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ON (p, q)-FUZZY SUBGROUPS

A. SIVADAS1∗, S. J. JOHN1, T. M. ATHIRA2, §

Abstract. The (p, q)-fuzzy sets, which extend the concept of q-rung orthopair fuzzy
sets, provide a broader framework for representing uncertainty. This article introduces
the concept of (p, q)-fuzzy subgroups of finite groups and examines their fundamental
properties. Additionally, it develops and analyzes key concepts such as (p, q)-fuzzy cosets,
(p, q)-fuzzy normal subgroups, and (p, q)-fuzzy level subgroups, thereby providing deeper
insights into the structure of (p, q)-fuzzy subgroups.
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1. Introduction

Algebraic structures are fundamental to various areas of mathematics. Notable algebraic
structures include groups, rings, fields, and vector spaces, which are explored in detail in
[10]. The foundational contributions by Zadeh [22] on fuzzy subsets of a set and Rosenfeld
[19] on fuzzy subgroups of a group resulted in the fuzzification of algebraic structures.

Anthony and Sherwood [2, 3] redefined the concept of fuzzy subgroups using triangular
norms to enhance its applicability in various fuzzy scenarios. Das [9] introduced the no-
tion of level subgroups of a fuzzy subgroup, which provided a characterization of all fuzzy
subgroups of finite cyclic groups. Choudhury et al. [8] studied fuzzy homomorphisms
between groups and examined their effects on fuzzy subgroups. Mukherjee and Bhat-
tacharya [15, 16] contributed by defining fuzzy normal subgroups and fuzzy cosets, along
with developing fuzzy analogs of some fundamental theorems in group theory. Kim [13]
proposed the concept of fuzzy orders of elements in fuzzy subgroups and analyzed associ-
ated properties. Additionally, Kim [14] introduced the notion of order of a fuzzy subgroup
based on fuzzy orders of its elements and proposed the notion of fuzzy p-subgroups.
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Atanassov [4] introduced intuitionistic fuzzy sets (IFSs) to model situations charac-
terized by insufficient information regarding the membership degrees of elements in a
universal set. IFSs incorporate the concept of indeterminacy, which arises from the hesi-
tation between membership and non-membership degrees. Biswas [7] initiated the study
of intuitionistic fuzzy subgroups, laying the foundation for further research in this domain.
Subsequently, Hur et al. [11, 12] extended this work by introducing intuitionistic fuzzy
normal subgroups and intuitionistic fuzzy cosets, accompanied by a detailed study of their
properties.

Yager [20] introduced Pythagorean fuzzy sets (PFSs) as an extension of IFSs, where
the sum of the squares of membership and non-membership degrees is bounded by 1.
PFSs can model situations involving uncertainty while ensuring that the inconsistency re-
mains within a certain threshold. Bhunia et al. [6] formalized the concept of Pythagorean
fuzzy subgroups and explored their structural properties in detail. Additionally, in [5],
they presented Lagrange’s theorem for Pythagorean fuzzy subgroups. Razaq et al. [17]
conducted a comprehensive study on Pythagorean fuzzy cosets and Pythagorean fuzzy
normal subgroups, while also introducing the notions of Pythagorean fuzzy homomor-
phism and Pythagorean fuzzy isomorphism. Yager [21] proposed q-rung orthopair fuzzy
sets (q-ROFSs) as a generalization of PFSs. In q-ROFSs, the sum of the qth powers of
membership and non-membership degrees is bounded by 1, enabling these sets to handle
greater inconsistency levels compared to PFSs. In [18], the authors defined the concept
of q-rung orthopair fuzzy subgroups and examined their features in detail. Al-shami and
Mhemdi [1] introduced a new extension of fuzzy sets, called (p, q)-fuzzy sets ((p, q)-FSs),
which incorporates indeterminacy and generalizes q-ROFSs. This model is particularly
applicable in real-world applications, where the relative importance of membership and
non-membership degrees differs. Unlike q-ROFSs, which assign equal importance to mem-
bership and non-membership degrees, (p, q)-fuzzy sets provide greater flexibility by al-
lowing distinct weights for these degrees. This article defines the notion of (p, q)-fuzzy
subgroups of finite groups and examines their properties. Additionally, it defines the con-
cepts of (p, q)-fuzzy cosets, (p, q)-fuzzy normal subgroups, and (p, q)-fuzzy level subgroups,
while also presenting several significant findings related to these concepts.

2. Preliminaries

This section reviews the fundamental concepts crucial for the development of subsequent
sections. Throughout this article, let U represent a universal set and let G denote a group.

Definition 2.1. [19] Let R be a fuzzy subset of G with membership function αR, αR : G →
[0, 1]. Then R a fuzzy subgroup of G if for g1, g2 ∈ G, αR(g1g2) ≥ min{αR(g1), αR(g2)}
and αR(g1

−1) ≥ αR(g1).

Definition 2.2. [7] An intuitionistic fuzzy set, R = {(g, αR(g), βR(g)) : g ∈ G} on G is
an intuitionistic fuzzy subgroup of G if, for g1, g2 ∈ G:

(1) αR(g1g2) ≥ min{αR(g1), αR(g2)} and βR(g1g2) ≤ max{βR(g1), βR(g2)},
(2) αR(g1

−1) ≥ αR(g1) and βR(g1
−1) ≤ βR(g1).

