
TWMS J. App. and Eng. Math. V.15, N.9, 2025, pp. 2398-2405

A COMPARATIVE STUDY ON PRIME AND VERTEX k-PRIME

LABELING OF ONE POINT UNION OF PATH GRAPHS

TERESA AROCKIAMARY S1, VIJAYALAKSHMI P2∗, §

Abstract. In our study, we investigate the structure of one point union of path graphs
and prove that they admit a vertex k-prime labeling. Further a study on comparison
between prime and vertex k-prime labeling for one point union of path graph has been
analysed and applied in the field of computer science with the help of C++ programming
language.
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1. Introduction

One of the rapidly growing fields of research in mathematics is graph theory and it is
widely recognised as a crucial dynamic tool in a wide range of disciplines. A graph G
consists of three components: a nonempty set of vertices V (G) or points, a set of edges
or lines E(G), and a function that connects each edge to two vertices, referred to as its
endpoints [2]. Graph labeling is one of the many fields of study within graph theory,
having originated in the 1960s. Rosa [4] first introduced graceful labeling in 1967, and
since then, many different graph labeling techniques have been developed. These tech-
niques are growing into a more often used approach to mathematical modeling for a range
of applications which includes communication networks, hierarchical structure, software
testing, timetable scheduling, encrypting and decrypting numbers, missile guidance, cloud
computing, signal processing, network analysis, image processing, computer vision and
much more. An extensive analysis of a number of graph labeling applications is given by
Bloom and Golomb [1].

Entringer introduced the idea of prime labeling, which Tout, Dabboucy and Howalla
[8] originally proposed in a study. A prime labeling of a graph G is a one-one function
g : V (G) → {1, 2, 3, ..., |V (G)|} such that for every pair of adjacent vertices u and v,
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gcd(g(u), g(v)) = 1. A graph G that admits prime labeling is called a prime graph [3].
The concept of vertex k-prime labeling was introduced by Teresa et al. [6]. The results
on cyclic snake graphs and corona graphs of the form mCn

⊙
K1 [5], theta-related graphs

and centralised generalised theta graph [7] were proved to be vertex k-prime.
Vertex k-prime labeling is defined as follows: A vertex k-prime labeling of a graph G is

a one-one and onto function g : V (G) → {k, k + 1, k + 2, ..., k + |V | − 1} for some positive
integer k such that gcd(g(u), g(v)) = 1 ∀e = uv ∈ E(G). A graph G that admits vertex
k-prime labeling is called a vertex k-prime graph [6].

This study has attempted to investigate the existence of vertex k-prime labeling of one
point union of path graphs. In addition, the application of one point union of path graphs
has been examined where prime labeling and vertex k-prime labeling are compared for
time complexity which is applied in the field of computer science with the help of C++

programming language.

Definition 1.1. One point union of path graph P r
n is a tree of r paths and n vertices with

exactly r vertices of degree one, one vertex of degree r and r(n− 1) vertices of degree two.

2. Main Result

In our study, we assume that there is at least one prime number in {k, k + 1, ..., k +
|V | − 1}.
Notation: The one point union of the path graph is represented by P r

n , where n is
the number of vertices in each path and r is the number of copies of Pn. The graph is
constructed by considering v0 as the central vertex and r copies of Pn with n vertices and
n− 1 edges. We indicate the vertices of yth copy of P r

n as vyx (1 ≤ x ≤ n, 1 ≤ y ≤ r).

Theorem 2.1. The one point union of path graph P r
n is vertex k-prime for k ≥ 1, n, r ≥ 2.

