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AVAILABILITY AND RELIABILITY ANALYSIS OF A TWO-UNIT

PARALLEL SYSTEM SUBJECT TO FAILURE AND REPAIR

OPERATING IN A MULTI-LEVEL ENVIRONMENT

B. THILAKA1∗, S. HEMANTH KUMAR2, S. UDAYABASKARAN3, §

Abstract. In this paper, a two-unit parallel system is considered subject to failure
and repair in a multi-level environment. It is assumed that there are N levels of the
environment. The failure time of any operating unit in the k−th level of the environment
is exponentially distributed with parameter µk, k = 1, 2, · · · , N. There is a single repair
facility. The system is in down-state when both units are in the repair facility. The
down-state is designated as level 0 of the environment. The repairs are done under
the ‘first-come-first serve’ policy. The repair time of a failed unit in the k−th level
of the environment is exponentially distributed with parameter γk, k = 0, 1, 2, · · · , N.
When the system is in level 0 of the environment, one failed unit is undergoing repair
and the other failed unit is waiting for repair. Upon completion of the repair of the
unit, the system is immediately switched to operate in r−th level of the environment
with positive probability pr, r = 1, 2, · · · , N and the repair for the other failed unit
immediately starts with rate γr. Using the techniques of renewal theory and Laplace
transforms, transient state probability distribution, steady-state probability distribution,
availability and reliability functions and mean down-time of the system are explicitly
found. A numerical illustration is provided to highlight the system performance.
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1. Introduction

The quality of any stochastic system is characterised by its reliability up to any time and
availability at any time. The treatise by Gnedenko etal [11] treats mathematical methods
of reliability theory. Extensive research has been carried out for several decades in the
past on this subject and an exhaustive bibliography is available in [14]. The monograph
of Barlow and Prochan [5] describes the probabilistic methods and statistical theory of
reliability and life testing. The recent updated edition by Birolini [7] presents the state-
of-the-art of reliability, availability, maintainability, and safety of components, equipment
and systems.

One of the several ways of improving the availability and reliability characteristics of
a stochastic system is by providing parallel or redundant units. But providing a large
number of standby units is not economically feasible. Furthermore, the components or
units of a stochastic system are subject to deterioration or failure. Even if a system is
provided with a few standby units and a repair facility to repair the failed units, there
is always a possibility that all units will be queued in the repair facility for a non-trivial
time interval, called a down-time of the system. A down-time ends immediately when
the repair of the failed unit at the head of repair is completed and switched online for
continuance of production. The study of statistical features of the total down-time of a
stochastic system with parallel units over a period was carried out by several researchers
in the past. Numerous research articles have been written about stochastic redundant
systems. Srinivasan and Subramanian [23] have published a unified and comprehensive
account of research work done on two-unit stochastic redundant systems. They exhibit in
their book that very many different variations of two-unit stochastic redundant repairable
systems can be identified. They also indicated some open problems that could be pursued
in the coming years. Ravichandran [19] attempted to present a systematic treatment of
redundant repairable systems. He also discussed the relevance and interconnections of
reliability systems with other areas like inventory and queueing models.

The performance characteristics such as availability and reliability of systems are de-
cided by parameters such as failure rate and repair rate of systems. In the afore-mentioned
literature, it is generally assumed that the system parameters remain constant over time.
The assumption of fixed values for the system parameters is unrealistic. For example,
the life-time of an electrical equipment may be affected by voltage fluctuations which de-
pend on the environment. As another example, consider an electrical power station where
several transformers are set up for continuous power supply. If one online transformer
fails, a standby transformer will be switched online and the failed transformer will go
for repair. The life-time of a transformer depends on the load of the need that in turn
depends on environmental factors. Further more, when a failed unit is repaired, it may
not be statistically same as the unit before failure. Even the repair time distribution will
be affected by down-time of the system. The reason may be attributed to the fact that
their analysis becomes complex since the operating characteristics of such systems change
their values as and when the environment changes its level randomly over time. These
factors necessitated a new line of thinking to study the behaviour of stochastic redundant
repairable systems operating in random environments. Much progress has been made in
the past in the analysis of redundant repairable systems with fixed parameters (see Srini-
vasan and Subramanian [23]). Although a considerable amount of research has been done
on the stochastic analysis of inventory systems and queueing systems operating in random
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environments (see for example, Feldman [10], Kalpakam and Arivarignan [12], Song and

Zipkin [22], Özekici [15], Özekici and Parlar [16], Yadavalli and van Schoor [26], Paz and
Yechiali [18], Udayabaskaran and Dora Pravina [24], Ammar etal [3], Akshaya Ramesh
and Udayabaskaran [1, 2]), only a few number of articles have appeared on redundant

repairable systems operating in random environments (see Çinlar and Özekici [8], Shaked

and Shanthikumar [21], Sengupta [20], Baxter [6], Özekici [15], Özekici and Parlar [16],
Assimakopoulos [4]). Lovas and Rásonyi [13] have made a theoretical study of Markov
chains on a general state space in a random environment and proved the existence of
limiting distributions with applications in queuing theory and machine learning. Pang
et al. [17] have analysed birth and death processes in interactive random environments
wherein the birth and death rates and the dynamics of the state of the environment are
dependent on each other; and they have also proved that the joint invariant measure of
the interactive impact leads to a product form solution supported by some applications
of these processes in queueing and population growth models. Wei and Liu [25] have in-
vestigated reliability optimization problems for series and parallel systems under random
shock environment, where the random shock environment for each subsystem is modeled
by the nonhomogeneous Poisson process. Dong and Bai [9] have considered a k−out-
of−n : F system operating in a shock environment, where the external shocks induce
state transitions. They have obtained component group failure rates by using Markov
chain imbedding and Phase-type distribution. These articles indicate that much work is
necessitated to explore the availability and reliability of repairable systems operating in a
multi-level random environment. Accordingly, we make an attempt in the present paper
to enrich the literature on availability and reliability of repairable systems by studying
a stochastic model of a repairable two-unit redundant system operating in a multi-level
random environment.