Definition 2.3. [18] A q-rung orthopair fuzzy set, R = {(g, αR(g), βR(g)) : g ∈ G} on G
is a q-rung orthopair fuzzy subgroup of G if, for g1, g2 ∈ G:

(1) (αR(g1g2))
q ≥ min{(αR(g1))

q, (αR(g2))
q}, (βR(g1g2))q ≤ max{(βR(g1))q, (βR(g2))q},

(2) (αR(g1
−1))q ≥ (αR(g1))

q, (βR(g1
−1))q ≤ (βR(g1))

q.

Definition 2.4. [1] A (p, q)-fuzzy set K on U is defined as

K = {(u, αK(u), βK(u)) : u ∈ U} ,
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where p, q ≥ 1, αK : U → [0, 1] is the membership function of K, βK : U → [0, 1] is the
non-membership function of K and αK(u), βK(u) satisfy 0 ≤ (αK(u))

p + (βK(u))
q ≤ 1.

In the subsequent section, (αK(u))
p is denoted as αp

K(u), and (βK(u))
q as βq

K(u).

3. (p, q)-fuzzy subgroups

In this section, let G be a finite group. This section elucidates the concept of a (p, q)-fuzzy
subgroup of G and explores certain characteristics associated with it.

Definition 3.1. For p, q ≥ 1, let K = {(g, αK(g), βK(g)) : g ∈ G} be a (p, q)-fuzzy set on
G, then K is a (p, q)-fuzzy subgroup of G if, for g1, g2 ∈ G:

(1) αp
K(g1g2) ≥ min {αp

K(g1), α
p
K(g2)} and βq

K(g1g2) ≤ max {βq
K(g1), β

q
K(g2)},

(2) αp
K(g1

−1) = αp
K(g1) and βq

K(g1
−1) = βq

K(g1).

Note that, intuitionistic fuzzy subgroups of G and Pythagorean fuzzy subgroups of G are
(p, q)-fuzzy subgroups of G for p = q = 1 and p = q = 2, respectively.

Example 3.1. Let p = 4, q = 3 and G = (Z4,+4), where +4 denotes addition modulo 4.
Let

K = {(0, 0.8, 0.1), (1, 0.6, 0.3)(2, 0.7, 0.2), (3, 0.6, 0.3)}.
K is a (4, 3)- fuzzy set defined on Z4. Here, the membership and non-membership degrees
of each element in Z4 satisfies the conditions enlisted in Definition 3.1; hence, it is a
(4, 3)-fuzzy subgroup of Z4.

Theorem 3.1. Let K be a (p, q)-fuzzy subgroup of G. Then αp
K(g

m) ≥ αp
K(g) and

βq
K(g

m) ≤ βq
K(g) for m ∈ N.

Proof. By Definition 3.1,

αp
K(g

2) ≥ min{αp
K(g), α

p
K(g)} = αp

K(g)

and

βq
K(g

2) ≤ max{βq
K(g), β

q
K(g)} = βq

K(g).

The proof follows by mathematical induction on m. □

Corollary 3.1. In Definition 3.1, since G is a finite group, condition 1 implies condition
2.

Proof. Let g ∈ G with order of g, o(g) = n, then g−1 = gn−1.

αp(g−1) = αp
K(g

n−1) ≥ αp
K(g).

For g = g−1, it follows that

αp
K(g) ≥ αp

K(g
−1).

Thus, αp
K(g) = αp

K(g
−1).

Similarly, for non-membership degree, βq
K(g) = βq

K(g
−1). □

Theorem 3.2. Let K be a (p, q)-fuzzy group of G, e be the identity element in G, then
αp
K(e) ≥ αp

K(g) and βq
K(e) ≤ βq

K(g) for g ∈ G.

Proof. Let g ∈ G, αp
K(e) = αp

K(gg
−1) ≥ min {αp

K(g), α
p
K(g

−1)} = αp
K(g). Analogously, it

can be shown that βq
K(e) ≤ βq

K(g). □
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Theorem 3.3. Let K be a (p, q)-fuzzy set on G. K is a (p, q)-fuzzy subgroup of G if and
only if αp

K(g1g2
−1) ≥ min {αp

K(g1), α
p
K(g2)} and βq

K(g1g2
−1) ≤ max {βq

K(g1), β
q
K(g2)} for

g1, g2 ∈ G.

Proof. Let K be a (p, q)-fuzzy set on G. Suppose K is a (p, q)-fuzzy subgroup of G,
then for g1, g2 ∈ G,

αp
K(g1g2

−1) ≥ min {αp
K(g1), α

p
K(g2

−1)} = min {αp
K(g1), α

p
K(g2)}

and
βq
K(g1g2

−1) ≤ max {βq
K(g1), β

q
K(g2

−1)} = max {βq
K(g1), β

q
K(g2)}.

Conversely, let αp
K(g1g2

−1) ≥ min {αp
K(g1), α

p
K(g2)} and βq

K(g1g2
−1) ≤ max {βq

K(g1), β
q
K(g2)}

for g1, g2 ∈ G. Then

αp
K(g1g2) = αp

K(g1(g2
−1)−1) ≥ min {αp

K(g1), α
p
K(g2

−1)} = min {αp
K(g1), α

p
K(g2)}.

Similarly, it can be proved that βq
K(g1g2) ≤ max {βq

K(g1), β
q
K(g2)}.

