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ON VARIOUS ALGEBRAIC STRUCTURES IN MULTIDIMENSIONAL
FUZZY SETS

J. JOSEN!, S. J. JOHN?, B. THANKACHAN3*, §

ABSTRACT. One recent generalization of Zadeh’s fuzzy sets is the concept of multidimensional
fuzzy sets. This work extends this concept further by introducing a generalized form of multidi-
mensional fuzzy algebra. By focusing on multidimensional t-norms and t-conorms, we develop
a comprehensive theory. This includes the notion of strong multidimensional fuzzy algebras
and explores their properties, such as multidimensional groupoids, monoids, and groups. Addi-
tionally, we introduce equivalence relations on the collection of all multidimensional fuzzy sets
and present an example of specific monoids within this collection. Finally, we demonstrate how
a group structure can be imposed on a subcollection of orderless multidimensional fuzzy sets.

Keywords: Multidimensional fuzzy algebra, Multidimensional t-norm, Multidimensional t-
conorm, Strong multidimensional fuzzy algebra, Equivalence classes, Multidimensional groups,
Multidimensional fuzzy groupoid.

AMS Subject Classifications: 20N25, 08A72, 68T27

1. INTRODUCTION

The most essential strategy for describing events with uncertainty and ambiguity is the
development of fuzzy sets. Even though fuzzy sets are capable of handling many real-life
situations, they fail to present some complex situations that have fluctuating ambiguity and
vagueness. As a result, many mathematical fuzzy extension models have been suggested for
expressing diverse occurrences. Among these models, interval-valued fuzzy sets [29, 10], hesitant
fuzzy sets[28, 12], intuitionistic [2, 27] fuzzy sets, picture fuzzy sets [5], m-polar fuzzy sets [4] and
n-dimensional fuzzy sets [24] are a few notable mathematical models that aid in data ambiguity
resolution. They are used in a variety of industries, including medicine, engineering, finance,
and data analysis. Despite the fact that these mathematical models do not provide any option
to assign an adequate number of possible membership values to each element in order to avoid
ambiguity in assigning a single membership or nonmembership value, or that these models do
not provide a facility to mark the membership values of each element if the values are assigned
by groups with different numbers.
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The n-dimensional fuzzy sets and m-polar fuzzy sets [11] are interesting fuzzy models in which
the dimension of each set is specified as a positive integer, which specifies the maximum num-
ber of member values that an element can have. Nevertheless, in spite of this adaptability in
choosing dimensions, these models do not provide the flexibility to customize the measurements
of specific components in order to suit particular needs. This constraint emphasizes the im-
portance of fuzzy sets with multiple dimensions. A refined version of n-dimensional fuzzy sets,
Multidimensional Fuzzy Sets (MDFS) (Lima et al. [8]) allows elements to have different quanti-
ties of membership values without affecting others. For example, when an interviewer evaluates
the skills of candidates, the application of an MDFS permits nuanced assessments, as illustrated
by (0.30, 0.35, 0.55)/(0.30, 0.45, 0.50, 0.65)/(0.60, 0.65), which signifies the perceived level of
ambiguity. On the contrary, when 2-dimensional fuzzy sets are utilized to capture the assess-
ments, the interviewer’s evaluation is limited to specific values, such as (0.50,0.55), (0.45, 0.50),
and (0.55,0.60). The implementation of this restrictive representation may introduce bias into
the evaluation process as a consequence of the restricted number of members or cause data
inflation by imposing a greater dimension on the model. The n-dimensional fuzzy sets are an
extension of numerous existing structures, such as interval-valued fuzzy sets, and offer addi-
tional membership value options. However, it has several drawbacks, particularly when dealing
with real situations involving a variable number of characteristics with reference to members
of the universal set. In n-dimensional fuzzy sets, each element has membership value from the
set J,([0,1]) which is a subset of [0, 1]™ with coordinates arranged in ascending order.[24]. In
this mathematical framework, each element receives the same number of membership values
regardless of the ambiguity that exists in each element. However, this is not the case in real
life because each element in the universe has its own properties and ambiguity. This problem
motivated mathematicians to introduce the concept of multidimensional fuzzy sets [19] with a
structure in which each element may have a varied number of membership values. In the case
of MDF'S, depending on the level of uncertainty associated with each element, varying numbers
of values in the range [0, 1] may be given to individual elements. As a result, MDFS offers a
great deal of flexibility in terms of the quantity of values provided to each element based on
demand.