The rest of the paper is organized as follows:
In Section 2, the model is formulated. The governing equations of the model are derived

in Section 3. Time-dependent state probabilities of the system are obtained in Section 4.
Deduction of steady-state probabilities is done in Section 5. Availability analysis is carried
out in Section 6. Section 7 is devoted to finding the mean down time of the system. In
Section 8, reliability of the system is examined. Section 9 presents a numerical study of
the model. A conclusion of the paper is provided in Section 10.

2. Model Description

Consider a two-unit parallel system in which both units are subject to failure and repair
in a multi-level random environment. There are N levels of the environment. The failure
time of any operating unit in the k−th level of the environment is exponentially distributed
with parameter µk, k = 1, 2, · · · , N. There is a single repair facility whose service is level
dependent. To be specific, if one of the two operating units in the k−level of the environ-
ment fails, it is immediately taken for repair and the repair of it commences immediately
with rate γk. If the other operating unit fails before the completion of the repair of the
failed unit, then the repair is pre-emptied and both units are in the repair facility. The
system is in down-state when both units are in the repair facility. The down-state is des-
ignated as level 0 of the environment. The repair time of a failed unit in the k−th level of
the environment is exponentially distributed with parameter γk, k = 0, 1, 2, · · · , N. When
the system is in level 0 of the environment, one failed unit is undergoing repair with rate
γ0 and the other failed unit is waiting for repair. Upon completion of the repair of the
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unit, the system is immediately switched to operate in r−th level of the environment with
positive probability pr, r = 1, 2, · · · , N such that

∑N
r=1 pr = 1 and the repair for the other

failed unit immediately starts with rate γr.

2.1. Notations.

X1(t) : The number of operable units at time t.
X2(t) : The number of units in the repair facility at time t.
L(t) : The level of the environment at time t.
γke

−γkt : Probability density function of the repair-time of
any unit in the repair facility while the environment is in level k.

N : The number of levels of the multi-level environment.
L(t) = 0 : Both units are in the repair facility at time t.
µke

−µkt : Probability density function of the life-time of
any unit in level k of the environment.

pk : The probability that the system is switched online to function in level k
of the environment from level 0.

Z(t) : (X1(t), X2(t), L(t)).
Ω : The state space {(0, 2, 0)} ∪ {(1, 1, k), (2, 0, k)|k = 1, 2, · · · , N}.
P (i, j, k, t) : Probability that the system is in the state (i, j, k) at time t given that

the system is in the state (0,2,0) at time t = 0.
P ∗(i, j, k, s) : Laplace transform of P (i, j, k, t).

3. Governing Equations of the model

The state transition diagram of the stochastic model is given below:

Figure 1. Transition Diagram

We assume that the system is in the state (0, 2, 0) at time t = 0. Using renewal-theoretic
arguments, we obtain the following integral equations:

P (0, 2, 0, t) = e−γ0t +

N∑
l=1

µl

∫ t

0
P (1, 1, l, u)e−γ0(t−u)du, (3.1)

P (1, 1, k, t) =

∫ t

0
[2µkP (2, 0, k, u) + γ0pkP (0, 2, 0, u)]e

−(µk+γk)(t−u)du, (3.2)

P (2, 0, k, t) = γk

∫ t

0
P (1, 1, k, u)e−2µk(t−u)du. (3.3)

4. Transient Solution

Taking Laplace transform of both sides of (3.1)− (3.3), we obtain

(s+ γ0)P
∗(0, 2, 0, s) = 1 +

N∑
l=1

µlP
∗(1, 1, l, s), (4.1)
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(s+ µk + γk)P
∗(1, 1, k, s) = 2µkP

∗(2, 0, k, s) + γ0pkP
∗(0, 2, 0, s), (4.2)

(s+ 2µk)P
∗(2, 0, k, s) = γkP

∗(1, 1, k, s). (4.3)

By (4.2) and (4.3), we get

P ∗(1, 1, k, s) =
γ0pk(s+ 2µk)

s2 + s(3µk + γk) + 2µ2k
P ∗(0, 2, 0, s). (4.4)

Substituting (4.4) in (4.3), we get

P ∗(2, 0, k, s) =
γ0γkpk

s2 + s(3µk + γk) + 2µ2k
P ∗(0, 2, 0, s). (4.5)

By total probability axiom, we get

P ∗(0, 2, 0, s) +

N∑
k=1

P ∗(2, 0, k, s) +

N∑
k=1

P ∗(1, 1, k, s) =
1

s
. (4.6)

Substituting (4.4) and (4.5) in (4.6) and solving for P ∗(0, 2, 0, s), we get

P ∗(0, 2, 0, s) =
1

(s+ γ0)[1− F ∗(s)]
, (4.7)

where

F ∗(s) =
γ0

(s+ γ0)

N∑
j=1

pjµj(s+ 2µj)

s2 + s(3µj + γj) + 2µ2j
. (4.8)

The two zeros αj and βj of the quadratic polynomial s2 + s(3µj + γj) + 2µ2j are real,
negative and distinct, and are given by

αj =
−(3µj + γj)−

√
(3µj + γj)2 − 8µ2j

2
,

βj =
−(3µj + γj) +

√
(3µj + γj)2 − 8µ2j

2
.