Now consider αp
K(g1

−1),

αp
K(g1

−1) = αp
K(eg1

−1) ≥ min{αp
K(e), α

p
K(g1)} = αp

K(g1), (1)

which gives
αp
K(g1) = αp

K((g1
−1)−1) ≥ αp

K(g1
−1). (2)

From (1) and (2), αp
K(g1

−1) = αp
K(g1). Similarly, it can be proved that βq

K(g1
−1) = βq

K(g1).
Hence, K is a (p, q)-fuzzy subgroup of G. □

Theorem 3.4. Let K1 and K2 be two (p, q)-fuzzy subgroups of G. Then K1 ∩ K2 is a
(p, q)-fuzzy subgroup of G.

Proof. For g1, g2 ∈ G,

αp
K1∩K2

(g1g2
−1) = min{αp

K1
(g1g2

−1), αp
K2

(g1g2
−1)}

≥ min{min {αp
K1

(g1), α
p
K1

(g2
−1)},min {αp

K2
(g1), α

p
K2

(g2
−1)}}

= min{min {αp
K1

(g1), α
p
K1

(g2)},min {αp
K2

(g1), α
p
K2

(g2)}}
= min{min {αp

K1
(g1), α

p
K2

(g1)},min {αp
K1

(g2), α
p
K2

(g2)}}
= min{αp

K1∩K2
(g1), α

p
K1∩K2

(g2)}.

Similarly, it can be shown that βq
K1∩K2

(g1g2
−1) ≤ max{βq

K1∩K2
(g1), β

q
K1∩K2

(g2)}.
Hence, K1 ∩K2 is a (p, q)-fuzzy subgroup of G. □

Theorem 3.5. Let K be a (p, q)-fuzzy subgroup of G and e be the identity element in G.
Then αp

K(xg) = αp
K(g) and βq

K(xg) = βq
K(g) for all g ∈ G if and only if αp

K(x) = αp
K(e) and

βq
K(x) = βq

K(e).

Proof. Suppose αp
K(xg) = αp

K(g) and βq
K(xg) = βq

K(g) for all g ∈ G. Specifically, for g = e,
it follows that

αp
K(x) = αp

K(e), β
q
K(x) = βq

K(e).

Suppose αp
K(x) = αp

K(e) and βq
K(x) = βq

K(e). Since αp
K(g) ≤ αp

K(e) for all g ∈ G,

αp
K(xg) ≥ min{αp

K(x), α
p
K(g)} = min{αp

K(e), α
p
K(g)} = αp

K(g) for all g ∈ G.
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Also,
αp
K(g) = αp

K(x
−1xg) ≥ min{αp

K(x), α
p
K(xg)} = αp

K(xg) for all g ∈ G.

Hence, αp
K(g) = αp

K(xg) for all g ∈ G. Similarly, βq
K(xg) = βq

K(g) for all g ∈ G. □

Theorem 3.6. Let K be a (p, q)-fuzzy subgroup of G and e be the identity element in G.
Then H = {g ∈ G : αp

K(g) = αp
K(e), β

q
K(g) = βq

K(e)} is a subgroup of G.

Proof. By the definition of H, it follows that e ∈ H. Hence, H is a non-empty subset of G.
Let g1, g2 ∈ H, then αp

K (g1) = αp
K(e) = αp

K(g2) and βq
K(g1) = βq

K(e) = βq
K(g2). Then

αp
K(g1g2

−1) ≥ min
[
(αp

K(g1), α
p
K(g2

−1)
]

= min
[
αp
K (g1) , α

p
K (g2)

]
= min

[
αp
K(e), α

p
K(e)

]
= αp

K(e).

By Theorem 3.2, αp
K(e) ≥ αp

K(g1g2
−1). Therefore, αp

K(g1g2
−1) = αp

K(e). Similarly, it can
be shown that βq

K(g1g2
−1) = βq

K(e). Thus, g1g2
−1 ∈ H, which proves that H is a subgroup

of G. □

Theorem 3.7. Let K be a (p, q)-fuzzy subgroup of G. Then there exists an element x ∈ G
such that αp

K(x) ≤ αp
K(g) and βq

K(x) ≥ βq
K(g) for all g ∈ G.

Proof. Let A denote the set of all elements in G with the least membership degree, and B
denote the set of all elements in G with the greatest non-membership degree, i.e.,

A = {g′ ∈ G : αp
K(g

′) ≤ αp
K(g) ∀ g ∈ G}

B = {g′′ ∈ G : βq
K(g

′′) ≥ βq
K(g) ∀ g ∈ G}

To prove A ∩B ̸= ∅. Let g′ ∈ A and g′′ ∈ B. Clearly, g′ = g′′ ∗ s for some s ∈ G and

αp
K(g

′) ≥ min{αp
K(g

′′), αp
K(s)}.

Since αp
K(g

′) is the minimum membership degree, either αp
K(g

′′) = αp
K(g

′) or
αp
K(s) = αp

K(g
′).

If αp
K(g

′′) = αp
K(g

′), it follows that g′′ ∈ A, i.e., A ∩B ̸= ∅ and x = g′′.
If αp

K(s) = αp
K(g

′), consider g′′ = g′ ∗ s−1. Then

βq
K(g

′′) ≤ max{βq
K(g

′), βq
K(s

−1)}.
Since βq

K(g
′′) is the maximum non-membership degree, either βq

K(g
′) = βq

K(g
′′) or

βq
K(s

−1) = βq
K(g

′′).
If βq

K(g
′) = βq

K(g
′′), it follows that g′ ∈ B, i.e., A ∩B ̸= ∅ and x = g′.