Proof. Let G = P r
n be the one point union of path graph of order nr + 1 and size nr. Let

V (P r
n) = {v0} ∪ {vyx : 1 ≤ x ≤ n, 1 ≤ y ≤ r}

E(P r
n) =

{
vyxv

y
x+1 : 1 ≤ x ≤ n− 1, 1 ≤ y ≤ r

v0v
y
1 : 1 ≤ y ≤ r

See Figure 1(a). Let l be the largest prime number from k to k + nr. Define a one-one
and onto function g : V (P r

n) → {k, k + 1, ..., k + nr} as follows.
Case 1. n = 2m,m ≥ 1 and k odd
Subcase (i). k is l
g(v0) = l
g(vyx) = l + (y − 1)n+ x, 1 ≤ x ≤ n, 1 ≤ y ≤ r
For each vyxv

y
x+1 ∈ E(P r

n), gcd(g(v
y
x), g(v

y
x+1)) = gcd(l+(y−1)n+x, l+(y−1)n+x+1) = 1

since l+(y− 1)n+x and l+(y− 1)n+x+1 are successive positive integers. For the edge
v0v

y
1 ∈ E(P r

n), gcd(g(v0), g(v
y
1)) = gcd(l, l + (y − 1)n+ 1) = 1 since l is prime.

Subcase (ii). k + nr is l
g(v0) = l
g(vyx) = k + (y − 1)n+ x− 1, 1 ≤ x ≤ n, 1 ≤ y ≤ r
For each vyxv

y
x+1 ∈ E(P r

n), gcd(g(v
y
x), g(v

y
x+1)) = gcd(k+(y−1)n+x−1, k+(y−1)n+x) = 1

since k + (y − 1)n + x − 1 and k + (y − 1)n + x are successive positive integers. For the
edge v0v

y
1 ∈ E(P r

n), gcd(g(v0), g(v
y
1)) = gcd(l, k + (y − 1)n) = 1 since l is prime.

Subcase (iii). k + (r − 1)n is l
g(v0) = l

g(vyx) =

{
k + (y − 1)n+ x− 1 : 1 ≤ x ≤ n, 1 ≤ y ≤ r − 1
k + (y − 1)n+ x : 1 ≤ x ≤ n, y = r
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For each vyxv
y
x+1 ∈ E(P r

n), gcd(g(v
y
x), g(v

y
x+1)) = gcd(k+(y−1)n+x−1, k+(y−1)n+x) = 1

since k + (y − 1)n + x − 1 and k + (y − 1)n + x are successive positive integers. For the
edge v0v

y
1 ∈ E(P r

n), gcd(g(v0), g(v
y
1)) = gcd(l, k + (y − 1)n) = 1 since l is prime.

Subcase (iv). k + nr is not prime and k + (r − 1)n ̸= l
g(v0) = l
g(vyx) = k + (y − 1)n+ x− 1, 1 ≤ x ≤ n, 1 ≤ y ≤ r − 1
Label the remaining vertices vr1, v

r
2, ..., v

r
n with the integers k + (r − 1)n to k + nr other

than l from {l+ 1, l+ 2, ..., k+ nr− 1, k+ nr, k+ (r− 1)n, k+ (r− 1)n+ 1..., l− 2, l− 1}
satisfying the condition that gcd(g(vrx), g(v

r
x+1)) = 1.

Case 2. n is an odd prime number and k ̸≡ 0(mod n)
Subcase (i). k is l
g(v0) = l
g(vyx) = l + (y − 1)n+ x, 1 ≤ x ≤ n, 1 ≤ y ≤ r
For each vyxv

y
x+1 ∈ E(P r

n), gcd(g(v
y
x), g(v

y
x+1)) = gcd(l+(y−1)n+x, l+(y−1)n+x+1) = 1

since l + (y − 1)n + x and l + (y − 1)n + x + 1 are successive positive integers. For each
v0v

y
1 ∈ E(P r

n), gcd(g(v0), g(v
y
1)) = gcd(l, l + (y − 1)n+ 1) = 1 since l is prime.

Subcase (ii). k + nr is the largest prime l
g(v0) = k + nr
g(vyx) = k + (y − 1)n+ x− 1, 1 ≤ x ≤ n, 1 ≤ y ≤ r
For each vyxv

y
x+1 ∈ E(P r

n), gcd(g(v
y
x), g(v

y
x+1)) = gcd(k+(y−1)n+x−1, k+(y−1)n+x) = 1

since k + (y − 1)n + x − 1 and k + (y − 1)n + x are successive positive integers. For the
edge v0v

y
1 ∈ E(P r

n), gcd(g(v0), g(v
y
1)) = gcd(l, k + (y − 1)n) = 1 since l is prime.

