierarchical distribution oJ is modeled by Gaussian with average
µγ and variance of prior σ2

γ using equation (32).

oγJ = N(γ∥µγ, σγ) (32)

The inter subject variance does not require γ instead that η using equation (33) with WL

using equation (34) can be used to formulate Gaussian posterior distribution to solve the
inter-subject variance for the prediction of the multi-dimensional data.

oJ(η) = N(η∥η, σ2
0I) (33)

The mean of the data µη is defined as the parameter and variance of the data σ2
0 is denoted

as a hyperparameter with I as a Identity matrix. The distribution dealt with the latent
variables γ and η can be updated with weight concerning WL (39).

oJ(WL∥γLη) = N(WL∥ηγLη2) (34)

The optimal calculation of the weight concerning the various parameters defines the mul-
tiplicative diversion of η and γL set the diversion of the weight factor WL derived by the
forward backpropagation. It leads to achieve the inter-related dynamics for the multi-
dimensional data but results in vanishing and exploding gradients during training make
the network more costly in terms of parameters and computational resources. The van-
ishing or exploding gradient is avoided by the reduction of the parameter using Jacobean
matrix [8] to preserve the gradient magnitude and protects the memory contents. It is
modelled with star cell and gradient propagation unit allows to build and train Gated
recurrent unit architecture of Mode RNN [38], PRED RNN [39] with the LSTM cell. It
avoids the impact of long-term errors, incompressible input sequences, and bridge the
temporal sequence without the sacrifice of short-time lag capabilities. The stable stacked
RNN cell transformation is designed concerning gradient propagation in hidden states
using equation (2). The loss (l) is computed on the basis of average of desired target pre-
diction and can be minimized using stochastic gradient using equation (38). The stacked
multiple RNN cells are derived from the equation (26) are as follows

(YH)lt = σ(W l−1
H YIn+ bH + Zt−1)⊙ (WHY l

Ht−1 + bH) (35)

Where l-1= Hidden nodes at the lower level l= Input nodes at the current higher level The
2D lattice is derived from the temporal unfolding using depth (l) and length(T) flow in
forward pass while the gradient flows in opposite direction. The gradient magnitude using
eq(4) of input, weights, and the previous hidden nodes are extracted from loss moves to
the output gate integrated with a Jacobean parameter.

∆WI,J(T ) =

(
∂yk(T )

∂WI,J

)l

∆WI,J(T )∂yk(T )
l

Where

(
∂yk(T )

∂WI,J

)l

= J

(36)
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Jacobean matrix(J) using equation (36) and ∆WI,J∂y
l
k is column vector contains the

partial derivatives of loss function(L) ∂L which is as nonlinear that maps the input signal
X at time(t). Hidden state of the previous time step=t-1 and YH is the current hidden
node, W is the trained weighted parameter of the cell with the input sequences of overall
length (l) at T. Updated recurrence for propagation-:

∂L(T )l =

(
∂yk(T )

∂yk(T )

)l+1

∂L(T )l+1+(
∂yk(T + 1)

∂yk(T )

)l

∂L(T + 1)l+1

= J(T )l+1∂L(T )l+1 + YH(T + 1)l∂L(T + 1)l

(37)

Where J l = Jacobean with respect to the input, Y l
H = Jacobean with respect to the

hidden state. Here the simple RNN cell derives the RNN to Vanilla RNN(VRNN) from
the derivation of the equation (38) two Jacobeans are derived as below

(YHt)
l = σ((W l−1

H YIn + bIh + Zt−1)⊙ (WHY l
Ht−1 + bH)) (38)

J l = Dσ(W l−1
H YIn + bH + Zt−1)⊙ (WHY l

Ht−1 + bH)lWX (39)

Y l
H = D × σ(W l−1

H YIn + bH + Zt−1)⊙ (WHY l
Ht−1 + bH)lWH (40)

Here the D denotes diagonal matrix with elements of vector x called as diagonal entities

J l = Dσ((YC)
lDWXYO(T + 1)) +Dσ((YC)

l

D(YO(T + 1))lD(YO(T + 1))lD(YC(T − 1))l

D(YF ((T + 1))lWX(YF (T + 1)) +Dl
N

D(Y In(T + 1))lWX +D(Y In(T + 1))lDl
NWXN )

(41)

The input, forget, and activation functions are utilized to represent the gates in the pre-
vious equations.