If βq
K(s

−1) = βq
K(g

′′), then it follows that αp
K(s) = αp

K(g
′) and βq

K(s
−1) = βq

K(s) = βq
K(g

′′),
which means s ∈ A ∩B and x = s.

□

Example 3.2. In Example 3.1, for the (4, 3)-fuzzy subgroup of (Z4,+4), the elements, 1
and 3 in Z4 possess the least membership degree and the greatest non-membership degree.

Theorem 3.8. Let G be a cyclic group and let K be a (p, q)-fuzzy subgroup of G, then the
generators of G possess equal membership and non-membership degrees in K.

Proof. Let g1, g2 be two generators of G. Since g1 is a generator, g2 = g1
m for some

m ∈ N.
αp
K(g2) = αp

K(g1
m) ≥ αp

K(g1) and βq
K(g2) = βq

K(g1
m) ≤ βq

K(g1) (3)

Since g2 is a generator, g1 = g2
n for some n ∈ N.

αp
K(g1) = αp

K(g2
n) ≥ αp

K(g2) and βq
K(g1) = βq

K(g2
n) ≤ βq

K(g2) (4)
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From (3) and (4), αK(g1) = αK(g2) and βK(g1) = βK(g2). □

3.1. Orders of (p, q)-fuzzy subgroups.

Definition 3.2. Let K be a (p, q)-fuzzy subgroup of group G. For g ∈ G, the least positive
integer m such that αp

K(g
m) = αp

K(e) and βq
K(g

m) = βq
K(e) is called the order of g in K,

denoted as (p, q)− FOK(g).

Note that, the order of an element in a (p, q)-fuzzy subgroup K of G is always less than
or equal to its order in G. Also, the order of an element and its inverse in K are equal.

Example 3.3. Let K be a (4, 3)-fuzzy subgroup of (Z6,+6),

K = {(0, 0.9, 0.2), (1, 0.9, 0.3), (2, 0.9, 0.2), (3, 0.9, 0.3), (4, 0.9, 0.2), (5, 0.9, 0.3)}.
Here, (p, q)− FOK(1) = (p, q)− FOK(5) = (p, q)− FOK(3) = 2 and
(p, q)− FOK(2) = (p, q)− FOK(4) = 1.

Theorem 3.9. Let K be a (p, q)-fuzzy subgroup of G and e be the identity element in G.
Let g1 ∈ G, and let t be a positive integer satisfying αp

K(g1
t) = αp

K(e) and βq
K(g1

t) = βq
K(e).

Then, (p, q)− FOK(g1) divides t.

Proof. Let g1 ∈ G, and let (p, q) − FOK(g1) = m. For t ∈ N, by the division algorithm,
there exists s, r ∈ Z such that

t = ms+ r, 0 ≤ r < m

r = t−ms

αp
K(g1

r) = αp
K(g1

t−ms)

= αp
K(g1

tg1
−ms)

≥ min{αp
K(g1

t), αp
K(g1

−ms)}
= min{αp

K(g1
t), αp

K(g1
ms)}

≥ min{αp
K(g1

t), αp
K(g1

m)} (by Theorem 3.1)

= min{αp
K(e), α

p
K(e)}

= αp
K(e)

By Theorem 3.2, it follows that αp
K(e) ≥ αp

K(g1
r). Hence αp

K(g1
r) = αp

K(e). Analogously,
it can be shown that βq

K(g1
r) = βq

K(e). However, (p, q)− FOK(g1) = m implies that m is
the least positive integer such that αp

K(g1
m) = αp

K(e) and βq
K(g1

m) = βq
K(e). Hence r = 0,

which implies that t is a multiple of m or m divides t. □

Corollary 3.2. Let K be a (p, q)-fuzzy subgroup of G. Then for each g ∈ G, the (p, q)−
FOK(g) divides the order of G.

Proof. By Theorem 3.9, for g ∈ G, its order in K divides its order in G, i.e., (p, q)−FOK(g)
divides o(g). For g ∈ G, as o(g) divides the order of G (denoted as |G|), it follows that
(p, q)− FOK(g) divides |G|. □

Definition 3.3. Let K be a (p, q)-fuzzy subgroup of G. The order of K (denoted as
(p, q)− FO(K)) is defined as the least common multiple of the orders of elements of G in
K, that is (p, q)− FO(K) = lcm{(p, q)− FOK(g) : g ∈ G}.

Theorem 3.10. Let K be a (p, q)-fuzzy subgroup of G. Then the (p, q)-FO(K) divides the
order of G.
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Proof. Since for each g ∈ G, by Corollary 3.2, (p, q)− FOK(g) divides |G|, it follows that
lcm{(p, q)− FOK(g) : g ∈ G} divides |G|, that is, (p, q)− FO(K) divides |G|. □

As in group theory, where the order of a subgroup of G divides the order of G, the order
of a (p, q)-fuzzy subgroup of G also divides the order of G.

Theorem 3.11. Let K be a (p, q)-fuzzy subgroup of G and e be the identity element in G.
For g ∈ G, (p, q) − FOK(g) = o(g) if and only if {g ∈ G : αp

K(g) = αp
K(e) and βq

K(g) =
βq
K(e)} = {e}.