Subcase (iii). k + (r − 1)n is l
g(v0) = l

g(vyx) =

{
k + (y − 1)n+ x− 1 : 1 ≤ x ≤ n, 1 ≤ y ≤ r − 1
k + (y − 1)n+ x : 1 ≤ x ≤ n, y = r

For each vyxv
y
x+1 ∈ E(P r

n), gcd(g(v
y
x), f(v

y
x+1)) = gcd(k+(y−1)n+x−1, k+(y−1)n+x) = 1

since k + (y − 1)n + x − 1 and k + (y − 1)n + x are successive positive integers. For the
edge v0v

y
1 ∈ E(P r

n), gcd(g(v0), g(v
y
1)) = gcd(l, k + (y − 1)n) = 1 since l is prime.

Subcase (iv). k + nr is not prime and k + (r − 1)n ̸= l
g(v0) = l
g(vyx) = k + (y − 1)n+ x− 1, 1 ≤ x ≤ n, 1 ≤ y ≤ r − 1
Label the remaining vertices vr1, v

r
2, ..., v

r
n with the integers k + (r − 1)n to k + nr other

than l from {l+ 1, l+ 2, ..., k+ nr− 1, k+ nr, k+ (r− 1)n, k+ (r− 1)n+ 1..., l− 2, l− 1}
satisfying the condition that gcd(g(vrx), g(v

r
x+1)) = 1.

Case 3. n is a composite number other than 2n for n ≥ 1 and k not a multiple of any
factor of n
Subcase (i). k is l
g(v0) = l
g(vyx) = l + (y − 1)n+ x, 1 ≤ x ≤ n, 1 ≤ y ≤ r
For each vyxv

y
x+1 ∈ E(P r

n), gcd(g(v
y
x), g(v

y
x+1)) = gcd(l+(y−1)n+x, l+(y−1)n+x+1) = 1

since l+(y− 1)n+x and l+(y− 1)n+x+1 are successive positive integers. For the edge
v0v

y
1 ∈ E(P r

n), gcd(g(v0), g(v
y
1)) = gcd(l, l + (y − 1)n+ 1) = 1 since l is prime.

Subcase (ii). k + nr is l
g(v0) = l
g(vyx) = k + (y − 1)n+ x− 1, 1 ≤ x ≤ n, 1 ≤ y ≤ r
For each vyxv

y
x+1 ∈ E(P r

n), gcd(g(v
y
x), f(v

y
x+1)) = gcd(k+(y−1)n+x−1, k+(y−1)n+x) = 1

since k + (y − 1)n + x − 1 and k + (y − 1)n + x are successive positive integers. For the
edge v0v

y
1 ∈ E(P r

n), gcd(g(v0), g(v
y
1)) = gcd(l, k + (y − 1)n) = 1 since l is prime.
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As it will be observed from the Figure 1(b).
Subcase (iii). k + (r − 1)n = l
g(v0) = l

g(vyx) =

{
k + (y − 1)n+ x− 1 : 1 ≤ x ≤ n, 1 ≤ y ≤ r − 1
k + (y − 1)n+ x : 1 ≤ x ≤ n, y = r

For each vyxv
y
x+1 ∈ E(P r

n), gcd(g(v
y
x), g(v

y
x+1)) = gcd(k+(y−1)n+x−1, k+(y−1)n+x) = 1

since k + (y − 1)n + x − 1 and k + (y − 1)n + x are successive positive integers. For the
edge v0v

y
1 ∈ E(P r

n), gcd(g(v0), g(v
y
1)) = gcd(l, k + (y − 1)n) = 1 since l is prime.