They have the following properties:

|αj | =
(3µj + γj) +

√
(3µj + γj)2 − 8µ2k

2
, (4.9)

|βj | =
(3µj + γj)−

√
(3µj + γj)2 − 8µ2j

2
, (4.10)

|αj | > |βj |, αjβj = 2µ2j , (4.11)

s2 + s(3µj + γj) + 2µ2j ≡ (s+ |αj |)(s+ |βj |). (4.12)

The function F ∗(s) is analytic in the region Real(s) > γ0. This condition ensures that
|F ∗(s)| < 1 in the region Real(s) > γ0. By using (4.12) in (4.8) and splitting into partial
fractions, we get

F ∗(s) = γ0

N∑
j=1

pjµj

[
2µj − γ0

(γ0 − |αj |)(γ0 − |βj |)
1

(s+ γ0)

+
1

(|αj | − |β|)

{
(2µj − |βj |)
(γ0 − |βj |)

1

(s+ |βj |)
− (2µj − |αj |)

(γ0 − |αj |)
1

(s+ |αj |)

}]
. (4.13)
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Taking inverse Laplace transform of both sides of (4.13), we get

F (t) = γ0

N∑
j=1

pjµj

[
2µj − γ0

(γ0 − |αj |)(γ0 − |βj |)
e−γ0t

+
1

(|αj | − |β|)

{
(2µj − |βj |)
(γ0 − |βj |)

e−|βj |t − (2µj − |αj |)
(γ0 − |αj |)

e−|αj |t
}]

. (4.14)

By Taylor’s series expansion, (4.7) yields,

P ∗(0, 2, 0, s) =
1

(s+ γ0)

∞∑
j=0

{F ∗(s)}j . (4.15)

Taking inverse Laplace transform of both sides of (4.15), we obtain

P (0, 2, 0, t) = e−γ0t +

∫ t

0
e−γ0uF (t− u)du+

∞∑
j=2

∫ t

0
e−γ0uF (j)(t− u)du, (4.16)

where F (j)(t) is the j−fold convolution of F (t) defined by

F (1)(t) = F (t), F (j)(t) =

∫ t

0
F (u)F (j−1)(t− u)du, j ≥ 2.

Taking inverse transform of both sides of (4.4) and (4.5), we get

P (1, 1, j, t) =
γ0pj

(|αj | − |βj |)

[
(2µj − |βj |)e−|βj |t − (2µj − |αj |)e−|αj |t

]
©P (0, 2, 0, t), (4.17)

P (2, 0, j, t) =
γ0γjpj

(|αj | − |βj |)

[
e−|βj |t − e−|αj |t

]
©P (0, 2, 0, t). (4.18)

5. Steady-state Solution

The steady-state probabilities are defined by

π(i, j, k) = lim
t→∞

P (i, j, k, t), (i, j, k) ∈ Ω.

By the final value theorem of Laplace transform, we get

π(i, j, k) = lim
s→0

sP ∗(i, j, k, s), (i, j, k) ∈ Ω.

Multiplying both sides of (4.4) by s and taking s→ 0, we get

π(1, 1, l) =
γ0pl
µl

π(0, 2, 0). (5.1)

Multiplying both sides of (4.5) by s and taking s→ 0, we get

π(2, 0, l) =
γ0γlpl
2µ2l

π(0, 2, 0). (5.2)

By total probability axiom, we get

π(0, 2, 0) +
N∑
l=1

π(2, 0, l) +
N∑
l=1

π(1, 1, l) = 1. (5.3)

Substituting (5.1) and (5.2) in (5.3) and solving for π(0, 2, 0), we get

π(0, 2, 0) =
1

1 + γ0
∑N

m=1
pm(2µm+γm)

2µ2
m

. (5.4)
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Substituting (5.4) into (5.1) and (5.2), we get

π(1, 1, l) =

γ0pl
µl

1 + γ0
∑N

m=1
pm(2µm+γm)

2µ2
m

, l = 1, 2, · · · , N, (5.5)

π(2, 0, l) =

γ0γlpl
2µ2

l

1 + γ0
∑N

m=1
pm(2µm+γm)

2µ2
m

, l = 1, 2, · · · , N. (5.6)

6. Availability Analysis

We assume that, at time t = 0, both units are operable and the level of the environment
is k, k = 1, 2, · · · , N. Then, Z(0) = (2, 0, k), k = 1, 2, · · · , N. Let Ak(t) be the probability
that the system is available (that is, at least one unit is operable) at time t given that
Z(0) = (2, 0, k), k = 1, 2, · · · , N. For the system to be operable at time t, the system is
either in the state (2, 0, l), l = 1, 2, · · · , N or in the state (1, 1, l), l = 1, 2, · · · , N at time
t. Let ρ0(t; k, l) and ρ1(t; k, l) denote, respectively, the probabilities that the system is
available in states (2, 0, l) and (1, 1, l) at time t given that the system has been put in
the state (2, 0, k) at the instant t = 0. To derive expressions for the availability functions
ρr(t; k, l), r = 0, 1, we need the following conditional probabilities:

P0,0(t; k, l) : Pr[Z(t) = (2, 0, l)|Z(0) = (2, 0, k)], l, k = 1, 2, · · · , N
P0,1(t; k, l) : Pr[Z(t) = (1, 1, l)|Z(0) = (2, 0, k)], l, k = 1, 2, · · · , N
P0,2(t; k, 0) : Pr[Z(t) = (0, 2, 0)|Z(0) = (2, 0, k)], k = 1, 2, · · · , N
P1,0(t; k, l) : Pr[Z(t) = (2, 0, l)|Z(0) = (1, 1, k)], l, k = 1, 2, · · · , N
P1,1(t; k, l) : Pr[Z(t) = (1, 1, l)|Z(0) = (1, 1, k)], l =, k = 1, 2, · · · , N
P1,2(t; k, 0) : Pr[Z(t) = (0, 2, 0)|Z(0) = (1, 1, k)], k = 1, 2, · · · , N
P2,0(t; 0, l) : Pr[Z(t) = (2, 0, l)|Z(0) = (0, 2, 0)], l = 1, 2, · · · , N
P2,1(t; 0, l) : Pr[Z(t) = (1, 1, l)|Z(0) = (0, 2, 0)], l = 1, 2, · · · , N
P2,2(t; 0, 0) : Pr[Z(t) = (0, 2, 0)|Z(0) = (0, 2, 0)].