Proof. Let T = {g ∈ G : αp
K(g) = αp

K(e) and βq
K(g) = βq

K(e)}.
Suppose there exists a g1 ∈ G such that (p, q)− FOK(g1) ̸= o(g1), that is,
let (p, q)− FOK(g1) = m and o(g1) = n, with m ̸= n.
o(g1) = n =⇒ g1

n = e =⇒ αp
K(g1

n) = αp
K(e) and βq

K(g1
n) = βq

K(e).
(p, q)−FOK(g1) = m gives that m is the least positive integer such that αp

K(g1
m) = αp

K(e)
and βq

K(g1
m) = βq

K(e), hence, it follows that m < n. Therefore g1
m ∈ T , which means

T ̸= {e}. Thus, it is proved that if T = {e}, then (p, q)− FOK(g) = o(g) for g ∈ G.
The converse part follows directly. □

3.2. (p, q)-fuzzy cosets. In group theory, it is proven as a consequence of Lagrange’s
theorem that the number of left (right) cosets of a subgroup divides the order of the
group. This article attempts to derive an analogous result for a (p, q)-fuzzy subgroup of
G, for which the notion of (p, q)-fuzzy cosets of a (p, q)-fuzzy subgroup is introduced.

Definition 3.4. Let K =
{
(g, αp

K(g), β
q
K(g)) : g ∈ G

}
be a (p, q)-fuzzy subgroup of G.

Then, for x ∈ G,

(1) the (p, q)-fuzzy set xK = {(g, αp
xK(g), β

q
xK(g)) : g ∈ G} on G, where

αp
xK(g) = αp

K

(
x−1g

)
and βq

xK(g) = βq
K(x

−1g), is called the (p, q)-fuzzy left coset of
K determined by x.

(2) the (p, q)-fuzzy set Kx =
{
(g, αp

Kx(g), β
q
Kx(g)) : g ∈ G

}
on G, where

αp
Kx(g) = αp

K(gx
−1) and βq

Kx(g) = βq
K

(
gx−1

)
, is called the (p, q)-fuzzy right coset

of K determined by x.

Definition 3.5. Let K =
{
(g, αp

K(g), β
q
K(g)) : g ∈ G

}
be a (p, q)-fuzzy subgroup of G. Then

K is called a (p, q)-fuzzy normal subgroup of G if xK = Kx for all x ∈ G.

Theorem 3.12. Let K = {(g, αp
K(g), β

q
K(g) : g ∈ G} be a (p, q)-fuzzy subgroup of G.

Then K is (p, q)-fuzzy normal subgroup of G if and only if αp
K(g1g2) = αp

K(g2g1) and
βq
K(g1g2) = βq

K(g2g1) for g1, g2 ∈ G.

Proof. Let K be a (p, q)-fuzzy normal subgroup of G, which means xK = Kx for all x ∈ G,
that is

αp
xK(g) = αp

Kx(g) and βq
xK(g) = βq

Kx(g) for all x ∈ G.

αp
K

(
x−1g

)
= αp

K

(
gx−1

)
and βq

K(x
−1g) = βq

K(gx
−1) for all x ∈ G.

For two elements g1, g2 ∈ G:

αp
K(g1g2)) = αp

K(g1(g2
−1)−1) = αp

K((g2
−1)−1g1) = αp

K(g2g1) and

βq
K(g1g2)) = βq

K(g1(g2
−1)−1) = βq

K((g2
−1)−1g1) = βq

K(g2g1).
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To prove the converse, suppose αp
K(g1g2) = αp

K(g2g1) and βq
K(g1g2) = βq

K(g2g1) for g1,
g2 ∈ G. This implies

αp
K

(
x−1g

)
= αp

K

(
gx−1

)
and βq

K(x
−1g) = βq

K(gx
−1)

for x, g ∈ G.

Thus, xK = Kx for all x ∈ G.
□

Theorem 3.13 states that a (p, q)-fuzzy subgroup of G is a (p, q)-fuzzy normal subgroup of
G if and only if the membership and non-membership functions are constant within the
conjugacy classes of G.

Theorem 3.13. Let K be a (p, q)-fuzzy subgroup of G. Then K is (p, q)-fuzzy normal
subgroup of G if and only if αp

K(gxg
−1) = αp

K(x) and βq
K(gxg

−1) = βq
K(x) for x, g ∈ G.

Proof. Let K be a (p, q)-fuzzy normal subgroup of G. For x, g ∈ G,

αp
K(gxg

−1) = αp
K((gx)g

−1) = αp
K(g

−1(gx)) = αp
K(x) (by Theorem 3.12).

Similarly, it can be proved that βq
K(gxg

−1) = βq
K(x).

Conversely, suppose αp
K(gxg

−1) = αp
K(x) and βq

K(gxg
−1) = βq

K(x) for x, g ∈ G.
For g1, g2 ∈ G:

αp
K(g1g2) = αp

K((g
−1
2 g2)g1g2)

= αp
K((g

−1
2 g2)g1(g

−1
2 )−1)

= αp
K(g

−1
2 (g2g1)(g

−1
2 )−1)

= αp
K(g2g1).