Annaxsuel and Palmeira introduced and discussed the notion of MDF'S [19] with the support
of a partially ordered set J ([0, 1]). Unlike n-dimensional, where the dimension of membership
values is fixed, MDFS allows us to provide any number of membership values based on the
degree of ambiguity in each element on its own. As a result, we no longer need to limit our
comprehension of the components. MDFS gives a solid foundation for addressing mathematical
difficulties in a more practical approach. When compared to other types of generalized fuzzy
structures, such as type-2 fuzzy sets, [18, 3|, genuine sets [21, 7], and so on, MDFS is more
efficient in dealing with practical problems due to its simplicity and the freedom it gives to
each element independent of other elements. More studies on MDFS such as Multidimensional
complements, multidimensional t-norms, multidimensional t-conorms, etc. are made by [13].
Important results such as De Morgan’s law and the bounds of norms can also be seen in the
same. The study of various fuzzy measures in MDFS can be seen in [14]. Multidimensional
entropy, multidimensional similarity measures, and multidimensional distance measures are all
presented in the same paper, along with some key examples and findings. Studies regarding
the graphical structure of multidimensional fuzzy sets can be seen in [17, 16]. In [15], a rough
approximation of multidimensional fuzzy sets is shown utilizing distance measures and other
aggregation operators that are important in application fields.

Rosenfeld developed the idea of fuzzy groups, which has a close relation with ordinary group
theories [23]. In [6] Das et al. studied the fuzzy groups and their level subgroups. In [25] we can
see the algebraic structure of intuitionistic fuzzy sets and their various properties. Divakaran et
al. studied hesitant fuzzy group properties in [8]. In [1] Agboola et al. studied the neutrosophic
fuzzy groups and discussed their applications. The algebraic properties of spherical fuzzy sets
were studied by Perveen et al in 2023 [22]. Recently in 2023, Dogra et al studied the algebraic
properties of the picture fuzzy sets [9]. More studies about fuzzy algebra can be seen in [20,
26]. Because multidimensional fuzzy sets play a vital role in dealing with problems that have
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complications due to vagueness, the notions of fuzzy group structure and group structure must
be introduced to it. In this study, we examine multidimensional fuzzy algebraic characteristics
using multidimensional norms to get highly broad findings. Following the preliminaries in
Section 2, we introduce multidimensional fuzzy algebraic structures in Section 3 as extensions
of groupoids, monoids, and groups of conventional fuzzy algebra. In Section 4, we will establish
some equivalence relations on the collection of all multidimensional fuzzy sets and use them
to construct certain monoids. Finally, in Section 5, we will construct a binary operation on a
sub-collection of orderless multidimensional fuzzy sets, convert it to a group, and analyze some
of the binary operation’s features.

2. PRELIMINARIES

2.1. Multidimensional fuzzy sets. Before proceeding to the notion of a multidimensional
fuzzy set, it is crucial to establish fundamental terminology and notations. This segment serves
to establish coherence and clarity in subsequent discourse.

Definition 2.1. [19]
Let Jn([0,1]) = { (21, -+, 20) € [0, 1" | 21 < 29 < -+ < 2, } where n € N and let

T ([0:1]) = | Tu([0, 1)

Then a multidimensional fuzzy set on a crisp set U is defined as a function v : U — joo([O, 1])

Let X € Jx([0,1]) then |X| denote the n € N such that X € 7, ([0, 1]) called cardinality of X
and for a multidimensional fuzzy set v on Z and for z € Z, v;(z) denote i component of v(z).
The benefit of MDFS over other fuzzy extensions, such m—polar fuzzy sets or n-dimensional
fuzzy sets, etc., is that, according to its definition, v(z) can have any cardinality regardless of
the cardinality of other elements, given that z € Z.

Let T = {/1/m,m € N},0 = {/0/m,m € N},where /k/ = (k,k...k) € J,([0,1]) , 1 and 0
denote arbitrary element of 1 and 0 respectively.

We use a natural partial order on J([0,1]) given by,

X <o Y& |X] =Y =nand X <}, Y where <} is the product order on 7,([0,1]), n € N.
Also, if M; and My are two MDFS we say that M; C My if M;(y) <o Ma(y) for every y.

2.2. Operators in Multidimensional Fuzzy Sets. After a strong framework for storing
and presenting data has been established, the next critical step is to incorporate aggregation
operators that can link disparate data structures in order to facilitate exhaustive analysis. The
t —norms and t — conorms for multidimensional fuzzy sets were introduced using the following
two important functions H; and Hs [13].

H,y 3.700([0, 1]) X joo([()? 1]) — N by

|X‘ if A eN:x; =y

foralli=1,2..1 —1 and z; < y;.
Hi(X,Y)=<|Y]|if Il eN:z; =y

foralli=1,2...1 — 1 and x; > y;.
min{|X|,|V|} if there is no such | exists.