It is clear that the notation Pi,j(t; k, l) stands for the conditional probability that the
number of units under repair is j and the environment is in level l at time t given that the
number of units under repair is i and the environment is in level k at time t = 0. Using
regeneration point technique, we derive the following system of integral equations for the
above 9 probabilities:

P0,0(t; k, l) = e−2µktδk,l + 2µk

∫ t

0
e−2µkuP1,0(t− u; k, l)du,

(6.1)

P0,1(t; k, l) = 2µk

∫ t

0
e−2µkuP1,1(t− u; k, l)du, (6.2)

P0,2(t; k, 0) = 2µk

∫ t

0
e−2µkuP1,2(t−u; k, 0)du, (6.3)

P1,0(t; k, l) =

∫ t

0
e−(µk+γk)u[µkP2,0(t− u; 0, l) + γkP0,0(t− u; k, l)]du, (6.4)

P1,1(t; k, l) = e−(µk+γk)tδk,l+

∫ t

0
e−(µk+γk)u[µkP2,1(t−u; 0, l)+γkP0,1(t−u; k, l)]du, (6.5)

P1,2(t; k, 0) =

∫ t

0
e−(µk+γk)u[µkP2,2(t−u; 0, 0)+γkP0,2(t−u; k, 0)]du, (6.6)
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P2,0(t; 0, l) = γ0

N∑
k=1

pk

∫ t

0
e−γ0uP1,0(t− u; k, l)du, (6.7)

P2,1(t; 0, l) = γ0

N∑
k=1

pk

∫ t

0
e−γ0uP1,1(t− u; k, l)du, (6.8)

P2,2(t; 0, 0) = e−γ0t + γ0

N∑
k=1

pk

∫ t

0
e−γ0uP1,2(t− u; k, 0)du. (6.9)

Taking Laplace transforms of both sides of (6.1)− (6.9), we get

(s+ 2µk)P
∗
0,0(s; k, l) = δk,l + 2µkP

∗
1,0(s; k, l), (6.10)

(s+ 2µk)P
∗
0,1(s; k, l) = 2µkP

∗
1,1(s; k, l), (6.11)

(s+ 2µk)P
∗
0,2(s; k, 0) = 2µkP

∗
1,2(s; k, 0), (6.12)

(s+ µk + γk)P
∗
1,0(s; k, l) = µkP

∗
2,0(s; 0, l) + γkP

∗
0,0(s; k, l), (6.13)

(s+ µk + γk)P
∗
1,1(s; k, l) = δk,l + µkP

∗
2,1(s; 0, l) + γkP

∗
0,1(s; k, l), (6.14)

(s+ µk + γk)P
∗
1,2(s; k, 0) = µkP

∗
2,2(s; 0, 0) + γkP

∗
0,2(s; k, 0), (6.15)

(s+ γ0)P
∗
2,0(s; 0, l) = γ0

N∑
k=1

pkP
∗
1,0(s; k, l), (6.16)

(s+ γ0)P
∗
2,1(s; 0, l) = γ0

N∑
k=1

pkP
∗
1,1(s; k, l), (6.17)

(s+ γ0)P
∗
2,2(s; 0, 0) = 1 + γ0

N∑
k=1

pkP
∗
1,2(s; k, 0). (6.18)

Using (6.13) in (6.10), we get

P ∗
0,0(s; k, l) =

(s+ µk + γk)

s2 + (3µk + γk)s+ 2µ2k
δk,l +

2µ2k
s2 + (3µk + γk)s+ 2µ2k

P ∗
2,0(s; 0, l). (6.19)

Using (6.14) in (6.11), we get

P ∗
0,1(s; k, l) =

2µkδk,l
s2 + (3µk + γk)s+ 2µ2k

+
2µ2k

s2 + (3µk + γk)s+ 2µ2k
P ∗
2,1(s; 0, l). (6.20)

Using (6.15) in (6.12), we get

P ∗
0,2(s; k, 0) =

2µ2k
s2 + (3µk + γk)s+ 2µ2k

P ∗
2,2(s; 0, 0), (6.21)

Using (6.10) in (6.13), we get

P ∗
1,0(s; k, l) =

γkδk,l
s2 + (3µk + γk)s+ 2µ2k

+
µk(s+ 2µk)

s2 + (3µk + γk)s+ 2µ2k
P ∗
2,0(s; 0, l). (6.22)

Using (6.11) in (6.14), we get

P ∗
1,1(s; k, l) =

(s+ 2µk)δk,l
s2 + (3µk + γk)s+ 2µ2k

+
µk(s+ 2µk)

s2 + (3µk + γk)s+ 2µ2k
P ∗
2,1(s; 0, l). (6.23)

Using (6.12) in (6.15), we get

P ∗
1,2(s; k, 0) =

µk(s+ 2µk)

s2 + (3µk + γk)s+ 2µ2k
P ∗
2,2(s; 0, 0). (6.24)
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Multiplying both sides of (6.22) by γ0pk and summing from k = 1 to N, we get

γ0

N∑
k=1

pkP
∗
1,0(s; k, l) =

γ0γlpl
s2 + (3µl + γl)s+ 2µ2l

+ γ0

N∑
k=1

µkpk(s+ 2µk)

s2 + (3µk + γk)s+ 2µ2k
P ∗
2,0(s; 0, l).