Subcase (iv). k + nr is not prime and k + (r − 1)n ̸= l
g(v0) = l
g(vyx) = k + (y − 1)n+ x− 1, 1 ≤ x ≤ n, 1 ≤ y ≤ r − 1
Label the remaining vertices vr1, v

r
2, ..., v

r
n with the integers from k + (r − 1)n to k + nr

other than l from {l+1, l+2, ..., k+nr−1, k+nr, k+(r−1)n, k+(r−1)n+1..., l−2, l−1}
satisfying the condition that gcd((g(vrx), g(v

r
x+1)) = 1.

Thus P r
n admits a vertex k-prime labeling. □

u0

v1
1 v1

2 v1
3 v1

(n−1)v
1
n

v2
1

v2
2

v2
3

v2
(n−1)

v2
n

v4
1v4

2v4
3v4

(n−1)v4
n v(t−1)

1

v(t−1)
2

v(t−1)
3

v(t−1)

(n−1)

v(t−1)
n

(a)

71
47 48 49 50 51 52

53

54

55

56

57

58

596061626364
65

66

67

68

69

70

(b)

Figure 1. (a) P r
n (b) Vertex k-prime labeling of P 4

6 for k = 47

Remark 2.1. In case 1 of Theorem 2.1, we observe that vertex k-prime labeling does not
admit for even k as k and k + |V | − 1 are even.

3. Application of one point union of path graph

The prime labeling and vertex k-prime labeling for one point union of the path graph has
been constructed and the results are analysed. The application is carried out with the help
of descendant search. A node that can be reached by repeatedly traversing from parent to
child is called a descendant. For instance, the original mother and father are the ancestors
of children, grand children, great-grandchildren and great-great-grandchildren. They are
in the direct line of descent. The descendant in graph theory refers to any vertex that is
either the child of a vertex v or the descendant of v’s children is considered a descendant of
v. The most used method for applying labeling techniques is the descendant search. The
search is commonly used to locate a certain branch in the path with varying depths. We
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examined the search using varying source and destination nodes. Using inputs at different
depths, the research provided us with the time required for prime and vertex k-prime
labeling to locate the target node.

This is an application generally carried out to find a specific branch in hierarchy. The
tree starts from root and traverses to the leaf node that has no child nodes. This ap-
plication helps us find the distance between two nodes connected at different levels. To
understand this application, let us consider a social network such as Facebook or Insta-
gram where we interact with our friends by sharing stories, photographs or videos. In such
a network, when we receive a suggestion for a friend as proposed by the social network, it
will revolve around our close common friends. This application uses the descendant search
algorithm to find a person close to our interest.

Descendant search is used in this study because it is the primary experiment to analyse
how the labeling scheme under discussion can change the efficiency of traversing a tree or
in finding a specific branch in a tree. This labeling scheme determines the relationship
between two nodes by comparing their labels. In the graph, the adjacent labeled vertices
are considered and all nodes whose greatest common divisor is 1 are descendants of the
node.
Source and destination nodes are specific and modified
When we first designed this application, we thought it would be useful to understand the
extent of impact of vertex k-prime and prime labeling with specific source and destination
will bring, to descendant search. We conducted experiments by using different sources and
destinations based on how the tree had branched out. An illustration is given in Figure
2.

Figure 2. A comparison of prime and vertex k-prime labeling using de-
scendant search technique for one point union of path graph

The experiment provides us with valid results; however, the source and the destination
nodes can depend on how the tree has branched out. It will not be valid if the source
and destination are closer in the case of vertex k-prime labeling but not in prime labeling.
The results are not conclusive since the labeling might modify the nodes altogether. To
remove the discrepancy and validate the results based on different labeling schemes, we
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modified the above-mentioned source and destination algorithm to run the descendant
search from the root to all other nodes present in the tree. We calculated the time taken
for the descendant search to complete the processing of all the nodes from the root and
completed our findings.
Conclusion
We ran different scenarios using the above-discussed traversal mechanisms to figure out
how the applications scale-out for each scenario. The table of various nodes, number of
tree paths, vertex k-prime value and total nodes for each scenario to understand different
labeling techniques, are elaborated in the thesis. Vertex k-prime labeling requires an
additional k value to start the processing as root and the nodes are placed around the
largest prime number within the total nodes. This processing might have increased the
time for vertex k-prime to traverse each level.