Hj : J([0,1]) X Jx(]0,1]) — N be defined by
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X if A eN: T 15 = Ymg1-
foralli=1,2..1-1

and Tp41-1 > Ym+1-1-

Hy(X,Y) =11V if A €N 21§ = Ymy1-i for
alli=1,2...1—1

and Tpt1—1 < Ym+1—1-

min{|X|,|V|} if there is no such | exists.

where X = (z1...2,) and Y = (y1 ... ym) n,m € N.

The functions H; and Hs help to find the cardinality of the vector that gives the minimum
and maximum membership values, respectively. Then Multidimensional t-norm and Multidi-
mensional t-conorm for MDFS are given, respectively, by;

Definition 2.2. Multidimensional t-norm is a function P : J5([0,1]) X J([0,1]) = Jx([0,1])
satisfying following axioms,

N1) [POV,Y)|=H:(W,D)

(N2) POV, Y)=PQ,W)

N3) IfY <o Z then P( W, D) <o PW, Z),
given [W| = V| = |Z]

(N4) POW, 1)=W,W¢T1\{i}

(N5) POW,P(Y, 2)) =P(PW,Y), 2),

whenever |W| = Y| = |Z|

where W, Y, Z € J([0,1]).

Definition 2.3. Multidimensional t-conorm is a function Q : T ([0, 1]) X T ([0, 1]) = T ([0, 1])
satisfying following axioms,

(C1) 1QW,Y)| = H(W,D)

(C2) QW,Y)=Q,W)

C3) If Y <o Z then QOV,Y) <oc QW 2),
given [W| = Y| = |Z]|

(C4) QW, 0)=W, W ¢0)\ {0}

(C5) QW,Q(, 2)) =Q(QW,Y), Z), whenever

W[ = Y| = |Z| where W, Y, Z € T ([0,1])

Then the standard Multidimensional t-norm and standard Multidimensional t-conorm for
MDFS are given respectively by;

If Hi(V,W) = k then
min(V, W) = (v1 Aw; ... v A wg)
where v; = w; =1 for all i > k and
if Hy(V, W) =1 then

ma:U(V, W) = (Un—(l—l) v Wm—(1-1)s+++>Un \ wm)a
where v,_; = wp,—; =0 for all t > n and j > m.

The standard multidimensional compliment is given by
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Cs(a17a27”' 7an):(1_an71_an—la”' ,1—(11) .

Definition 2.4. Let A;,i € I be an indezed family of multidimensional fuzzy sets of X. Then
this family is said to Equi cardinal family if |A;(z)| = [Aj(x)| for all x € X and for all i,j € I

Definition 2.5. Let U be a nonempty set and given r : U — N. Then an orderless multidi-
mensional fuzzy set over U is a set of the form

N ={ (v i), 13 ) 1y € U
where ph, : U — [0,1] for every i.

Note : Clearly, every multidimensional fuzzy set is an orderless multidimensional fuzzy set.

2.3. Fuzzy Algebra.

Definition 2.6. [23]|Let (G, ) be a groupoid(semigroup) then we recall a fuzzy set in G say g
a fuzzy subgroupoid of G if, for all x,y in G,

g(z xy) > min(g(x), 9(y))

A fuzzy groupid g is said to fuzzy subgroup if g satisfies g(z~') = g(x) for every x € G.
3. MULTIDIMENSIONAL FUZzy ALGEBRA

When we want to study various algebraic structures of MDFS, we need to choose MDFS
that give membership values with the same cardinality as the functions H; after the group
operation(or equivalently Hy).

Definition 3.1. Let (G, ) be a groupoid and let N be a MDFS on G then N said to coincides
with multidimensional t-norms with respect to * if

N (2 +y)| = Hi(N (2), N (1))

for every x,y € G. N said to coincides with multidimensional t-conorms with respect to *, if

IN(z *y)| = Ha(N(x), N (y)) for every z,y € G.

3.1. Multidimensional Fuzzy Groupoid and Strong Multidimensional Fuzzy Groupoid.
Groupid is the basic structure of algebra and next, we study the basic properties of multidi-
mensional fuzzy groupoids and strong multidimensional fuzzy groupoids.

Definition 3.2. Let I be a Multidimensional t-norm on G then an MDFS N on (G, x) which
coincides with multidimensional t-norms is said to be a Multidimensional fuzzy groupoid (MD-

FGP) with respect to I if [N (x), N (y)) <oo N(z *y) for every z,y € G.

Definition 3.3. Let U be a Multidimensional t-conorm on G then an MDFS N on (G, *)
which coincides with multidimensional t-conorms is said to be a Strong multidimensional fuzzy
groupoid (SMDFGP) with respect to U if UN (2),N(y)) <oo N(x xy) for every x,y € G.