Y l
H = Dσ((YC)

lDWXYO(T + 1)) +Dσ((YC)
l

D(YO(T + 1))lD(YO(T + 1))lD(YC(T − 1))l

D(YF ((T + 1))lWX(YF (T + 1)) +Dl
N

D(Y In(T + 1))lWX +D(Y In(T + 1))lDl
NWYHN

(42)

The star unit is used to begin the updated parameter. Imposed of Star unit with RNN-:
The lth layer of the STAR cell takes the input Y l

H at time t from the first layer derives Xt

non-linearly projects it to the space of the hidden vector hl. In addition, the prior hidden
state combines the further input into the gating parameter Y l

In. The Y l
F function, similar

to the forget gate, determines how information from past hidden states and new inputs are
combined to create a new hidden state, which is the STAR unit’s overall dynamics[39]. The
multiplicative input gate unit is introduced with Jacobeans and star parameters protect the
memory contents. It relies upon the gradient computations terminated at specific points
specific to the architecture, which does not impact long-term errors. A new recurrent
network architecture is integrated with a robust gradient-based learning algorithm. With
noisy, incompressible input sequences, it can still learn to bridge temporal encompasses
longer than a thousand times without sacrificing its short-time lag capabilities.
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Table 1. Sign language theoretical and experimental review

Sl
No

Method Contribution Advantages Limitations

1 Bidirectional long
short-term mem-
ory fast fisher
vector (FFV-BI-
LSTM) [40, 41]

Training of 3D
hand skeletal
motion and ori-
entation features
using Leep Motion
Controller

Increased Accu-
racy of 5% and
optimization of
Feature vector
from 3D to 4D

Misclassification
of hand motion
trajectory due to
minor variation
or similarity with
ASL words re-
flected in biases

2 CNN-LSTM-
HMMS [42]

Multistream ar-
chitecture and the
joint multistream
alignments pro-
posed to create
weak shape labels

Constraints in
LSTM with feasi-
ble length which
fits in modern
GPUS, and ob-
serve significant
convergence in
dataset

The Dynamic
weightage of the
streams cannot
be applied due
to high computa-
tional complexity

3 Multiple Deep
learning architec-
ture [43]

3DCNN instances
were used for fea-
ture learning and
MLP and autoen-
coders used for ag-
gregation of local
features

Improve the recog-
nition rate and ac-
curacy

Training cost in-
creases and not
validated in the
real time system

4 CNN+ BiLSTM,
GAN (Generative
Adversial Neural
Network) [44, 45]

CNNLSTM ex-
tract pose details
and GAN model
to improve visual
quality

The accuracy
rate is 95% and
framework demon-
strated high
human validation
score in real time
sign language

Challenges to
handle large data,
lacks in recogni-
tion accuracy and
visual quality

5 Self-attention
framework using
vision transformer
[46, 47, 48]

Tiny swin trans-
former model,
spatial encoder
and temporal
module and mask-
ing using future
transformer

Focused on high
level semantic
[65]information
and eliminate
redundancy

The recognition
is performed only
with 32 image
frame sequence or
video clips with
15-20 frames

6 Attention based
Bidirectional
LSTM with mobile
Net v2 [45]

The model focus
in selective crucial
points, encap-
sulate pertinent
information break-
down complication
to simplify with-
out noise

The model out-
performs many
contemporary sign
language mecha-
nisms validation
accuracy increased
up to 5%

Less comprehen-
sive defines less
than 100 words
with 30 medical
signs

7 MIPA-
RESGCN(multi
input, part at-
tention Enhanced
Residual graph
convolutional net-
work) [50]

Spatio temporal
graph convolu-
tional blocks to
capture spatial
and temporal rela-
tion with attention
mechanisms

Significant reduc-
tion in computa-
tional complexity
Efficient spatio
temporal features
with the removal
of noise

The model fails in
critical scenarios if
there is a similarity
of signs
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Sl
No

Method Contribution Advantages Limitations

8 Bidirectional
spatial temporal
LSTM fusion at-
tention Network
[51]

CNN and spatio
temporal LSTM
for feature rep-
resentation and
uniform Neural
machine transla-
tion frame work for
geasture Recogni-
tion

