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AN EFFICIENT EIGHTH ORDER FAMILY OF ITERATIVE METHOD
FOR SOLVING SYSTEMS OF NONLINEAR EQUATIONS

Y. SAIMA'*, Z. FIZA, §

ABSTRACT. In this paper, we analyse the underlying computational cost as well as ap-
plicability of the new iterative methods for real-life problems and illustrate that the new
schemes produce approximations of greater numerical accuracy for solving nonlinear sys-
tems. Basins of attraction are also given for some test problems to study the convergence
regions.
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1. INTRODUCTION

Let us consider the system of equations G(5) = 0 for solving nonlinear problems, where
G : U C R! - R? is a multivariate vector-valued function also ¢t € N. Numerous tech-
niques have been developed to solve this problem. They are available to the scientific
community, making iterative calculations fast and accurate, but there is always a margin
of improvement to develop more computationally efficient iterative methods. Almost all
physical phenomena exhibit nonlinear behaviour and mathematical modeling can be used
to formulate many problems that lead to nonlinear systems of equations in the computa-
tional sciences. These, researchers presented applications for solving nonlinear systems of
equations as economics modeling problems [12], combustion problems [8], kinematic prob-
lems [11], chemical equilibrium problems [13], neurophysiology problems [22], nonlinear
cardiac mechanics problems [15], the kinematic synthesis problems for steering and Van
der Pol equation problems [4]. The most frequent iterative strategy for solving nonlinear
equations and systems of equations is Newton’s method which possesses second-order con-
vergence. In the past few decades, optimal fourth-order Jarratt [19] and Steffensen [18]
type schemes have been developed but researchers have not remained successful in giving
an optimal eighth-order method for solving systems of nonlinear equations. In fact, there
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are only a few seventh-order iterative schemes for solving nonlinear systems. In order to
solve nonlinear equations and nonlinear systems, Wang and Zhang [23] introduced two
seventh-order three-step Steffensen-type iterative algorithms.

Sharma and Arora [17] introduced a seventh order iterative approach for nonlinear systems
using four functions, two matrix inversions and five divided differences in each iteration.
An effective family of three-step iterative methods with seventh-order convergence was pro-
posed by Abad et al. [1]. The weight functions are used to get the proposed approaches.
Another seventh-order derivative-free iterative technique for solving nonlinear systems was
presented by Wang et al. [24]. The new technique employs one matrix inversion at ev-
ery iteration as:A three-step, two-parametric family of derivative-free algorithms having
seventh-order of convergence was presented by Narang et al. [14] for nonlinear systems.
Most recently, a novel three-point iterative method for solving a nonlinear system with
seventh-order convergence is introduced by Behl and Arora [3]. Being motivated by on-
going research in this direction, we develop an eighth-order scheme for nonlinear systems.
Due to the fact that each iterative strategy deal with nonlinear equations differently, we
take into account the convergence order, number of iterations, number of function evalua-
tions and the precision of the desired roots when analyzing the performance of an iterative
approach. To verify the effectiveness of the new schemes, we use some numerical problems
that enable us to validate the findings from the computational as well as dynamical point
of view to evaluate our new methods against the well-known non-optimal eighth-order
method given by Cordero et al. [6].

2. DEVELOPMENT OF THE ITERATIVE SCHEME

We take the multivariate vector-valued function G : U C R* — R! for which we can
define the divided difference as:

[87T; G}mk - (Gm[817 "'7Sk—17 Skark—i-la "-7Tn] - Gm[sh ...,Sk_l,'f'k,’rk_i_l, -uﬂdn])/(sk - Tk)a

1<m,k <n,

where the index m represents the m'* function and the index k denotes the nodes. In the
procedure of developing our scheme, we employed the weight function technique involving
divided differences. Our scheme comprises of three steps which are listed below:

RO S(t)_(G’ (S(t)>>_lg(s(t)>7
RO v(t)_p<h<t>> <G' (S(t)>)_1g<v(t)>’

) ) _ ( R (hoﬁ)) i K(hw) 0 (uu)) (G' (Sa)))‘l e (zu)) 7 (1)
where
B _ (G' (S(w))*l FORCONe]
and
u® =1 (¢ (s0)) " pO.20: 1P ().

where P, R, K,Q : Spxn(R) =T (R") with S, x, be the set of n x n matrices and I'(R?),
the set of linear operators from R? to R’. The order of convergence of scheme (1) turns
out to be eighth under the conditions on the weight function that can be described in the
following theorem.
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Theorem 2.1. Let’s assume that G : U C Rt — R be a sufficiently differentiable function
in a closed neighborhood U that contains the simple root Y. We take into account the fact
that G’ (s) is continuous and non-singular at Y. Additionally, if we use the initial guess
s close to the root and the conditions listed below are met then, convergence is assured.