The results are interesting for descendant search since, there are two different scenarios
tested to validate our findings. In the first scenario with different sources and destinations,
vertex k-prime is faster than prime labeling based on the source and destination present in
the tree. If, the nodes are far apart then, vertex k-prime labeling might have taken more
time to compute the distance between them. This scenario did not provide us with valid
results since, it is dependent on tree arrangement and how source and destination nodes
are placed in the tree. To find the real results associated with the descendant search, we
came up with the second scenario.

In the second scenario, the run time taken from the source to all the nodes is calculated.
This provides us with more genuine results when compared to the first scenario. The
time complexity of both prime and vertex k-prime labeling using the second scenario is
calculated and depicted in Table 1. We observe that the time taken by prime labeling and
vertex k-prime labeling varies which depends upon the distribution of the labeling on the
tree.

The coding Language C++ of one point union of path graph for both prime labeling
and vertex k-prime labeling is given in the Appendices A and B. The run time complexity
for each descendant search with various number of vertices and edges is Big O (Number
of vertices × Number of edges), that is, Big O((nr+1)× (nr)) where when the value of n
is 40 and r is 25, descendant search of prime labeling is 1.279 secs and descendant search
of vertex k-prime labeling is 1.017 secs, respectively. The time taken for each descendant
search with different parameters are provided in the table using Processor Intel (R) Core
(TM) i5−8250U CPU@1.60 GHZ 1.80 GHZ with installed RAM 8.00 GB and C++ code
is given in Appendix C.
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Table 1. Run time of prime labeling and vertex k-prime labeling for k =
400 using second scenerio

No of nodes per t No of paths Total nodes
Largest prime

number
Prime labeling

Vertex k-Prime

(k = 400)

n r n ∗ r l
Descendent search

(in secs)

Descendent search

(in secs)

10 10 100 499 0.014 0.016

40 10 400 797 0.198 0.211

40 25 1000 1399 1.279 1.017

50 40 2000 2399 4.235 3.656

50 50 2500 2897 6.372 6.465

75 40 3000 3391 9.645 9.81

70 50 3500 3889 10.462 16.726

100 40 4000 4397 22.087 21.782

200 40 8000 8389 99.477 87.596

250 35 8750 9137 109.195 107.589

300 30 9000 9397 74.296 75.956

250 40 10000 10399 131.749 123.297

300 40 12000 12391 226.448 197.246

10 40 400 797 0.245 0.288

40 100 4000 4397 21.654 23.392

40 200 8000 8389 88.335 90.818

9 6 54 449 0.007 0.005

5 5 25 421 0.002 0.001

8 12 96 491 0.012 0.015

59 5 295 691 0.135 0.139

4. Conclusions

This paper attempts to prove one point union of path graph admits vertex k-prime
labeling and have provided a comparison of the time complexity of prime labeling and
vertex k-prime labeling which has been obtained by the application of one point union of
path graphs.
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APPENDIX A 

#define PRIME_GRAPH 

#define PRIME_GRAPH 

#include <iostream> 

#include <unordered_map> 

#include <vector> 

#include <queue> 

#include <list> 

#define INT_MAX 2147483647 

using namespace std; 

class Prime_modeling { 

private: 

 int n; // nodes per strand 

 int t; // no of strands 

 unordered_map<int, vector<int>> adj_list;  

 int total_nodes; 

 int source = 1; 

public: 

 //constructor 

 Prime_modeling(int no_of_strands, int nodes_per_strand, int nodes) :t(no_of_strands), 

n(nodes_per_strand), total_nodes(nodes) {} 

 void create_adj_list(); 

 void display(); 

 bool predCheck(int start,int search_node,vector<int>& pred,vector<int>& distance); 

 void find_descendent_search(int start,int search_node);  