Achieve highest
accuracy while
alignment results
not true and feasi-
ble

Longer training
time with equal
aspect of testing
time to have more
accuracy

9 Deep CNN [52] Deep CNN with
thermal imaging
capture system for
the Hand gesture
classification using
FLIR lepton 3.5

Less space com-
plexity and com-
putational com-
plexity

Challenge to
recognize hand
gestures in com-
plex background
variable illumina-
tion low intensity
environment

10 Three multi-
information shar-
ing network
(TMS-NET) [4]

End to end mul-
tistream network
architecture, and
multilevel sharing
mechanisms

Overcome com-
plexity and di-
versity of gesture
motions, and
makes challenges
for the SLR task

Computational
resources to be
increased and
demands training
time potentially
limits real world
application

11 Separable para-
metric graph
convolution(SPG-
CONV) [39]

Multiple parame-
terized graph im-
prove local interac-
tion patterns han-
dle irregular skele-
ton topologies

Space complexity
reduced and com-
putational cost
also reduced

Fails to derive
the pattern com-
plex interactions
and partitioning
groups affects the
recognition

12 Coherence con-
strained graph
LSTM (CCG-
LSTM) [19]

Temporal confi-
dence gate and
spatial confidence
gate measuring
consistency of
certain motions

Group activity
recognition 6.4%
with improvement
in accuracy and
learning rate is
increased with
minimum loss

STCC and GCC
adds complexity
and reduces po-
tential training
adding parameters
make model more
intricate to opti-
mize

13 Region convolu-
tional 3D network
(RC-3D) [53, 54]

The model gen-
erates candidate
temporal regions
jointly optimized
by fusing the
flow of RGB with
stream network

Accurate and fast
detection

Dense video
captioning and lo-
calizing moments
in videos is not
included in the
framework

14 View Adap-
tive neural
network(VA-RNN)
and View adaptive
convolution neural
network(VA-
CNN)[55]

Consistent obser-
vation view point
and skeletal trans-
formation to the
viewpoints are de-
termined

Eliminates the in-
fluence of view-
point enables net-
work focuses on ac-
tion features im-
proves robustness
and elevate over
fitting

Requires more
computational and
convergence time
and challenges in
fusion
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Sl
No

Method Contribution Advantages Limitations

15 Hierarchical Long
short-term concur-
rent memory (H-
LSTM) [22]

Long term inter-
related dynamics
stores individual
motion informa-
tion using new
cellgate and new
co-memory cells

Learns dynamic
interrelated repre-
sentation among
multiple person
in a hierarchical
way to improve
efficiency

Fails to infer in
recognition of com-
plex multiple per-
sons interaction

16 Hierarchical
LSTM with
adaptive atten-
tion(HLSTMat)
[21]

Spatial and tem-
poral attention of
specific region uti-
lized with adaptive
attention considers
low level and high
level visual context
information

It enables more
complex represen-
tation of visual
data with different
scales

The model is not
refined to perform
image captioning
task

17 Skeleton joint co-
attention recurrent
neural networks
(SC-RNN) [56]

Skeleton joint
feature map is
constructed with
skeleton joint coat-
tention to refine
the observe motion
information

Dynamically
learn coatten-
tion feature map
embedded with
human joint and
skeletal motion
with new weighted
gram-matrix loss

Prediction of long
motions dramati-
cally increase pre-
diction errors and
model will get col-
lapse due to bottle
neck

18 Tree structure-
based traversal
framework [8]

Extension in an-
alyzation of spa-
tial and tempo-
ral domain in the
hidden sources of
action related in-
formation by im-
plementing a new
gating mechanism
with LSTM model

Multi-model
feature fusion
optimized the effi-
ciency of methods

Complexity of tra-
versal process in-
creases, if maintain
the adjacency in-
formation

19 3D CNN [57] Deep convolution
neural networks
for transfer learn-
ing

Avoids the scarcity
of large labeled
dataset

Accuracy will fail
if dataset is small
and due to Noise
[small dataset and
noise limits the
integrity of the
model

20 3D Deep Neural
attention based
Bi-LSTM (hDNN-
SLR) [58, 65]