Result 3.1. Let I be the standard Multidimensional t-norm and N be a MDFGP on G with
respect to 1 then for each o € Jx([0,1]) the set Ay = {x € G,a < N ()} is a groupoid.

Proof. The proof follows directly from the definition of MDFGP with respect to Standard
Multidimensional t-norm and the fact that if @ <oc X and o < Y then a <., min(X,Y). O

But A, need not to be a groupoid always. For example, if we take the drastic min operator
[13] then the corresponding A, is not a groupoid for many MDFGP. But this is not the case
with Strong Multidimensional fuzzy groupoids. In that case, we have the following theorem,
and this is one of the reasons why the strong multidimensional fuzzy groupoids are called strong.
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Theorem 3.1. Let N' be an SMDFGP on G with respect to a Multidimensional t-conorm U
then Ay = {z € G,a <o N(2)} is a groupoid.

Proof. Let z,y € Ay then we have o <oo N(7) = UWN(2),0) <oo UN(2), N(y)) <oo N(z*7)
where 0 is from 0 with [0] = [N (y)|. Hence o <o N(z *y) and thus z xy € A,. O

Next, we define multidimensional characteristic functions to explore multidimensional alge-
braic structures more deeply.

Definition 3.4. Let S C G then a multidimensional characteristics function of S is an MDFS
Xs on G with xs(z) €1 forx € S and xs(z) €0 for x ¢ S

Theorem 3.2. Let G be a group and S C G then S is a groupoid if and only if xs is an
MDFGP (where xs is assumed to coincide with the multidimensional t-norm).

Proof. Let S be a groupoid and let z,y € S then I(xs(z), xs(¥)) <oo Xs(z *y) = 1. Now if at
least one of x,y is not in S then

0 =1I(xs(x),xs(¥)) <o Xxs(T *y)

Hence xg is an MDFGP. .
Now, conversely, assume that yg is an MDFGP, then for xz,y € S we have by (I4) 1 =
I(xs(z), xs(W)) <co Xs(z*y) = xs(z*y) =1 and hence z xy € S. Thus, S is a groupoid. O

Result 3.2. Let S C G and if xs is an SMDFGP then S is a groupoid, and the proof follows
similar to the above one. But the converse is not true. This can be seen when we use the drastic
mazx operator as the t-conorm [13].

The following theorem gives the case where yg becomes an SMDFGP.

Theorem 3.3. Let (R,+,%) be a ring and S C R be an ideal, then xs is an SMDFGP with
respect to the operation *.

Proof. Let at least one of z,y be in S then U(xs(z), xs(¥)) <oo Xs(z *y) = 1 and if both 2,y
is not in S then we have 0 = U(xs(x), xs(¥)) <co Xxs(z *y). Thus, xg is an SMDFGP. O

The following theorems give the relations corresponding to the infimum of the equi-cardinal
family of MDFGPs and SMDFGPs.

Theorem 3.4. Let N;,i € I be an equi-cardinal family of MDFGPs on G with respect to the
Multidimensional t-norm I then 111;]\/; s again an MDFGP on G.
1€
Proof. For x,y € G we have I(N;(z), N;(y)) <oo Ni(x xy) for every i. Hence
infI(Ni(x), Ni(y)) oo Ni(z +y) (1)

Now, 12?/\/}(;10) <o Ni(z) and 1r61§/\/;(y) <o Ni(y) for every i. Thus we have
I(inf Ni(x), inf Ni(y)) Soo I(N:(2), Ni(y))

for every i. Hence taking infimum we get

T(inf A5 (2), inf Ni(y) <oo inf I (2), A5 ()) e)

el
Hence, from (1) and (2) we get
]I(ln}"/\/;(x), 1n§/\fz(y)) <oo Ni(x x y) for every i.
(S US
Now taking infimum on the RHS, we get ]I(m;/\fz(x), 1n§/\fl(y)) <oo 1n§/\fz(x xy). Thus 1n§/\/1 is
i€ [IS (S 1S
an MDFGP. U
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Theorem 3.5. Let N;,i € I be a family of SMDFGPs on G with respect to the multidimensional
t-conorm U then 1n§/\/Z is again an SMDFGP on G.
1€

Proof. The proof follows similar to the above one. O

Theorem 3.6. Let S;,1 € I be a family of groupoids of a group G. Let x s, be a multidimensional
characteristic function of S; then inf xs, and x s, both are multidimensional characteristic

el
functions of () S;
iel
Proof. Let z € (] S; = xs,(z) € 1 for every i and hence inf xg,(z) € 1. Now if z ¢ () S; =
i€l i€l
xs; (z) € 0 for some i and hence inf xg,(z) € 0. Thus inf x5, is multidimensional characteristic

functions of (] S; and the result follows.
el
(]

3.2. Multidimensional Fuzzy Monoids and Strong Multidimensional Fuzzy Monoids.
In this section, the study focuses on multidimensional fuzzy monoids, which are the gener-
alization of algebraic structure monoids and clearly an extension of multidimensional fuzzy
groupoids.