(6.25)
Using (6.16) in (6.25) and solving for P ∗

2,0(s; 0, l), we get

P ∗
2,0(s; 0, l) =

γ0γlpl
s2+(3µl+γ)s+2µ2

l

(s+ γ0)− γ0
∑N

k=1
µkpk(s+2µk)

s2+(3µk+γk)s+2µ2
k

. (6.26)

Multiplying both sides of (6.23) by γ0pk and summing from k = 1 to N, we get

γ0

N∑
k=1

pkP
∗
1,1(s; k, l) =

γ0pl(s+ 2µl)

s2 + (3µl + γl)s+ 2µ2l
+ γ0

N∑
k=1

pkµk(s+ 2µk)

s2 + (3µk + γk)s+ 2µ2k
P ∗
2,1(s; 0, l).

(6.27)
Using (6.17) in (6.27) and solving for P ∗

2,1(s; 0, l), we get

P ∗
2,1(s; 0, l) =

γ0pl(s+2µl)
s2+(3µl+γl)s+2µ2

l

(s+ γ0)− γ0
∑N

k=1
pkµk(s+2µk)

s2+(3µk+γk)s+2µ2
k

. (6.28)

Multiplying both sides of (6.24) by γ0pk and summing from k = 1 to N, we get

γ0

N∑
k=1

pkP
∗
1,2(s; k, 0) =

N∑
k=1

γ0pkµk(s+ 2µk)

s2 + (3µk + γk)s+ 2µ2k
P ∗
2,2(s; 0, 0). (6.29)

Using (6.18) in (6.29), we get

P ∗
2,2(s; 0, 0) =

1

(s+ γ0)− γ0
∑N

k=1
pkµk(s+2µk)

s2+(3µk+γk)s+2µ2
k

. (6.30)

Let ψ(t) represent the inverse Laplace transform defined by

ψ(t) = L−1
N∑
k=1

[
pkµk(s+ 2µk)

s2 + (3µk + γk)s+ 2µ2k

]
. (6.31)

Using (4.12) in (6.31) and taking inverse transform, we have

ψ(t) =

N∑
k=1

pkµk
(|αk| − |βk|)

[
(2µk − |βk|) e−|βk|t − (2µk − |αk|) e−|αk|t

]
. (6.32)

Taking inverse transform of (6.30) and using (6.32), we get

P2,2(t; 0, 0) =

∞∑
n=0

e−γ0t(γ0t)
n

n!
©ψ(n)(t). (6.33)

Plugging (6.30) into (6.28) and taking inverse Laplace transform, we have

P2,1(t; 0, l) =
γ0pl

(|αl| − |βl|)

[
((2µl − |βl|) e−|βl|t − (2µl − |αl|) e−|αl|t

]
©P2,2(t; 0, 0). (6.34)

Plugging (6.30) into (6.26) and taking inverse Laplace transform, we have

P2,0(t; 0, l) =
γ0γlpl

(|αl| − |βl|)

[
((2µl − |βl|) e−|βl|t − (2µl − |αl|) e−|αl|t

]
©P2,2(t; 0, 0). (6.35)
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Taking inverse Laplace transform of (6.19), (6.20) and (6.21), we get

P0,0(t; k, l) =
δk,l

(|αk| − |βk|)

[
(µk + γk − |βk|)e−|βk|t − (µk + γk − |αk|)e−|αk|t

]
+

2µ2k
(|αk| − |βk|)

(
e−|βk|t − e−|αk|t

)
©P2,0(t; 0, l), (6.36)

P0,1(t; k, l) =
2µkδk,l

(|αk| − |βk|)

(
e−|βk|t − e−|αk|t

)
+

2µ2k
(|αk| − |βk|)

(
e−|βk|t − e−|αk|t

)
©P2,1(t; 0, l), (6.37)

P0,2(t; k, 0) =
2µ2k

(|αk| − |βk|)

(
e−|βk|t − e−|αk|t

)
©P2,2(t; 0, 0). (6.38)

Taking inverse Laplace transform of (6.22), (6.23) and (6.24), we get

P1,0(t; k, l) =
γkδk,l

(|αk| − |βk|)

(
e−|βk|t − e−|αk|t

)
+

µk
(|αk| − |βk|)

[
(2µk − βk)e

−|βk|t − (2µk − αk)e
−|αk|t

]
©P2,0(t; 0, l), (6.39)

P1,1(t; k, l) =
δk,l

(|αk| − |βk|)

[
(2µk − |βk|) e−|βk|t − (2µk − |αk|) e−|αk|t

]
+

µk
(|αk| − |βk|)

[
(2µk − |βk|) e−|βk|t − (2µk − |αk|) e−|αk|t

]
©P2,1(t; 0, 0), (6.40)

P1,2(t; k, 0) =
µk

(|αk| − |βk|)

[
(2µk − |βk|) e−|βk|t − (2µk − |αk|) e−|αk|t

]
©P2,2(t; 0, 0).

(6.41)
It can be shown that

P2,0(t; 0, l) = P (2, 0, l, t), l = 1, 2, · · · , N,
P2,1(t; 0, l) = P (1, 1, l, t), l = 1, 2, · · · , N.