Multi semantic
property extrac-
tion with temporal
and sequential
features using
3D Deep Neural
attention based
Bi-LSTM

Accurate Recogni-
tion and reduction
of computation
overhead

Fails in continu-
ous recognition of
sign gestures and
mishandling of seg-
mentation ambigu-
ities and moment
epenthesis
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Sl
No

Method Contribution Advantages Limitations

21 Graph convolution
with attention and
residual connec-
tion (GCAR) [59]

Temporal spatial
features for Non
skeletal points
are added through
Sep-TCN and joint
motion is mirrored
to yield the final
feature vector
provides discrimi-
native short range
dependencies

High Accuracy
coupled with less
stable computa-
tional complexity

Lack of Real time
implementation
and multicamera
Recognition

22 Attention Based
Graph Convolu-
tional Network
(GCN) [60]

Enhance Non-
connected joint
skeleton features
with two streams
Deep learning
Network in which
graph-based fea-
tures of 47 poses
using GCN, re-
fined through
attention model

Dynamic with pre-
cise efficiency and
robust recognition
system

Lack of evaluation
of optimal number
of joints results in
limitation of sign
words

23 CNN transfer
learning [61]

Two stage CNN ,
one for counting
predicted word
and another for
meaning extrac-
tion

Optimization of
accuracy in the
context of sign
words with re-
duced complexity

Lack of topic col-
lection and labels
for large sentence
dataset of multiple
signs

24 GRU(Gated Re-
current unit) with
MLP (Multi layer
perceptron) SwC
GR-mixer model
[62]

Recognition by
shifted window
concatenation and
temporal modeling
using GRU

6.95% improve-
ment in accuracy
and overcomes the
independence of
single frequency
dataset and avoids
over fitting

Lack of interpre-
tation in video
domain cannot be
implemented in
Real time

25 Deep transfer
learning based
convolution neural
network with a
random forest
classifier[63]

Model applied
with Background
Elimination and
region of interest
using stochastic
gradient descent
optimization

Reliable architec-
ture with fine tun-
ing provides lower
learning rate with
prevention of over
fitting

High level param-
eters increases
computational
complexity limits
to extend for low
end system

26 Spatial-temporal
fusion convolution
Neural Network
(STFC-Net)[37]

Multilevel iterative
optimization using
Hierarchical mem-
ory sequence net-
work to enhance
the temporal rela-
tionship

Reduction of space
and time complex-
ity of the network
model

Model is over fitted
due to limited SLR
dataset
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Figure 1. Architecture of the LSTM Models for the Sign Language Interpretation

4. Architectural and Experimental Analysis Of LSTM Models

The models of LSTM [30]are evaluated with Sign language recognition system illustrated
in Table 1 and experimented with the dataset of ASL by the architecture shown in Figure
1. The architecture of the deep learning models of LSTM [68] and BiLSTM, HLSTM,
BaLSTM, Hierarchical Bayesian LSTM architecture using relu and softmax activation
function. It is used to learn and classify sign language gestures captured from the audio
and video [66] feed with the dataset. The Key features of the survey include real-time
gesture detection with the analysis of accuracy and loss of recognition using new train sign
language gestures. The system is built using Python, TensorFlow, OpenCV, and NumPy,
making it accessible and easy to customize with the real-time sign Language Detection
Using LSTM Model, Bidirectional LSTM model, Bayesian LSTM, Hierarchical Bayesian
LSTM, Mode RNN, PRED RNN. The survey aims to provide a strong model analysis
and define the problem due to comprehending of error from the various LSTM models.
The activation functions of sequential Backpropagation Neural Network, LSTM, BiLSTM,
HLSTM used hidden units, dense units with relu and soft activation function for testing
and training of the sign language dataset. It is initiated using relu activation function for
the first three layers with the learning model in the sequence of (64, 128, 64) and further
two layers with dense model in the sequence of (64, 32). Finally, the last single layer is
initiated with the dense network using the SoftMax activation function. It also deals with
LSTM with convolution (CNNLSTM)[52, 64] with the architectural layer which includes
the convlstm2D learning model followed by the convolution filtering mask (4, 8, 14, 16,
18) and max pooling-3D layer with the sequence of (1, 2, 2) and with the dropout of 0.2
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(a) RNN