Definition 3.5. Let G be groupoid with identity e and 1 be a multidimensional t-norm on G then
an MDFS N on G is said to be a Multidimensional Fuzzy Monoid (MDFM) with respect to 1 if
N is an MDFGP with respect to I and satisfies N'(z) <o N (e) for every x with |IN'(z)| = |N(e)

Definition 3.6. Let G be groupoid with identity e and U be a multidimensional t-conorm on G
then an MDFS N on G is said to be a Strong Multidimensional Fuzzy Monoid (SMDFM) with
respect to U if N is an SMDFGP with respect to U and satisfies N'(x) <o N(e) for every x
with |N(x)| = |N(e)|

Theorem 3.7. Let N' be an MDFM on (G,*) and let A = {x € G : N(z) < N(e)} and
B={z€G:N(z)=N(e)} then A is always a monoid, and if the respective multidimensional
t-norm I is idempotent, then B is also a monoid.

Proof. First, we prove that A is monoid. Let z,y € A then |N(z xy)| = Hi(N(z),N(y)) =
IN(z)] = IN(y)| = IN(e)|. Hence N(z xy) <o N(e) =z xy € A. Since, e € A, we have A as
a monoid.

Now consider the second part. Let z,y € B then, as above, we have

N(z#y) <oo Ne) (3)

Now,
N(e) =T(N(e), N(e)) = TN (x), N(y)) Soo N(z *y) (4)
Thus from (3) and (4) we have N(z *y) = N(e) and hence = xy € B. Since e € B, we have B
as a monoid. O

The next theorem gives another reason why the strong multidimensional fuzzy monoids are
called strong.

Theorem 3.8. Let N be an SMDFM on (G,x) and let A = {x € G : N(z) < N(e)},
Ay ={x € G: a < N(2)} where a <o N(e) and B ={xz € G : N(x) = N(e)} then A, A,
and B are always monoids, irrespective of whether the corresponding multidimensional t-conorm
U is idempotent or not.
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Proof. The proof that A and A, are monoids follows similarly to the above proof. Now, clearly,
e € B and for z,y € B we have [N (xz xy)| = Ha(z,y) = [N (z)| = IN(y)| = [N (e)|. Hence

N(z +y) <o Ne) (5)
Now,
Nle ) U(N(e),0) <o UN(e), N (e))
UV (2),N(y)) <oo N(z %) (6)
where | N (e)| = |0| and hence from (5) and (6) we have N'(z *y) = N(e) and thus = xy € B.
Thus, B is a monoid. O

The theorem gives the characterization of MDFM using the characteristics function.

Theorem 3.9. Let (G,*) be a group and S C G then S is a monoid if and only if the cor-
responding multidimensional characteristic function xs which coincides with multidimensional
t-norms is an MDFM/(Given there is at least one x € S with |xs(z)| = |xs(e)]).

Proof. Since every monoid is a groupoid, if S C G is a monoid then we have yg as an MDFGP
by a previous theorem. Now let = € G and |ys(7)| = |xs(e)| then xs(z) <o 1 = xs(e). Hence
xs is an MDFM.

Now, conversely assume that xyg is an MDFM then clearly S is a groupoid. Since there exist
x € S with |xs(z)| = |xs(e)| we have 1 = xs(z) <o xs(e). Hence xs(e) =1 and thus e € S.
So S is a monoid. (]

The following theorem gives a characterization of ideals,

Theorem 3.10. Let (R, +,*) be a ring and S C R be a subring. Let xs be the multidimensional
characteristic function of S which coincides with multidimensional t-conorms. Then S is an
ideal if and only if xs is an SMDFM.

Proof. If S is ideal then by Theqrem (3.3) we have xs as an SMDFGP. Now if x € R and
Ixs(z)| = |xs(e)| then ys(z) <oo 1 = xs(e). Thus ys is an SMDFM.

Now, conversely assume that xg is an SMDFM with respect to U. Let z € S and y € R then
1 =1U(,0) <o U(xs(z), xs(¥)) <o xs(z *y). Hence z xy € S and S is an ideal.