Similarly, it can be shown that βq
K(g1g2) = βq

K(g2g1). Therefore, by Theorem 3.12, K is a
(p, q)-fuzzy normal subgroup of G. □

Example 3.4. Consider the symmetric group S3. S3 has three conjugacy classes: cycle
type 3, 2+1 and, 1+1+1. Any (p, q)-fuzzy subgroup of S3 with the same membership and
non-membership values for each cycle type in S3 will be a (p, q)-fuzzy normal subgroup of
S3. For instance,

S3 = {ρ0 = (1), ρ1 = (1 2 3), ρ2 = (1 3 2), µ1 = (2 3), µ2 = (1 3), µ3 = (1 2)}

K′ = {(ρ0, 0.9, 0.1), (ρ1, 0.75, 0.8), (ρ2, 0.75, 0.8), (µ1, 0.75, 0.7), (µ2, 0.75, 0.7), (µ3, 0.75, 0.7)}
is a (4, 3)-fuzzy normal subgroup of S3.

Theorem 3.14. Let K be a (p, q)-fuzzy normal subgroup of G. Then H = {g ∈ G :
αp
K(g) = αp

K(e), β
q
K(g) = βq

K(e)} is a normal subgroup of G.

Proof. By Theorem 3.6, H is a subgroup of G. To prove that H is a normal subgroup of
G. Since K is a (p, q)-fuzzy normal subgroup of G, for x ∈ H and g ∈ G, by Theorem 3.13

αp
K(gxg

−1) = αp
K(x) = αp

K(e) and βq
K(gxg

−1) = βq
K(x) = βq

K(e),

which implies gxg−1 ∈ H. Hence, H is a normal subgroup of G. □

Theorem 3.15. Let K be a (p, q)-fuzzy normal subgroup of G. Let F denote the collection
of all (p, q)-fuzzy left cosets of K. Then F forms a group under the operation ∗ defined as
xK ∗ x′K = xx′K for x, x′ ∈ G.
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Proof. Initially, it is verified that the operation ∗ is well defined on F .
Let x1, x2, x3, x4 ∈ G such that x1K = x2K and x3K = x4K. It needs to be verified that
x1K ∗ x3K = x2K ∗ x4K.
From x1K = x2K, it implies that αp

x1K
(g) = αp

x2K
(g) and βq

x1K
(g) = βq

x2K
(g) for g ∈ G.

Similarly, x3K = x4K implies that αp
x3K

(g) = αp
x4K

(g) and βq
x3K

(g) = βq
x4K

(g) for g ∈ G.
Hence, for g ∈ G:

αp
K(x

−1
1 g) = αp

K(x
−1
2 g), βq

K(x
−1
1 g) = βq

K(x
−1
2 g) (5)

αp
K(x

−1
3 g) = αp

K(x
−1
4 g), βq

K(x
−1
3 g) = βq

K(x
−1
4 g) (6)

To verify x1x3K = x2x4K, it needs to be shown that, for g ∈ G,

αp
x1x3K

(g) = αp
x2x4K

(g) and βq
x1x2K

(g) = βq
x2x4K

(g),

i.e.,

αp
K((x1x3)

−1g) = αp
K((x2x4)

−1g) and βq
K((x1x3)

−1g) = βq
K((x2x4)

−1g).

Consider αp
K((x1x3)

−1g),

αp
K((x1x3)

−1g) = αp
K(x3

−1x1
−1g)

= αp
K(x3

−1x1
−1x2x2

−1g)

= αp
K(x3

−1x1
−1x2x4x4

−1x2
−1g)

≥ min{αp
K(x3

−1x1
−1x2x4), α

p
K(x4

−1x2
−1g)}

Substituting x1
−1x2x4 for g in (6),

αp
K(x3

−1x1
−1x2x4) = αp

K(x4
−1x1

−1x2x4)

= αp
K(x1

−1x2) (since K is a (p, q)-fuzzy normal subgroup of G)

= αp
K(e) (by substituting g in (5) with x2)

Thus, αp
K(x3

−1x1
−1g) ≥ αp

K(x4
−1x2

−1g).
Following similar steps, it can be shown that αp

K(x4
−1x2

−1g) ≥ αp
K(x3

−1x1
−1g).

Hence, for g ∈ G, αp
K(x3

−1x1
−1g) = αp

K(x4
−1x2

−1g).
Similarly, it can also be shown that, βq

K(x3
−1x1

−1g) = βq
K(x4

−1x2
−1g) for g ∈ G.

Thus, x1x3K = x2x4K, i.e., the operation ∗ on F is well defined.
The identity element in F is eK, and xK ∗ x−1K = xx−1K = eK, x−1K∗xK = x−1xK = eK,
which gives the inverse of xK as x−1K.
Hence, F is a group under the operation ∗. □

Corollary 3.3. Let K be a (p, q)-fuzzy normal subgroup of of G. Let F denote the collec-
tion of all (p, q)-fuzzy left cosets of K, which forms a group under the operation ∗ defined in
Theorem 3.15. Define a map f : G → F as f(x) = xK, then f is a group homomorphism
with ker f = {x ∈ G : αp

K(x) = αp
K(e), β

q
K(x) = βq

K(e)}, where e is the identity element in
G.
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Proof. Let x1, x2 ∈ G, then f(x1x2) = x1x2K = x1K ∗ x2K = f(x1) ∗ f(x2). Thus, f is a
group homomorphism.

ker f = {x ∈ G : f(x) = eK}
= {x ∈ G : xK = eK}
= {x ∈ G : αp

xK(g) = αp
eK(g), β

q
xK(g) = βq

eK(g) , for all g ∈ G}
= {x ∈ G : αp

K(x
−1g) = αp

K(g), β
q
K(x

−1g) = βq
K(g), for all g ∈ G}

= {x ∈ G : αp
K(x) = αp

K(e), β
q
K(x) = βq

K(e)} (by Theorem 3.5)

Note that, by Theorem 3.6, ker f is a subgroup of G. □

Theorem 3.16. Let K be a (p, q)-fuzzy normal subgroup of G. Then the number of (p, q)-
fuzzy left cosets of K divides the order of G.