}; 

 

/* Adjcency list creation for undirected graph */ 

void Prime_modeling::create_adj_list() { 

 if (n == 0 || t == 0 || (n * t < total_nodes)) { 

  // exception handling 

 } 



int count = 2; 

 for (int i = 1; i <= t; i++) { 

  adj_list[1].push_back(count); 

  adj_list[count].push_back(1); 

  for (int j = 1; j < n; j++) { 

   int temp = count; 

   int temp1 = ++count; 

   adj_list[temp].push_back(temp1); 

   adj_list[temp1].push_back(temp); 

  } 

  count++; 

 } 

} 

 

/* Display the source node and destination nodes*/ 

void Prime_modeling::display() { 

 cout << "source" << '\t' << "destination" << endl; 

 for (auto i : adj_list) { 

  for (int j : i.second) { 

   cout << i.first << '\t' << j << endl; 

  } 

 } 

} 

 

/*stores the distance and pred of a node*/ 

bool Prime_modeling::predCheck(int start,int search_node,vector<int>& pred,vector<int>& 

distance){ 

 list<int> queue; 

 vector<bool> visited(total_nodes);  

 visited[start] = true;  

     distance[start] = 0;  

     queue.push_back(start);  

   



     // standard BFS algorithm  

     while (!queue.empty()) {  

         int u = queue.front();  

         queue.pop_front();  

         for (int i = 0; i < adj_list[u].size(); i++) {  

              if (visited[adj_list[u][i]] == false) {  

                  visited[adj_list[u][i]] = true;  

                  distance[adj_list[u][i]] = distance[u] + 1;  

                  pred[adj_list[u][i]] = u;  

                  queue.push_back(adj_list[u][i]);    

                  // We stop BFS when we find  

                  // destination.  

                  if (adj_list[u][i] == search_node)  

                      return true;  

              }  

         }  

     }  

     return false; 

} 

 

/* works only when both the search nodes are there within total nodes */ 

void Prime_modeling::find_descendent_search(int start,int search_node) {  

 vector<int> pred(total_nodes+1,-1); 

 vector<int> distance(total_nodes+1,INT_MAX); 

 

 if(predCheck(start,search_node,pred,distance) == false){ 

  cout<<"The graph is not connected"<<endl; 

  return; 

 } 

 vector<int> path; 

 int endNode = search_node; 

 path.push_back(endNode); 



 while(pred[endNode] != -1){ 

  path.push_back(pred[endNode]); 

  endNode = pred[endNode]; 

 } 

}  

#endif 



APPENDIX B 

#define VERTEX K_PRIME 

#define VERTEX K_PRIME 

#include <iostream> 

#include <unordered_map> 

#include <vector> 

#define INT_MAX 2147483647 

using namespace std; 

class Vertex_K_Prime_modeling { 

private: 

 int n; // nodes per strand 

 int t; // no of strands 

 int k; // k - prime value 

 int lar_p; //lar_p - largest prime number within K + total_nodes 

 std::unordered_map<int, vector<int>> adj_list;  

 int total_nodes; 

 int source = 0;  

public: 

 // constructor 

 Vertex_K_Prime_modeling(int no_of_strands, int largest_prime, int 

nodes_per_strand, int k_prime, int nodes) :t(no_of_strands), lar_p (largest_prime), 

n(nodes_per_strand), k(vertex_k_prime), total_nodes(nodes + vertex_k_prime) {} 

 void create_adj_list(); 

 void display(); 

 void find_descendent_search(int start,int search_node); 

 bool predCheck(int start,int search_node,vector<int>& pred,vector<int>& distance); 

}; 

// Finding a prime number for the total_nodes 

int find_prime(int total_nodes) { 

 vector<bool> prime_no(total_nodes + 1,false); 

 for (int i = 2; i <= total_nodes; i++) { 



  if (prime_no[i] == false) { 

   for (int j = 2; i * j <= total_nodes; j++) { 

    prime_no[i * j] = true; 