O

Theorem 3.11. Let N;,i € I be a collection of equicardinal MDFMs corresponding to a mul-

tidimensional t-norm 1 then inf N; is again an MDFM with respect to 1.
iel

Proof. We have already proved that 1n§/\/'l is an MDFGP.
1€
Now, if |1nf/\f(:v)| = |ian~(e)| then |N;(z)| = |Ni(e)| for every i as {N;} is equicardinal.
icl
Hence, N;(z) <oo Ni(e) for every i. Thus 1an( ) <oo 1an( ). Hence, 111;-/\/’1 is an MDFM.
(1S
(]

Theorem 3.12. Let N;,i € I be a collection of equicardinal SMDFMs corresponding to a
multidimensional t-conorm U then in§ N; is again an SMDFM with respect to U.
1€

Proof. The proof follows similar to the above one. O

Theorem 3.13. Let N be an SMDFM, then for any x € G the sequence N (z™),n = 1,2,3...
18 momnotonically increasing sequence.

Proof. We have N (z) <oo UWN(2),N(2)) <oo N(2?). (Sinceif |V| = |W|then V <, U(V,W)).

)
Similarly, NV (%) <o UW(2),N(2?)) <oo N(z?). (Since, N(z) <o N(2?) = |N(z)| =
INV(2?)]). Continuing like this we have {N(2")} is monotonically increasing. O
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Theorem 3.14. Let N be an MDFM, with an idempotent multidimensional t-norm then for
any r € G the sequence {N(xkn)},n = 1,2,3... is monotonically increasing for every positive
integer k.

Proof. The proof follows directly.

O

3.3. Multidimensional Fuzzy Groups and Strong Multidimensional Fuzzy Groups.
Next, we study the group structure of multidimensional fuzzy sets

Definition 3.7. Let G be a group and N be an MDFM on G. Then N is said to be a Multidi-
mensional Fuzzy Group (MDFG) if it satisfies N'(z) = N'(z~1) for every x € G.

Definition 3.8. Let G be a group and N be an SMDFM on G. Then N is said to be a Strong
Multidimensional Fuzzy Group (SMDFG) if it satisfies N'(z) = N'(z~Y) for every x € G.

Theorem 3.15. Let G, * be a group and S C G and let x5 be the multidimensional characteristic
function of S which coincides with multidimensional t-norms then S is a subgroup if and only
if xs is an MDFG.

Proof. We have x € S if and only if 27! € S and xs(z) = xs(z7!) are equivalent conditions.
Now xg is an MDFM if and only if S is a monoid. Using these two results the proof follows
directly. ([

Theorem 3.16. Let (R,+,%) be a field and S C R be a subfield. Let xs denote the multidi-
mensional characteristic function of S which coincides with multidimensional t-conorms. Then

xs s an SMDFG if and only if S = R.

Proof. If S = R then yg(z) = 1 for every z and the result follows directly. Conversely assume
that xg is SMDFG. If possible assume that S # R then there is at least one x € R which is
not in S. Thus we have, for 0 # y € S, v+ y ¢ S (Otherwise z = (z * y) xy~! € S). Hence
xs(z*y) = 0 but U(xs(z), xs(y)) = U(0,1) = 1 which implies xg is not an SMDFG and hence
a contradiction. Thus we have S = R.

O

Theorem 3.17. Let Mo be an MDFG on (G,%) and let A = {zx € G : Mo(2) <oo Moo(e)}
and B ={z € G : M (x) = Mx(e)} then A is always a subgroup of G, and if the respective
multidimensional t-norm 1 is idempotent, then B is also a subgroup. Let Mc be an SMDFG
on (G,*) and let A = {x € G : Mc(x) <oo Mc(e)}, Aq = {2 € G : a < Mc(z)} where
a <o Mc(e) and B={zx € G: Mc(z) = Mc(e)} then A, A, and B are always subgroups.

Proof. The proof is similar to that of MDFM and SMDFM. U
Theorem 3.18. If [N(z)| = |N(y)| and N is an SMDFG then N (z) = N (y)

r_];;’loof. If |N(x)| = [N (y)| then we have [N (y~1)| = Ha(z,y) = |N(z xy)|.
N(y) <o N(y™") <o UN (25 y), N (y ™)

<o N xyxy ') =N(z) (7)

Similarly, we have
N(z) <o N(y) (8)
Hence we have N'(z) = N (y) O

Theorem 3.19. Let N be an SMDFG, then for any x € G the sequence {N(z")},n=1,2,3...
is a constant sequence.
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Proof. We have already proved that the above sequence is monotonically increasing. Now
N(2") <o N(z") = |N(2")| = |N(2"T1)|. Then, by the previous theorem, {N(z™)} is
(]

constant.
Corollary 3.1. If G is a cyclic group then any SMDFG N on G is a constant function.