P(0) = 1,P'(0)=2,P"(0)=0,P"(0)=0,|P"(0)] < oo,
(0) = I,R(0)=2,R"(0)=2,R"(0)=-24,|R"(0)| < o0,
0) =1 K’(O) =4,|K"(0)| < o,

(0) Q'(0) = 1,|Q"(0)| < o0

O =

Proof. Let us consider that e) = s() —T is the error in the t" iteration. The Taylor’s series
expansion of the function G(s®)and its first order derivative G’(s()) with the assumption
|G'(T)] # 0 leads us to

G(s®) = G0 + ca(e™)? + e3(eM) + ea(e) + ..+ 0((e)?)), (2

where,
= [G’(T)] GO, i=2,3,...
and
G'(sW) = G 4 2c2¢® + 3c3(eM)? 4 deg(eW)? + ..+ 0(()®)).  (3)
G"(sW) = G'(T)(2¢z + 6c3e® + 12¢4()? 4 20¢5(eM) + ... + O((e)%)).  (4)
G" (s = G'(1)(6¢3 + 24cqe®) + 60cs5(e™)? + ... + 0(( D)5Y). (5)
GW(sM) = G'(T)(24c4 + 120¢5e® + 360¢6(e™)? 4 840¢7(e)3 + O((eM)h).  (6)
Inversion of G’(s*)) gives
(G'(sDON™Y = T —2e0e® 4 (43 — 3e3) (D)2 4 .. + O((eD)P). (7)
Subsequently,
v = s — (¢'(sO) G (s(t)) . (8)
By using (2) and (7) in (8), we get
v® = cy(e®)? + (25 — 23)(eW)? + (3c4 — Teaes + 4¢3) (eM) + i Ai(e®y
=5
+O((e™)?),
such that,
A; = Ai(ca, c3,...06,07),5 < i < 8.
As

G(") = G(s") |00y
implies that

Gy = G'(1)(ca(e™)? + (2e5 — 2¢2) (eM)? + (Bey — Teaes + 463) (eM)?

£ 37 Ay + 0((e)?)),

1=5
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From (3) — (6) we obtain
G(v®) — G(s®)
1) ,®. — — /(s
G//(S(t )
3!

G o
+T(’U — S )

+ (v® — D)2 1 O(e®)3
= G(T)(I + cae™ + (c5 + 3)(eM)? + (=265 + ¢4 + 3esea) (eM)? + O(el))4).
, -1
Also, we expand h() =T — (G (s(t))) [s®) v®): G] using Taylor’s series expansion

7
W) = coel® + (2¢5 - 3¢3) (e™)? + (3cs — 10c2e3+8¢5) () + >~ Di(e™) +0((e)®), (9)
i=4
for
Di = Di(CQ,C?), ...66,07),4 < 1 < 7.
Using, (9) the Taylor’s expansion of function P about zero matrix is given by:

1
Py = P(0)+ P'(0)cee®™ + (2P'(0)cs — 3P'(0)c2 + §P"(O)cg)(e(t))2
7
+Y Ei(e) +0((e")®),
=3
where,
E; = Ei(ca,cs,...c6,c7, P(0), P'(0), P"(0), P"(0), P™(0), P’(0), P(0), P"(0)),
3<i< .

Consequently, the second substep
20 =o® — P(hG (s ~1G (D),
becomes,

20 = (¢ — P(0)cg)(e™)? + (2¢3 — 2¢2 — 2P(0)cs + 4P(0)c3 — P'(0)c3)(e®)?

1
+(14P(0)cac3 — 4P'(0)cacz + TP'(0)c3 — 3P(0)cq — 13P(0)c3 — §P’/(O)c§’

7
+3ca — Teges + 4c3) () + > 7 Hi(eW)' + O((e)?), (10)
1=5
where,
H; = Hi(c27 €3, ...C7, C8, P(0)7 P/(O)a P//(O)a P”/(O)a Pw(o)v Pv(O)a Pm(o))a

5<1<8.
The conditions on P and its derivatives are chosen as:
P(0)=1,P'(0) =2,
that transforms (10) to fourth order expression as:
7
1 .
20 = (—¢pe3 + 53 — iP”(O)cg’)(e(t))"‘ + ) Ji(eM) + 0((eM)?).
i=5
where