(b) LSTM (c) BIDIRECTIONAL LSTM

(d) HIERARCHIAL LSTM

Figure 2. Comparative evaluation of ACCURACY of LSTM models
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(a) RNN

(b) LSTM (c) BIDIRECTIONAL LSTM

(d) HIERARCHIAL LSTM

Figure 3. Comparative evaluation LOSS of LSTM models
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and at last the dense layer using SoftMax activation for the LSTM model analysis. The
sign language [67] dataset is trained and tested with the above model architecture for the
evaluation of the various LSTM models consisting of various units for the enhancement
of gestures which makes the flow of the quality of the evaluation of the accuracy of the
model in the prediction of sign images. The model emerges with the various features of the
dataset Where trainx, trainy, and epochs of the model are predicted with time steps (t).
The training of the LSTM models indicates whether the particular layer should behave
in training mode or inference mode when the dropout or recurrent dropout is used at
the time of training of the ASL dataset. The accuracy and the loss of the various LSTM
models are evaluated using the following equations

Accuracy = TN + TP/TN + FP + TP + FN (43)

LOSS = (Y − Yhat)
2 (44)

In the analysis of the comparative study of various LSTM models, all the models are
executed with 500 epochs to evaluate the accuracy of the models shown in Figure 2.
While experimented with RNN model [40] from 0-100 epochs there is a huge variation in
the accuracy of the data. After the 100 epochs, the accuracy reached the maximum of
100% whereas the LSTM model up to 10 epochs it moves from the accuracy max of 65%,
and after that up to the 500 epochs the average of 30% is preserved.

In the Bidirectional LSTM model shows a constant accuracy of 26% for the entire
epochs but the Hierarchical LSTM model is more dynamic and rapidly increases accuracy
from lower epochs rate to higher epochs rate. The various LSTM are further evaluated to
estimate the loss show in Figure 3 in which RNN model provided an increase and reduction
of loss up to 100 epochs after that there is no loss in the data. Whereas LSTM model
up to 50 epochs there is an average increase of loss and after that up to 80 epochs there
is a consistent reduction of loss but with the Bidirectional LSTM model up to 30 epochs
there is maximum to minimum loss, then after 30 epochs there is a sudden increment of
loss up to 70 epochs again maximum to minimum loss is preserved after 70 epochs. While
dealing with the Hierarchical LSTM model it shows that there is unique flow of loss factor
compared to another model, the loss rate is increased up to 5 epochs after that there is a
reduction of loss rate up to 100 epochs then there is an increase loss rate up to 105 then
there is a consistent reduction in the loss rate in further epochs.

5. Conclusions

Sign language is the multidimensional interpretation of data with time series providing
the effective analysis of LSTM models. The derivative of the LSTM models is analysed
and interpreted with the sign language application in the context of error propagation
impact on the application. The BPRNN model has been derived efficiently if the propa-
gation of time slack factor is less than one provided optimum accuracy of 99 % and loss
at average epochs in the architecture of ReLu 64, 18, 64 and SoftMax in dense layer in
sign language. The multidimensional data caused an increase in exponential flow of er-
ror. The LSTM preserved CEC due to multiplicative gates provided constant error flow
experimented with the model provided more accuracy of 60% at lower epoch but reduced
rapidly with low loss in sign language. The conflict of weights is solved by Bidirectional
LSTM optimized CEC reduced optimally the loss rate but accuracy 26% is not increased
to the optimum level in sign language due to the explode of vanishing error. The multi
dimensional data is effectively handled by multi level hierarchical LSTM models, avoids
vanishing error and reduces the impact of long term errors, shows exponential increase in
accuracy and reduction in loss for sign language. This Extensive review provided clear
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interpretation of the LSTM models mathematically and experimentally with the aspects
of error propagation and its impact in the multidimensional data processing in the basis of
sign language interpretation. It also revealed many insightful observations such as scarcity
of annotated 2D to 3D datasets while video processing. In future the review is extended
to more derivative of error analysis for deep learning model with multidimensional inter-
pretation of sign language system. To overcome the challenges of error analysis in deep
learning model with the evaluation of sign language which will be helpful for the future
researchers.
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