Proof. Let K be a (p, q)-fuzzy normal subgroup of G and let F = {xK : x ∈ G} be the
collection of all (p, q)-fuzzy left cosets of K. From Corollary 3.3, the function f : G → F ,
defined by f(x) = xK is a group homomorphism with

ker f = {x ∈ G : αp
K(x) = αp

K(e), β
q
K(x) = βq

K(e)}.

Note that, kerf forms a subgroup of G. Let H denote ker f , and express G as the disjoint
union of cosets of H:

G = x1H ∪ x2H ∪ x3H . . . ∪ xkH.

To show that there exists a one-to-one correspondence between the elements of F and the
cosets of H in G.
Consider the coset xiH ∈ F and h ∈ H,

f(xih) = xihK

= xiK ∗ hK
= xiK ∗ eK (by Theorem 3.5)

= xiK

i.e., f maps each element in the coset xiH to the (p, q)-fuzzy coset xiK. Hence, define a
mapping f ′ from {xiH : 1 ≤ i ≤ k} to F as f ′(xiH) = xiK, which is well defined.
To show that f ′ is one-to-one.
Suppose f ′(xiH) = f ′(xjH),

f ′(xiH) = f ′(xjH) =⇒ xiK = xjK

=⇒ αp
K(x

−1
i g) = αp

K(x
−1
j g), βq

K(x
−1
i g) = βq

K(x
−1
j g), for all g ∈ G

=⇒ αp
K(x

−1
i xj) = αp

K(xj
−1xj), β

q
K(x

−1
i xj) = βq

K(x
−1
j xj) for g = xj

=⇒ αp
K(x

−1
i xj) = αp

K(e), β
q
K(x

−1
i xj) = βq

K(e)

=⇒ x−1
i xj ∈ H

=⇒ xiH = xjH.

Hence, f ′ is one-to-one, which means that the cardinality of {xiH : 1 ≤ i ≤ k} equals the
cardinality of F . By Lagrange’s theorem, the number of left cosets of H in G divides the
order of G. That is, the cardinality of {xiH : 1 ≤ i ≤ k} divides the order of G, and hence
the cardinality of F divides the order of G. □
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The theorems proved for (p, q)-fuzzy left cosets can also be proved analogously for (p, q)-
fuzzy right cosets.

3.3. (p, q)-fuzzy level subgroup. From a given (p, q)-fuzzy subgroup of G, some sub-
groups of G, called (p, q)-fuzzy level subgroups, can be identified. This section aims to
clarify the concept of (p, q)-fuzzy level subgroups and highlight the key results associated
with this idea.

Definition 3.6. Let K =
{(

g, αp
K(g), β

q
K(g)

)
: g ∈ G

}
be a (p, q)-fuzzy set on G. Let

µ, ν ∈ [0, 1]. Then the set Kµ,ν = {g ∈ G : αp
K(g) ≥ µ, βq

K(g) ≤ ν} is called a (p, q)-fuzzy
level subset of K.

Theorem 3.17. Let K be a (p, q)-fuzzy subgroup of G, then for each µ, ν ∈ [0, 1] satisfying
µ ≤ αp

K(e) and ν ≥ βq
K(e), the (p, q)-fuzzy level subset Kµ,ν is a subgroup of G.

Proof. Suppose K is a (p, q)-fuzzy subgroup of G. Let µ, ν ∈ [0, 1] and satisfy αp
K(e) ≥ µ

and βq
K(e) ≤ ν, which implies e ∈ Kµ,ν . Hence, Kµ,ν is non-empty.

Let g1, g2 ∈ Kµ,ν , i.e.,

αp
K(g1) ≥ µ, αp

K(g2) ≥ µ and βq
K(g1) ≤ ν, βq

K(g2) ≤ ν.

Since K is a (p, q)-fuzzy subgroup of G,

αp
K(g1g2

−1) ≥ min {αp
K(g1), α

p
K(g2

−1)} = min {αp
K(g1), α

p
K(g2)} ≥ min{µ, µ} = µ.

Also,

βq
K(g1g2

−1) ≤ max {βq
K(g1), β

q
K(g2

−1)} = max {βq
K(g1), β

q
K(g2)} ≤ max{ν, ν} = ν.

Hence, g1g2
−1 ∈ Kµ,ν , i.e., Kµ,ν is a subgroup of G. □

The subgroup Kµ,ν of G in Theorem 3.17 is referred to as a (p, q)-fuzzy level subgroup of
K. Notably, G itself is a (p, q)-fuzzy level subgroup of K, obtained by setting µ to a value
less than or equal to the smallest membership degree of all elements in G, and ν to a value
greater than or equal to the largest non-membership degree of all elements in G.

Theorem 3.18. Let K be a (p, q)-fuzzy set on G with αp
K(e) ≥ αp

K(g) and βq
K(e) ≤ βq

K(g)
for all g ∈ G. If for each µ, ν ∈ [0, 1] satisfying µ ≤ αp

K(e) and ν ≥ βq
K(e), the (p, q)-fuzzy

level subset Kµ,ν is a subgroup of G, then K is a (p, q)-fuzzy subgroup of G.