Ji = Ji(c2, 3, ...ct, cg, P"(0), P (0), P™(0), P°(0), P"(0)),5 < i < 8.
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As
G(=") = G(Y) [0 -
By expanding Taylor’s series of the function G(z*)), we also get the following expression

8
1 A
G(=0) = G'(V)((—eaes + 56} — SP"(O)ed) () + 3 Ji(e) + O((e®)?)),
i=5
We obtain following expression of the operator [v(t), 2, G]
6
®,20:G] = G' ()T + 3(e)? + (2c2c5 — 2¢3) (™) + Y~ M;(e™)' + O((e)7)),
i=4

where
Mi = Mi(62a037 "'C6a677P”(O)’P,,/(O)’P(4)(0))a3 < { < 6.

, -1
Applying Taylor’s series to ult) = I — (G (s(t))> [v®, 2®): GP (h(t)) , we get

ul®) = (- C3+502—*P” +ZM O((e™)7).

Then, we apply Taylor’s series expansion to R(h(! )), K(h® and Q(u(t ) as follows
R(Y) = R(0)+ R'(0)czel” + (2c3R'(0) — 3c3R'(0) + CQRH( ))(e®))?

7

+> Ny + O((eM)?), (11)
=3
where,
N; = Nilea,cs,...ce, cr, R(0), R"(0), R”(0), R¥(0)), R® (0), R©)(0),
R7(0),3<i<T.
and

1
K(h® = K(0) + K'(0)cae® + (2¢3K7(0) — 3¢2K'(0) + 50%K"(0))(e(t))2

7
+> Ui(e™) + 0((e)?), (12)
=3
where,
U; = Ui(ca, cs, ...ce, c7, K'(0), K"(0), K" (0), K®)(0),
K®)(0), K©(0),K(0)),3<i<T.
Also

Q(u(t)) = Q(0) + Q' (0)(—c3 + 5c3 — %P”(O)cg)(e(t))2 + Q' (0)(—2¢4 4 20coc3 — 26¢3

6
—2P"(0)cacs + 4P"(0)c] — P"(0)c3) ()’ + Y Ti(e)' + O((e)),  (13)
=4
where
Ti = Tilescs,..c0,07,Q'(0),Q"(0),Q"(0), P'(0), P""(0), P(0), P”)(0)
,PO)(0)),4 <i<6.
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Consequently, in the last step

D) () (R (h(t)> 4 K(h(t)> 0 (u(t)) (G' (5(”))71 o (z(t)) : (14)

by using (11), (12), (13) in (14), we obtain
s = (ege3 — 563 + %P”(O)cg)(—f + R(0) + K(0)Q(0))(e™)* + (2R(0)cacs — 2cac4
—2¢3 + 32¢3¢3 — 36¢5 — 3P"(0)c3c3 + 5P (0)ch — ép’”(mcg + R'(0)c3c3 — 5R'(0)ch
—34R(0)c3c3 — 6R(0)P"(0)c5 + %R(O)P’”(o)cgJL +46K(0)Q(0)c3 + 2K (0)Q(0)c3
+4c¢3Q(0)c3 + 2¢5Q(0) P (0) + %R’(O)cglp”(o) + 3R(0)P"(0)c3c3 + 2K (0)Q(0)cacy

—34K(0)Q(0)csca — 6K (0)Q(0)P"(0)cy + éK(O)Q(O)P“’(O)cé + 46R(0)c5 + 2R(0)c3

8
—203Q(0) + 3K (0)Q(0) P"(0)c3e3) (e™)® + >~ Wi(el)' + O((e™)?), (15)
i=5
where,

Wi = Wi(CQ, c3,...C6,C7,C8, K(O), K/(O), K”(O), KH/(O) sz( ), R(O)
R'(0), R"(0), R"(0), P"(0), P"(0), P™(0), P*(0),Q(0), Q'(0),Q"(0)),5 < i <
Applying ‘
P"(0) =0,P"(0) =0,|P"(0)| < o,

and

R(0) = I,R(0)=2,R"(0)=2,R"(0)=-24,|R"(0)| < o,

K() = I,K'(0)=4,|K"(0)| < o,

Q(0) = 0,Q'(0) =1,]Q"(0)] < oo,
n (15), we finally have

st — —op (s + 5¢3)(—1080¢3 — P™(0)cs + R™(0)cs + 60K"(0)c3 + 300Q" (0)cs
+456¢3¢2 — 120Q" (0)e3c2 — 12K (0)esc — 24cocy + 12Q"(0)c2 — 24¢2) (e®)®
+O((e™)?).