   } 

  } 

 } 

 for (int i = prime_no.size() - 1; i >= 0; i--) { 

  if (!prime_no[i]) { 

   return i; 

  } 

 } 

} 

 

/* Adjcency list creation */ 

void Vertex_K_Prime_modeling::create_adj_list() { 

 if (n == 0 || t == 0 || (n * t < total_nodes)) { 

  // exception handling 

 } 

 int prime = lar_p; 

 source = prime; 

 int count = k; 

 int temp_count = 0; 

 for (int i = 1; i <= t; i++) { 

  if (i < t) { 

   adj_list[prime].push_back(count); 

   adj_list[count].push_back(prime); 

   for (int j = 1; j < n; j++) { 

    int temp = count; 

    int temp1 = ++count; 

    adj_list[temp].push_back(temp1); 



    adj_list[temp1].push_back(temp); 

   } 

   count++; 

  } 

  if (i == t) { 

   // last path ... 

 /* Path creation when the number of nodes are greater than the greater prime */ 

   if (prime < total_nodes) {   

    temp_count = count; 

    int start = prime + 1; 

    adj_list[prime].push_back(start); 

    adj_list[start].push_back(prime); 

    while (start < total_nodes) { 

     int temp = start; 

     int temp1 = ++start; 

     adj_list[temp].push_back(temp1); 

     adj_list[temp1].push_back(temp); 

    } 

    adj_list[start].push_back(temp_count); 

    adj_list[temp_count].push_back(start); 

    while (temp_count < prime - 1) { 

     int temp = temp_count; 

     int temp1 = ++temp_count; 

     adj_list[temp].push_back(temp1); 

     adj_list[temp1].push_back(temp); 

    } 

   } 

   else { 

    /* Path creation when the number of nodes are equal to the 

greater prime */ 

    adj_list[prime].push_back(count); 



    adj_list[count].push_back(prime); 

    for (int j = 1; j < n; j++) { 

     int temp = count; 

     int temp1 = ++count; 

     adj_list[temp].push_back(temp1); 

     adj_list[temp1].push_back(temp); 

    } 

   } 

  } 

 } 

} 

 

/* Display the source node and destination nodes*/ 

void K_Prime_modeling::display() { 

 cout << "source" << '\t' << "destination"<<endl; 

 for (auto i : adj_list) { 

  for (int j : i.second) { 

   cout << i.first << '\t' << j << endl; 

  } 

 } 

} 

/*stores the distance and pred of a node*/ 

bool Vertex_K_Prime_modeling::predCheck(int start,int search_node,vector<int>& 

pred,vector<int>& distance){ 

        list<int> queue; 

        vector<bool> visited(total_nodes); 

        visited[start] = true; 

        distance[start] = 0; 

        queue.push_back(start); 

        // standard BFS algorithm  

        while (!queue.empty()) { 



                int u = queue.front(); 

                queue.pop_front(); 

                for (int i = 0; i < adj_list[u].size(); i++) { 

                        if (visited[adj_list[u][i]] == false) { 

                                visited[adj_list[u][i]] = true; 

                                distance[adj_list[u][i]] = distance[u] + 1; 

                                pred[adj_list[u][i]] = u; 

                                queue.push_back(adj_list[u][i]); 

                               // We stop BFS when we find  

                                // destination.  

                                if (adj_list[u][i] == search_node) 

                                        return true; 

                        } 

                } 

        } 

        return false; 

} 

/* works only when both the search nodes are there within total nodes */ 

void Vertex_K_Prime_modeling::find_descendent_search(int start,int search_node) { 

        vector<int> pred(total_nodes+1,-1); 

        vector<int> distance(total_nodes+1,INT_MAX); 

        if(predCheck(start,search_node,pred,distance) == false){ 

                //cout<<"the nodes are not in the graph"<<endl; 

                return; 

        } 

        vector<int> path; 

        int endNode = search_node; 

 path.push_back(endNode); 

 while(pred[endNode] != -1){ 

                path.push_back(pred[endNode]); 