Proof. Let g1, g2 ∈ G. Take µ = min{αp
K(g1), α

p
K(g2)} and ν = max{βq

K(g1), β
q
K(g2)}.

Clearly, µ ≤ αp
K(e) and ν ≥ βq

K(e). Also,

αp
K(g1) ≥ µ, αp

K(g2) ≥ µ and βq
K(g1) ≤ ν, βq

K(g2) ≤ ν,

which implies g1, g2 ∈ Kµ,ν . Since Kµ,ν is a subgroup of G, it follows that g1g2 ∈ Kµ,ν ,
which implies

αp
K(g1g2) ≥ µ = min{αp

K(g1), α
p
K(g2)} and βq

K(g1g2) ≤ ν = max{βq
K(g1), β

q
K(g2)}.

Let g1 ∈ G, choosing µ = αp
K(g1) and ν = βq

K(g1), it follows that g1 ∈ Kµ,ν . Since Kµ,ν is
a subgroup of G, g1

−1 ∈ Kµ,ν , which implies

αp
K(g1

−1) ≥ µ and βK(g
−1
1 ) ≤ ν,

i.e.,

αp
K(g1

−1) ≥ αp
K(g1) and βq

K(g1
−1) ≤ βq

K(g1).
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Substituting g1
−1 for g1, it follows that

αp
K(g1) ≥ αp

K(g1
−1) andβq

K(g1) ≤ βq
K(g1

−1).

Hence, αp
K(g1

−1) = αp
K(g1) and βq

K(g1
−1) = βq

K(g1). Thus, K is a (p, q)-fuzzy subgroup of
G. □

Definition 3.7. Let K be a (p, q)-fuzzy subgroup of G. An element g ∈ G that has the
smallest membership degree and the largest non-membership degree among all elements of
G is called a generator element of K.

Theorem 3.7 proves the existence of a generator element for a (p, q)-fuzzy subgroup of G.

Theorem 3.19. Let G be a cyclic group, and let K be a (p, q)-fuzzy subgroup of G. Then
the generators of G are generator elements of K.

Proof. Let g be a generator of G. Then for any x ∈ G, x = gt for some t ∈ N. Consider a
(p, q)-fuzzy subgroup K of G, then

αp
K(x) ≥ αp

K(g) and βq
K(x) ≤ βq

K(g),

which implies that g is a generator element of K. □

Note that, a generator element of K need not be a generator of the group G.

Theorem 3.20. Let K be a (p, q)-fuzzy subgroup of G. Then K is a (p, q)-fuzzy normal
subgroup of G if and only if for each µ, ν ∈ [0, 1] satisfying µ ≤ αp

K(e) and ν ≥ βq
K(e), the

(p, q)-fuzzy level subset Kµ,ν is a normal subgroup of G.

Proof. Suppose K is a (p, q)-fuzzy normal subgroup of G. By Theorem 3.17, the (p, q)-
fuzzy level subset Kµ,ν for each µ, ν ∈ [0, 1] satisfying µ ≤ αp

K(e) and ν ≥ βq
K(e), is a

subgroup of G.
Let x ∈ Kµ,ν and g ∈ G. By Theorem 3.13,

αp(gxg−1) = αp(x) and βq(gxg−1) = βq(x).

Since x ∈ Kµ,ν , it follows that α
p(gxg−1) = αp(x) ≥ µ and βq(gxg−1) = βq(x) ≤ ν, which

implies gxg−1 ∈ Kµ,ν . Thus, Kµ,ν is a normal subgroup of G.

Conversely, suppose K is a (p, q)-fuzzy subgroup of G and for each µ, ν ∈ [0, 1] satisfying
µ ≤ αp

K(e) and ν ≥ βq
K(e), the (p, q)-fuzzy level subset Kµ,ν is a normal subgroup of G.

To prove that K is a (p, q)-fuzzy normal subgroup of G.
Let x, g ∈ G, assign αp

K(x) = µ and βq
K(x) = ν, then x ∈ Kµ,ν . Since Kµ,ν is a normal

subgroup of G, it follows that gxg−1 ∈ Kµ,ν , which implies

αp
K(gxg

−1) ≥ µ = αp
K(x) and βq

K(gxg
−1) ≤ ν = βq

K(x) (7)

For gxg−1 ∈ Kµ,ν and g−1 ∈ G, by equation (7)

αp
K(gxg

−1) ≤ αp
K(g

−1gxg−1(g−1)−1) = αp
K(x) and

βq
K(gxg

−1) ≥ βq
K(g

−1gxg−1(g−1)−1) = βq
K(x)

(8)

From (7) and (8), it can be concluded that αp
K(gxg

−1) = αp
K(x) and βq

K(gxg
−1) = βq

K(x).
Hence, by Theorem 3.13, K is a (p, q)-fuzzy normal subgroup of G. □
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4. Conclusions

The objective of this article is to introduce the concept of (p, q)-fuzzy subgroups of
a finite group. It provides the definition of a (p, q)-fuzzy subgroup of a finite group G
and examines various properties associated with it. Additionally, the article defines (p, q)-
fuzzy cosets, (p, q)-fuzzy normal subgroups, and (p, q)-fuzzy level subgroups, while also
providing several characteristics of these concepts, along with examples. Future research
may explore concepts such as (p, q)-fuzzy homomorphisms and (p, q)-fuzzy isomorphisms.

Acknowledgement. The authors would like to extend their gratitude to the referees for
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