0

This error analysis exhibits that the given scheme (1) has attained the eighth-order of
convergence.

Remark: It can be observed that the scheme (1) attains eighth-order convergence with
four evaluations of G and its derivatives. So, it is optimal in the sense of Kung-Traub
conjecture [10] from a univariate point of view and efficient from a multivariate point of
view. Next, we present a few particular cases of our new scheme (1) as:
Case 1: If we consider the weight functions P(h(®), R(h®), K(h®) and Q(u®) in the
following forms:

P(h®) = ag + a1 + ag(hM))?,

R(hY) = by 4 bih') + by (h)? + by(h V)3,
K(h®) = ¢y + e1h® + co(h®)?,
QM) = do + diu® + dy(u®)?,
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with
ag :I,a1 = 2,(12 = 0,
bo=1,bp =2,bg=1,b3=—4,
Co = I,Cl = 4,02 = C2,
do=0,d; =1,dy = da,
then we have an eighth-order scheme specified as F'S; by taking co = —2 and dy = 4,
which is given below:

W0 = O (& (3<t>>)—1G (3<t>) 7

20 = ) (I + 2h(t)> (G' (s(t))>71 G (v(t)> ,

st = 0 (I + 200 4 (B2 — 4(h® )3) + (I +4pr® — 2(h<t>)2)
1
(

(u® +a®2) (¢ (s7)) & ().

Case 2: If the weight functions P(h"), R(h®), K(h®")) and Q(u(") are of the following
forms:
P(hM) = ag + a1h® + ay(h®)?,
R(hD) = by 4 by h') + by (h)? + by (R V)3,
K(hW) = (I + (b)Y + ¢;p D),
Qu®) = do + diu® + dy(u)?,
along with
ag=1,a1 =2,a9 =0,
bop=1,by =2,by =1,b3 =—41I,
C1 = 4) C2 = C2,
do =0,dy =1,dy = do,
then co = —I and dy = 4, we obtain the following eighth-order scheme namely F'S;

W0 = O (& <3<t>>)—1g (SW) 7

A0 = 0 (I+2h<f>) (¢ (s(t)))ilG(v(t)),

st = 0 (I +2h0 4 (B2 — 4(h(t))3> (1 - (h(t>)2) - (I + 4h(t)>

+
(1407 () "6 ()

Case 3: If the weight functions P(h®), R(h®) K(h®) and Q(u®) are of the following
forms:
P(hY) = ag + a1h® + ag(h®)?,
R(hW) = (bo + b1h® + by(hD)?) 7L,
K(hW) = (I + (b)Y + ¢;p D),
and
Q(u®) = do + diu® + dy(u?)?,
with
ag=1,a1 =2,a9 =0,
bo=1,b1 = —2,by =3,
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Cl1 = 4, Cy = C2,
dy =0,dy = I,dy = dy,
then for co = —1I and dy = 4, we have the following eighth-order scheme named as F'S3

RO s@—(a'(( )) - ((t))
= ) e ) o)
?)

S =20 (12O 1 3OP) T 4 (1 (h0)?)

(1 4n2) (u + 4)7) (6 (¢ )) ¢ (=)

3. COMPUTATIONAL COST

In order to find the computational efficiency index (CEI) of the new multistep iterative
methods for solving nonlinear systems, we use the order of convergence (OC), number of
iterations (IT), number of function evaluations (FE), total numbers of Jacobian matrix
evaluations (JME), total number of steps of the iterative method (NOS), number of LU-
factors (LU.F) and total number of linear operations evaluations (LOE) to utilize the
criteria given in [2] as follows:

oC
ORI = IT+LUF+LOE+FE+JME + NOS (16)

In table 1, the computational efficiency indices of our methods are compared with the
eighth-order method presented by Cordero et al. [6] named as AC is given as:

Table 1: Computational Efficiency Index

Methods | OC | IT | NOS | JME | FE CEI
8
AC | 8 [ 3] 3 2 |3 | &bt
8
FS 8 3] 3 1|3 | &owraeitn

The number of functional evaluations and its derivatives are taken as n and n? respectively,
as in [5]. The %ng +mn? — %n products-quotient is essentially used in the solution of LU
decomposition of m linear systems with the same coefficient matrix. From Table 1, we
see that the underlying cost analysing parameters seem to be equivalent, but the impact
of having one less Jacobian matrix evaluation is considerable which further results into
greater efficiency of our new scheme.