Next, the theorem gives a relation between the multidimensional fuzzy group and the normal
subgroup generated by it.

Theorem 3.20. Let M be an MDFG over G and N = {y € G : M(zxy*xz~!) = M(y),Vr € G}
and let M(x xy) = I(M(x), M(y)) for every x,y € N. Then N is a normal subgroup of G.

Proof. Clearly, e € N. Now let 41,72 € N then for any x € G we have M(z * (y1 *y2) * 271) =
M ((zrypxz= s (zryoxar™1)) = (M (zry1xa L), M(x*yexz 1)) since (vxyxz 1), (wxyo*xx™1) €
N. Now we have,

I(M(z sy *x ), M(z xyg xz71))
= I(M(y1), M(y2)) = M(y1 * y2)) 9

~—

Thus we have y; *yo € N.
Now if y € N then for x € G

MEsytxr )= M(zxy sz
=M(@ryxa~")=My) =My ) (10)

Hence, y~' € N.
Finally, let x,2 € G and y € N then

Mz (zsyxz ) x2z7l) = M((z% %)y * (z x z%) 1)
=M(y) =Mz xyxz ) (11)

Thus = * y *x2~' € N. Hence, N is a normal subgroup.

O

3.4. Multidimensional Fuzzy Homomorphism and Isomorphism. In this section, we de-
fine homomorphic and isomorphic multidimensional fuzzy structures and study their relations
with ordinary morphisms.

Theorem 3.21. Let (G, *) and (H, ') be two groups and N be an MDFG on H with respect to
a multidimensional t-norm 1 and ¢ : G — H be a homomorphism. Then the MDFS M defined
on G by M =N o ¢ is an MDFG on G with respect to 1.

Proof. Let x,y € G then
I(M(x), M(y)) = LN (6(x)), N (6(y)))
oo N((¢(2)) ' (6(y))) = N 0 ¢ xy) = M( * y) (12)
|

HNI?IW, if |IM(x)] = |M(e)| then |N(d(x))] = [N(¢p(e))| = IN(¢')| where ¢ is the identity in
M(z) = N((x)) oo N(€) = N((e)) = M(e) (13)

Now, for x € G we have
M(z™h) = N(g(x™h)) = N((6(2)) 1) = N(6()) = M(z) (14)

Corollary 3.2. Let (G, *) and (H,* ) be two groups, and N and M are defined as above. Then
if N is an MDFGP(MDFM) then so is M
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Theorem 3.22. Let (G, ) and (H, ') be two groups and N be an SMDFG(SMDFGP/SMDFM)
on H with respect to a multidimensional t-conorm U and ¢ : G — H be a homomorphism. Then
the MDFS M defined on G by M = No¢ is an SMDFG(SMDFGP/SMDFM) on G with respect
to U.

Definition 3.9. Let (G,*) and (H,*') be two groups. Let M be an MDFG on G and N
be an MDFG on H respectively with respect to the same multidimensional t-norm. Then M
said to have a multidimensional fuzzy homomorphism with N in a subgroup of H, if there is
a homomorphism ¢ from G — H such that M = N o ¢. If there is an isomorphism ¢ from
G — H such that M = N o ¢ then we say that M and N are isomorphic.

Definition 3.10. An MDFG N on G is said to commutative if N'(z *y) = N (y*x) for every
z,y € G.

Theorem 3.23. Let N be commutative MDFG on H and N is an MDFG on G such that
M =N o ¢ then M is also commutative.

Proof. Let x,y € G. Then M(xzxy) = Nog(z+y) = N(((x)) = ((y))) = N((¢(y)) * (¢(x))) =
Nog(yxx) = M(yxx). Thus N is commutative. O

Definition 3.11. Let f : W — Y be a function and N be an MDFS on Y. Then the inverse
image of N under f is again an MDFS and is defined by f~ (N)(z) = N(f(x))

Theorem 3.24. Let (G, ) and (H,*') be two groups and ¢ : G — H be a homomorphism. Let
N be an MDFG on H with respect to a multidimensional t-norm I. Then ¢~*(N) is an MDFG
on G with respect 1.

Proof. Let x,y € G then

Finally, consider
¢ N (™) = No(x™h)) = N((é(2)) )
= N(g(x)) = ¢~ (N (2))
Thus ¢~ }(N) is an MDFG on G with respect I. O

Theorem 3.25. Let (G, ) and (H, ') be two groups and ¢ : G — H be a homomorphism. Let
N be an SMDFG on H with respect to a multidimensional t-conorm U. Then ¢~ (N) is an
SMDFG on G with respect to U.