APPENDIX C 
 

#include "Prime_graph.h" 

#include "Vertex_K_Prime.h" 

#include <time.h> 

#include <iostream> 

int main() 

{ 

    /* UI for finding the prime and vertex_k_prime modeling*/ 

    cout << "1. Prime Modeling" << endl; 

    cout << "2. Vertex K_Prime Modeling" << endl; 

    int in; 

    cin >> in; 

 

    //prime modeling 

    if (in == 1) { 

        int n, t, type_DS, total; 

        cout << "n = "; 

        cin >> n; 

        cout << "t = "; 

        cin >> t; 

        cout << "total nodes = "; 

        cin >> total; 

        total = total + 1; 

        Prime_modeling  p_m(t, n, total); //inputs for prime modeling 

        p_m.create_adj_list(); // prime modeling adj_list creation 

        p_m.display(); // prime modeling list display 

        int source, target; 

        cout << "DESCENDENT SEARCH" << endl; // Descendent search   

                cout << "1. Individual search check with different source and target" << endl; 

                cout << "2. Prime number 1 as source and all other nodes as target" << endl; 

                 cin >> type_DS; 

 

        if (type_DS == 1) 

        { 

            cout << "Source = "; 

            cin >> source; 

            cout << "Target = "; 

            cin >> target; 

         

            if(target > total+1){ 

                cout<<"check the inputs"<<endl; 

            } 

            vector<int> pathNodes; 

            clock_t start1 = clock(); 

            p_m.find_descendent_search(source, target);  

            cout<<endl; 

            //time of execution for descendent search 



            cout << "time taken : "<<double(clock() - start1) / double(CLOCKS_PER_SEC) << 

"sec" << endl; 

        } 

        if (type_DS == 2) 

        { 

            clock_t start2 = clock(); 

            source = 1; 

            for (int i = 2; i <= total; i++) { 

                p_m.find_descendent_search(source, i); 

            } 

            cout<<endl; 

            cout << double(clock() - start2) / double(CLOCKS_PER_SEC) << "sec" << endl; 

        } 

         

    } 

 

    //Vertex K-prime modeling 

    if (in == 2) { 

        int n, t, k, i,lar_p,type_DS, total; 

        clock_t start2; 

        cout << "n = "; 

        cin >> n; 

        cout << "t = "; 

        cin >> t; 

        cout << "k = "; 

        cin >> k; 

        cout << "Largest prime within K + total nodes:"; 

        cin >> lar_p; 

        cout << "total nodes = "; 

        cin >> total; 

 

        if (lar_p > (k + total)) {  

            cout << "largest prime is greater than the total nodes" <<endl; 

        } 

 

        Vertex_K_Prime_modeling k_m(t,lar_p,n,k,total); //inputs for Vertex_K_prime 

        k_m.create_adj_list(); // adj_list creation 

        k_m.display(); // display the list of connected nodes 

        int source, target; 

        cout << "DESCENDENT SEARCH" << endl; 

        cout << "1. Individual search check with different source and target :" << endl; 

        cout << "2. Vertex K Prime with largest prime number as "  

            "source and all other nodes as target:" << endl; 

        cin >> type_DS; 

         

        if (type_DS == 1) 

        { 

            cout << "Source = "; 



            cin >> source; 

            cout << "Target = "; 

            cin >> target; 

         

            start2 = clock(); 

            k_m.find_descendent_search(source, target); 

            cout<<endl; 

            //time of execution for descendent search 

            cout << double(clock() - start2) / double(CLOCKS_PER_SEC) << "sec" << endl; 

        } 

        if (type_DS == 2) 

        { 

            start2 = clock(); 

            source = lar_p;                 

            for (i = 1; i <= total; i++) { 

                k_m.find_descendent_search(source, (k + i)); 

            } 

            cout << double(clock() - start2) / double(CLOCKS_PER_SEC) << "sec" << endl; 

        } 

 

    } 

    return 0; 

} 
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