nvs CE

0.25 1 Fs
AC

FicUre 1. Computational Efficiency Index
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4. NUMERICAL AND DYNAMICAL ANALYSIS

Next, we compare the results of our schemes F'Sy, F'Sy and F'S3 by considering some
problems from different engineering fields and fluid mechanics with respect to the number
of iterations ¢, absolute residual error of the function HG (s(t)) H and absolute error in two

successive iterations Hs(t)— 1) H and computational order of convergence [20] expressed

<H (s “(;”)H)
as 0 ~ M Our methods are compared with the non-optimal eighth-order
(H &=t 1))H>

method presented by Cordero et al. [6]. The numerical results are given in Tables 2-4.
Example 1: In order to relate the temperatures and pressures on either side of a deto-
nation wave that is traveling into an area of unburned gas, the following equations can be
used (see[7], p. 331):

2
t
azmaty <p2> D241 = o
mite  \p1 D1
Ahpp  ta 1 ((042 —1)my (]?2 B 1) <1+ m1t2p1)> _ 0
cp2t1 209y D1 maotipo .

Here t; = absolute temperature, p; = absolute pressure, ay = ratio of specific heat at
constant pressure to that at constant volume, m = mean molecular weight, Ah,; = heat
of reaction, cpo = specific heat and the subscripts 1 and 2 refer to the unburned and
burned gas, respectively. Also m; = 12 g/g mol, my = 18 g/g mol, t; = 300 K, ae,= 1.31,
Ahyp = —58,300 cal/g mol , ¢pz = 9.86 cal/( g mol.K) and p; = 1 atm. The roots of this
system are:

(5380.016949, 0.44217461)", (9071.7439017, 35.11000478)"

So, the initial guess is taken as (2, 2)".

Table 2: Numerical performance for chemical engineering problem
®)

Cases t | s"—stD|_ |G (sY) ] 5
FS. 1 1.07718¢(3)  9.50226¢(3)

9 1.43607e(4)  4.40190e(3)

3 2.57443e(4) 4.76972¢(1)  5.88038
FSy 1  9.73545¢(3)  6.54039(1)

2 6.64765¢(2)  2.49181e(—2)

3 9.49266e(—1) 3.19759¢(—19) 4.94040
FS; 1 0.71278¢(3)  6.40349¢(1)

2 6.41061e(2)  5.37881e(—2)

3 1.97681 1.21939¢(—18) 5.41157
AC 1 8.70827¢(2)  L.11675¢(d)

2 1.26913¢(4)  4.24165¢(3)

3 243446e(4)  7.33656e(1)  4.19113

According to Table 2, our methods F'Ss and F'S3 perform better than the others. It
displays faster convergence towards the root within three iterations, while others do not.
Example 2: Consider a problem taken from [9] where we need to figure out the steady-
state levels of naphthalene in the liver and lungs. A 2 x 2 system of equations is obtained.
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The roots of this system are:
(—9.486,280.417)" , (287.127,361.311)", (—0.173, —2.104)!, (—84.923, —2.105)".
The initial guess is taken as:

50 — (5(0)

lung’

Si,) = (1,1)"

Table 3: Numerical performance of iterative methods for bio-engineering problem

Cases t || S(t)—S(t_l)Hoo |G (S(t)) oo J

FS; 1  4.08920e(2)  4.38565¢(1)

2 1.22792¢(2)  5.63819¢(—11)

3 1.53816¢(—10) 2.53643¢(—87) 8.27077
FS, 1  5.03477e(2)  7.75805¢(1)

2 2.17349¢(2)  1.09930e(—9)

3 2.99873e(—9) 1.07113e(—79) 8.11267
FSs 1  4.93644e(2)  7.40695¢(1)

2 2.07516e(2)  8.84226¢(—10)

3 2.41205¢(—9) 2.94566¢(—80) 8.28314
AC 1 294996e(2)  8.74069¢(1)

2 2.33203¢(2)  8.39016¢(—4)

3 2.28793e(—3) 1.01261e(—49) 9.15113

It is displayed in Table 3 that our method F'S; performs better than the other methods.
It shows faster convergence of FS1, 'Sy and F'S3 than the AC method towards the root
using three iterations.
Example 3: Consider a model based on atmospheric fluid dynamics to study intensity of
atmospheric fluid motion given by Lorenz [16].The desired root for this system is,

(1.7320508075, 1.73205080, 1)".

where we take the initial guess as s(9) = (5,5,2)".