Now, we can easily obtain the availability function Ak(t) as given by

Ak(t) =
N∑
l=1

[ρ0(t; k, l) + ρ1(t; k, l)] =
N∑
l=1

[P0,0(t; k, l) + P0,1(t; k, l)]. (6.42)

7. Mean down time of the system

We consider a Bernoulli random variable defined by

K(t) =

{
0, if Z(t) ∈ {(2, 0, k), (1, 1, k)|k = 1, 2, · · · , N} and
1, otherwise.

If D(t) represents the down time of the system in the interval [0, t], then we have

D(t) =

∫ t

0
K(w)dw

and hence the mean down time of the system in [0, t] is given by

E[D(t)] = E

[∫ t

0
K(w)dw

]
=

∫ t

0
E[K(w)]dw

=

∫ t

0
Pr[Z(w) = (0, 2, 0)]dw =

∫ t

0
P (0, 2, 0, w)dw. (7.1)
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Using (4.16) in (7.1), we get

E[D(t)] =
∞∑
j=0

(−1)j
∫ t

0

∫ w

0
F (j)(u)dudw. (7.2)

8. Reliability of the system

We consider auxiliary functions P0,k(t) and P1,k(t) defined by

P0,k(t) = Pr{Z(t) = (0, 2, 0), Z(u) ̸= (0, 2, 0)∀u ∈ (0, t)|Z(0) = (2, 0, k)},
P1,k(t) = Pr{Z(t) = (0, 2, 0), Z(u) ̸= (0, 2, 0)∀u ∈ (0, t)|Z(0) = (1, 1, k)}.

Then, P0,k(t)dt represents the conditional probability that the system has not visited the
down state (0, 2, 0) throughout the interval (0, t) and it enters into the down state (0, 2, 0)
between t and t+ dt given that both units are operable at t = 0, and the environment is
in level k. In a similar manner, P1,k(t)dt represents the conditional probability that the
system has not visited the down state (0, 2, 0) throughout the interval (0, t) and it enters
into the down state (0, 2, 0) between t and t+ dt given that one unit is operable at t = 0,
the other unit is under repair and the environment is in level k.

Using regeneration point technique, we obtain the following integral equations:

P0,k(t) =

∫ t

0
e−2µku2µkP1,k(t− u)du. (8.1)

P1,k(t) = e−(µk+γk)tµk +

∫ t

0
e−(µk+γk)uγkP0,k(t− u)du. (8.2)

Taking Laplace transform of both sides of (8.1) and (8.2), we get

(s+ 2µk)P
∗
0,k(s) = 2µkP

∗
1,k(s), (8.3)

(s+ µk + γk)P
∗
1,k(s) = µk + γkP

∗
0,k(s). (8.4)

Solving for P ∗
0,k(s) and P

∗
1,k(s), we get

P ∗
0,k(s) =

2µ2k
s2 + (3µk + γk)s+ 2µ2k

, (8.5)

P ∗
1,k(s) =

µk{s2 + (3µk + γk)s+ 2µ2k}+ 2γkµ
2
k

(s+ µk + γk){s2 + (3µk + γk)s+ 2µ2k}
. (8.6)

The reliability function Rk(t) of the system is the probability that the system enters into
down state only after time t given that the system started in the state (2, 0, k) at time
t = 0. Then, we have

Rk(t) =

∫ ∞

t
P0,k(u)du. (8.7)

Taking Laplace transform of both sides of (8.7), we get

R∗
k(s) =

1− P ∗
0,k(s)

s
. (8.8)

Substituting (8.5) into (8.8), we get

R∗
k(s) =

s+ (3µk + γk)

s2 + (3µk + γk)s+ 2µ2k
. (8.9)

Using (4.12) in (8.9), we get

R∗
k(s) =

s+ (3µk + γk)

(s+ |αk|)(s+ |βk|)
. (8.10)
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Splitting into partial fractions and then taking inverse Laplace transform, (8.10) leads to

Rk(t) =
1

(|βk| − |αk|)

[
{(3µk + γk)− |αk|}e−|αk|t − {(3µk + γk)− |βk|}e−|βk|t

]
. (8.11)

The mean lifetime of the system is given by

T0,k = lim
s→0

R∗
k(s) =

(3µk + γk)

αkβk
=

(3µk + γk)

2µ2k
. (8.12)

The result (8.12) coincides with the result obtained by Gnedenko et al. (1969).

9. A Numerical Illustration

For the purpose of illustration, we assume that there are 5 levels for the environment;
that is, N = 5. By assumption of the model, the environment changes its level at the
instant of switching from down-state to up-state. We fix the probabilities for selecting the
environments as follows: p1 = 0.10, p2 = 0.15, p3 = 0.20, p4 = 0.35, p5 = 0.20. The failure
rates and repair rates in the environments are assumed as follows:

µ1 = 0.1, γ1 = 2.5;
µ2 = 0.2, γ2 = 3.5;
µ3 = 0.3, γ3 = 4.5;
µ4 = 0.4, γ4 = 5.5;
µ5 = 0.5, γ5 = 6.5.

The down-state has been considered as level 0. Repair alone is done in level 0 and the repair
rate in down state is γ0 = 8.0. For achieving a reliable system, we have assumed that the
repair rate is greater than the failure rate in each active level of the environment. By using
(5.4), (5.5) and (5.6), the steady-state probabilities for the present illustration are given by

π(0, 2, 0) = 0.0034
π(1, 1, 1) = 0.0274
π(1, 1, 2) = 0.0206
π(1, 1, 3) = 0.0183
π(1, 1, 4) = 0.0240
π(1, 1, 5) = 0.0110

π(2, 0, 1) = 0.3425
π(2, 0, 2) = 0.1798
π(2, 0, 3) = 0.1370
π(2, 0, 4) = 0.1648
π(2, 0, 5) = 0.0712.