Table 4: Numerical performance of iterative methods for fluid dynamics problem

Cases t || sV—sCD| |G (sD) ] 5
FS, 1 3.26497 6.45504¢(—3)

2 3.72042¢(—3)  4.85933¢(—15)

3 3.27123¢(—15) 3.34367(—75) 7.43709
FSy 1 3.25219 2.81378¢(—2)

2 1.57497e(—2) 4.87885e(—13)

3 1.29975e(—13) 4.97629¢(—66) 7.34054
FS; 1 3.24560 3.78798¢(—2)

2 2.23407¢(—2) 3.11267¢(—12)

3 1.12468¢(—12) 3.80729¢(—62) 7.32875
AC 1 3.18700 1.74916e(—1)

2 8.09451e(—2)  1.69780e(—10)

3 9.80229¢(—11) 3.54417e(—63) 8.06400
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In Table 4, we can see that our method F'S] performs better than the other methods.
It shows that our methods F'S; and FSs converge more quickly than the AC method
towards the root using three iterations.

In conclusion, it is evident from Tables 2-4 that approximation solutions obtained from
our methods possess greater or equal accuracy than the existing method. So, in that
sense, our method is robust and computationally efficient, as its computational efficiency
is greater than the existing method. Using just four functions makes it valuable.
Furthermore, we examine the dynamics of the new methods based on the graphical tool
known as the attraction basins. In 2D space, the attraction basin is a region where it-
erations will always be iterated towards the attractor without choosing an initial guess.
Vrscay and Gilbert [21] were the first to present this concept. The dynamical character-
istics of FS’s behavior are illustrated using the vector-valued function with visual basins
of attraction and their related iteration colouring. The point is coloured according to the
roots to which it converge. This enables us to determine whether the method converges
within the given number of iterations. Each figure is accompanied by a colour map that
indicates how many iterations it takes for the convergence to take place. The listed test
problems, which are systems of polynomials in two variables, are taken into consideration.
Example 4: Let us take the following system of equations:

2 3
35752 —s5 = 0,

—1+4 5% —3s155 = 0,

with solutions

Example 5:The following system of equations is taken into consideration:

3
1 — S22 =1,

55— 51 =0,
with solutions
(—1,-1)",(0,0)", (1,1)".

Graphs are created with || G(s)(t))HOo < 1073 and t = 10, where t is the maximum number
of iterations selected. Under the suggested iterative approach FS, the attraction basins
will exhibit distinct dynamical traits.
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FIGURE 2. Attraction Basins of Example 1

We choose a rectangular region [—2,2] x [—2,2] (fig. 2) under discretized into 200 by
200 grid points to fulfill the purpose. The black colour shows a divergence region, or when
methods fail to converge within the maximum number of iterations. Here, FSo and FSs
have a larger convergence region than FS;, while AC does not converge to the required

roots.
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FIGURE 3. Attraction Basins of Example 2
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(D) AC

FIGURE 4. Attraction Basins of Example 4

FIGURE 5. Attraction Basins of Example 5

Let us take a rectangular region [—8,8] x [—8, 8] (fig. 3) under discretized into 200 by
200 grid points, taking into consideration all sets of roots. The black colour represents that
methods converge to their desired roots using fewer iterations. Here, FS1, FSo and FS3
use a smaller number of iterations than the AC method. We choose a rectangular region
[—2,2] x [-2,2] (fig. 4) under discretized into 200 by 200 grid points to fulfill the purpose.
The black colour indicates the divergence region, or when methods fail to converge within
the prescribed number of iterations. Here, AC' method has a larger convergence region
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than the FS;, FSe and FS3. Next we take a rectangular region [—2,2] x [—2,2] (fig. 5)
under discretized into 200 by 200 grid points. The black colour is due to the divergence
region, or when methods fail to converge within the maximum number of iterations. Here,
all methods have approximately the same region of convergence.

In the above examples, we can easily see that our methods have larger convergence zones
and quick convergence towards the roots.

5. CONCLUSION

We developed a new competitive eighth-order scheme for solving nonlinear systems
of equations using weight functions. The proposed method’s accuracy and reliability is
adequate in terms of iteration counts, the number of function evaluations, and absolute
error. We compare the numerical examples from the fields of chemical engineering, bio-
engineering and fluid dynamics problems of our schemes with the existing non-optimal
eighth-order iterative scheme [6] to show the overall performance and efficiency.
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