Next, we proceed to obtain time-dependent state probabilities P (i, j, k, t), (i, j, k) ∈ Ω
and t > 0. We assume that the system is in the state (0, 2, 0) at time t = 0 so that
P (0, 2, 0, 0) = 1. Using (4.16), (4.17) and (4.18), we computed the system probabilities
P (i, j, k, t) for values of t ∈ (0, 1). First we computed numerical values of P (0, 2, 0, t) for
values of t in the interval 0 < t ≤ 1. In table 1, we provide system down transient probabil-
ities at time points in 0 < t ≤ 1. We observe that the system-down probability decreases
as t increases. We depict the above behaviour in Figure 2. This behaviour is quite natural,
since the repair rate is chosen much higher than the failure rate.
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Table 1. System down probability P (0, 2, 0, t) as time t increases

t P (0, 2, 0, t) t P (0, 2, 0, t) t P (0, 2, 0, t) t P (0, 2, 0, t) t P (0, 2, 0, t)

0.01 0.9232 0.11 0.4223 0.21 0.2001 0.31 0.0991 0.41 0.0520
0.02 0.8526 0.12 0.3912 0.22 0.1861 0.32 0.0926 0.42 0.0489
0.03 0.7876 0.13 0.3626 0.23 0.1732 0.33 0.0867 0.43 0.0460
0.04 0.7278 0.14 0.3361 0.24 0.1612 0.34 0.0811 0.44 0.0434
0.05 0.6727 0.15 0.3117 0.25 0.1502 0.35 0.0760 0.45 0.0409
0.06 0.6220 0.16 0.2892 0.26 0.1399 0.36 0.0712 0.46 0.0386
0.07 0.5752 0.17 0.2685 0.27 0.1305 0.37 0.0668 0.47 0.0365
0.08 0.5322 0.18 0.2493 0.28 0.1217 0.38 0.0626 0.48 0.0345
0.09 0.4925 0.19 0.2315 0.29 0.1136 0.39 0.0588 0.49 0.0326
0.10 0.4560 0.20 0.2152 0.30 0.1061 0.40 0.0553 0.50 0.0309

t P (0, 2, 0, t) t P (0, 2, 0, t) t P (0, 2, 0, t) t P (0, 2, 0, t) t P (0, 2, 0, t)

0.51 0.0293 0.61 0.0180 0.71 0.0122 0.81 0.0092 0.91 0.0075
0.52 0.0278 0.62 0.0173 0.72 0.0118 0.82 0.0090 0.92 0.0074
0.53 0.0264 0.63 0.0166 0.73 0.0115 0.83 0.0088 0.93 0.0073
0.54 0.0251 0.64 0.0159 0.74 0.0111 0.84 0.0086 0.94 0.0072
0.55 0.0238 0.65 0.0153 0.75 0.0108 0.85 0.0084 0.95 0.0071
0.56 0.0227 0.66 0.0147 0.76 0.0105 0.86 0.0082 0.96 0.0070
0.57 0.0216 0.67 0.0141 0.77 0.0102 0.87 0.0081 0.97 0.0069
0.58 0.0206 0.68 0.0136 0.78 0.0099 0.88 0.0079 0.98 0.0068
0.59 0.0197 0.69 0.0131 0.79 0.0097 0.89 0.0078 0.99 0.0067
0.60 0.0188 0.70 0.0127 0.80 0.0094 0.90 0.0076 1.00 0.0066

Figure 2. System-Down Probability versus Time

Next we proceed to obtain the availability of the system at various time points. For
the purpose of illustration, we assume Z(0) = (0, 2, 0) and find the numerical values of
the availability function A(t) at time points in the interval (0, 1). To achieve this task,
we need the probabilities P2,0(t; 0, l) and P2,1(t; 0, l) at t = 0.1, 0.2, · · · , 2.0. Using these

probabilities, we obtain A(t) =
∑5

l=1[P2,0(t; 0, l) +P2,1(t; 0, l)]. We furnish the availability
probabilities P2,0(t; 0, l) and P2,1(t; 0, l) in table 2 and table 3.
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Table 2. P2,0(t; 0, l) with respect to environment level l and time t

t ↓ l → 1 2 3 4 5

0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.10 0.0070 0.0141 0.0232 0.0476 0.0309
0.20 0.0205 0.0394 0.0622 0.1230 0.0770
0.30 0.0344 0.0636 0.0968 0.1851 0.1125
0.40 0.0468 0.0832 0.1226 0.2280 0.1354
0.50 0.0570 0.0980 0.1403 0.2553 0.1490
0.60 0.0652 0.1087 0.1520 0.2718 0.1565
0.70 0.0717 0.1162 0.1595 0.2813 0.1605
0.80 0.0767 0.1215 0.1642 0.2867 0.1624
0.90 0.0806 0.1251 0.1670 0.2894 0.1632
1.00 0.0836 0.1276 0.1687 0.2907 0.1633
1.10 0.0859 0.1293 0.1697 0.2911 0.1631
1.20 0.0877 0.1305 0.1702 0.2910 0.1626
1.30 0.0891 0.1312 0.1704 0.2906 0.1621
1.40 0.0902 0.1318 0.1704 0.2900 0.1615
1.50 0.0910 0.1321 0.1703 0.2893 0.1609
1.60 0.0917 0.1323 0.1702 0.2886 0.1602
1.70 0.0922 0.1325 0.1700 0.2878 0.1596
1.80 0.0926 0.1326 0.1698 0.2870 0.1589
1.90 0.0930 0.1326 0.1696 0.2863 0.1583
2.00 0.0933 0.1327 0.1694 0.2855 0.1576

Table 3. P2,1(t; 0, l) with respect to environment level l and time t

t ↓ l → 1 2 3 4 5

0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.10 0.0476 0.0674 0.0850 0.1409 0.0764
0.20 0.0589 0.0786 0.0938 0.1482 0.0770
0.30 0.0564 0.0709 0.0808 0.1229 0.0621
0.40 0.0495 0.0590 0.0648 0.0965 0.0484
0.50 0.0419 0.0478 0.0515 0.0767 0.0389
0.60 0.0351 0.0388 0.0418 0.0634 0.0330
0.70 0.0293 0.0321 0.0352 0.0550 0.0295
0.80 0.0246 0.0272 0.0308 0.0498 0.0275
0.90 0.0209 0.0237 0.0280 0.0467 0.0263
1.00 0.0180 0.0213 0.0262 0.0448 0.0255
1.10 0.0158 0.0196 0.0250 0.0437 0.0251
1.20 0.0141 0.0184 0.0243 0.0429 0.0248
1.30 0.0128 0.0176 0.0238 0.0425 0.0246
1.40 0.0118 0.0171 0.0235 0.0421 0.0244
1.50 0.0111 0.0167 0.0233 0.0419 0.0243
1.60 0.0105 0.0164 0.0231 0.0417 0.0241
1.70 0.0100 0.0163 0.0230 0.0415 0.0240
1.80 0.0097 0.0162 0.0229 0.0414 0.0239
1.90 0.0095 0.0161 0.0229 0.0412 0.0238
2.00 0.0093 0.0160 0.0228 0.0411 0.0237

The values of availability function A(t) for various values of t are listed in table 4. We
Table 4. Availability A(t) with respect to time t

t A(t)
0.10 0.5401
0.20 0.7786
0.30 0.8855
0.40 0.9342
0.50 0.9564

t A(t)
0.60 0.9663
0.70 0.9703
0.80 0.9714
0.90 0.9709
1.00 0.9697

t A(t)
1.10 0.9683
1.20 0.9665
1.30 0.9647
1.40 0.9628
1.50 0.9609

t A(t)
1.60 0.9588
1.70 0.9569
1.80 0.9550
1.90 0.9533
2.00 0.9514

plot A(t) in figure 3. We find that the probability A(t) of availability increases very rapidly
as t increases up to the time point 0.8 and then slowly decreases keeping above the level
0.9.
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Figure 3. Availability A(t)

Lastly, we proceed to exhibit numerically and pictorially the behaviour of reliability
function as a function of time t. The table 3 provides reliability values and the figure 4
depicts the reliability as a function of time. It is observed that, at any time t, the reliability
satisfies the inequality R1(t) > R2(t) > R3(t) > R4(t) > R5(t). This is quite true, since
µ1 < µ2 < µ3 < µ4 < µ5.

Table 5. Reliability in different environments

k t Rk(t) k t Rk(t) k t Rk(t) k t Rk(t) k t Rk(t)
1 0.0 1.0 2 0.0 1.0 3 0.0 1.0 4 0.0 1.0 5 0.0 1.0

0.1 0.9914913 0.1 0.9699101 0.1 0.9398449 0.1 0.9045258 0.1 0.8662156
0.2 0.9707515 0.2 0.9068499 0.2 0.8301570 0.2 0.7514317 0.2 0.6757731
0.3 0.9429190 0.3 0.8336897 0.3 0.7178580 0.3 0.6107711 0.3 0.5166605
0.4 0.9112221 0.4 0.7602569 0.4 0.6159947 0.4 0.4934769 0.4 0.3933570
0.5 0.8776791 0.5 0.6905614 0.5 0.5270869 0.5 0.3980420 0.5 0.2992154
0.6 0.8435436 0.6 0.6260376 0.6 0.4505354 0.6 0.3209129 0.6 0.2275620
0.7 0.8095851 0.7 0.5669978 0.7 0.3849503 0.7 0.2586951 0.7 0.1730607
0.8 0.7762675 0.8 0.5132815 0.8 0.3288641 0.8 0.2085322 0.8 0.1316114
0.9 0.7438621 0.9 0.4645444 0.9 0.2809341 0.9 0.1680945 0.9 0.1000893
1.0 0.7125191 1.0 0.4203857 1.0 0.2399847 1.0 0.1354980 1.0 0.0761170

10. Conclusion

We considered a two-unit parallel system which is subject to failure and repair in a
multi-level random environment. We assumed that units have environment level depen-
dent life-time and repair rates. We applied renewal-theoretic approach to obtain the
governing equations of the model. We explicitly obtained the availability and reliability
of the system. There is a limitation of the model in the sense that the model assumes
that the failure and repair rates are not time-dependent and they are assigned with fixed
values jointly and instantaneously from a finite set of levels of fixed rates randomly at
those epochs e when the number of failed units switches from 2 to 1. That is, between any
two successive e events, the system evolves like a two-unit parallel system subject to con-
stant failure and repair rates. This restriction can be relaxed to trigger a new direction of
viewing availability and reliability of repairable systems operating in random environment.
As a future study of parallel systems, we may extend the present model by incorporating
time-dependent rates of failure and repair that are modulated by a random environment.
We can also attempt to study reliability and availability of repairable systems with three
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Figure 4. Reliability as a function of time

or more units operating in random environment.
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[13] Lovas, A. and Rásonyi, M., (2021), Markov chains in random environment with applications in queuing
theory and machine learning, Stochastic Processes and their Applications, 137, pp. 294-326

[14] Osaki, S. and Nakagawa, T., (1976), Bibliography for reliability and availability of stochastic systems,
IEEE Transactions on Reliability, R-25(4), pp. 284-287.
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