4. SOME EQUIVALENCE RELATIONS ON THE COLLECTION OF ALL MDFS AND EXAMPLES
OF SOME MONOIDS AND GROUPS IN IT

Next, we define some equivalence relations on MDFS, and using these relations, we will con-
struct some monoids and groups later.

Definition 4.1. M denotes the collection of all MDFS on X. For M,N € M define a relation
~ by M ~ N if and only if elements in M(x) and N (x) are the same for every x € X. Then
the relation defined above is an equivalence relation. For N € M let [N] denote the equivalence
class containing N .

Definition 4.2. For M,N € M define a relation ~ by M~'N if and only if M and N are

equicardinal. Then, clearly, this relation is an equivalence relation. For M € M let [M]/ denote
the equivalence class containing M.
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Theorem 4.1. Let A, B € [N|N[N] then ANB,AUB € [N]N[N] where ANB and AU B

are with respect to standard min and max operators.

Proof. Let. A,B € [N] N [N] then clearly AN B € [N]. So it is enough to show that
AB € [N]. Let z € X and let A(z) = (a1,a9,...an), B(z) = (b1,be,...b,) and A(z) N
B(x) = (c1,c2,...cy). By the definition of ¢; we have {ci,co,...cn} C {a1,as,...an}. Now,
A,B e [N] = a; = b and a, = b,. Hence, ¢; = a1,¢, = an € {a1,as,...an} = {b1,ba,...b,}.
Now we show that as € {c1,co,...cp}. If ca # ag then ¢y = min{ag,be} = ba. So by < as.
Since {a1,ag,...an} = {b1,be,...b,} we have ay = by for some k > 2. Now we have ay < aj and
¢ = min{ag, by} = min{ax,as} = ag. Thus ay € {c1,ca,...cp,}. Continuing like this we can
show that {aj,as,...an} C {c1,ca,...cp} and thus {b1,bs,...b,} = {a1,a2,...an} = {c1,c2,...cn}.
Similarly, we can show that A(z) and B(z) have the same elements for every z € X. So
ANBe NN NT.

Similarly, we can show that AU B € [N]N [N] . O

Following are some examples of monoids in the collection of all equivalence classes defined
above:

Example 1

Let E denote the collection of all equivalence classes over the relation ~. Let [A],[B] € E
define the binary operation @ on E by [A] @ [B] = [C] where C(z) is defined as follows:

Let x € X and A(z) = (A1(z), A2(x), Az(x)...An(z)),
B(xz) = (Bi(x), Bs(x), B3(z)...By,(x)) then we define
C(z) = (C1(x), Cs(x), C3(x)...Cppn(x)) where

Cr(x) = Ai(z) + Bj(z) — (Ai(x) + Bj(x)),k =1ij =1,2,3..mn

(where the monotonicity is assumed and it does not affect [C])

If A" € [A] and B € [B] then for each z € X we have A(z) and A'(x) has same elements.
Similarly for B and B'. Thus [C] is well defined.
Now it can be easily verified that (E,®) is a commutative monoid with identity [e] where
e(z) = 0 for every x.

Note: A similar monoid can be generated in the collection of all equivalence classes generated
by ~ using the same binary operation used above.

Example 2

Let [A],[B] € E define the binary operation ® on E by [A] ® [B] = [C] where C(x) is defined
as follows:
Let x € X and A(x) = (A1(x), A2(x), Az(x)...An(x)),
B(xz) = (Bi(x), Bs(x), B3(x)...Bmn(z)) then we define
C(z) = (Ci(z),C3(x), C3(x)...Crmn(x)) where Ci(z) = Ai(x).Bj(x)), k =ij =1,2,3...mn. Then
(E,®) is a commutative monoid.

Example 3

The following is an example of a group in a sub-collection of orderless multidimensional fuzzy
sets.

Let E denote the collection of all orderless multidimensional fuzzy sets on a set X whose
membership values do not contain ”1.” Or, in another sense, we represent the crisp values ”0”
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and ”1” by 0. Choose an equivalence class [N] after defining ~" on E'. Let A, B € [N]. We
define a binary operation ® on [NT by A® B = C where C(z) = (Ci(x),Ca(x),...Cp(z) and
Ci(z) = Aij(x)+ Bi(z) if A;j(x)+ Bi(z) < 1and Ci(x) = 1—(Ai(z)+ Bi(z)) if 1 < A;(x)+ Bi(z).
Clearly, ® is a commutative binary operation.

Now, if (A® B) ® C = D then D(zx) is the decimal part of A(z) + B(z) + C(z). Hence,
A®B)®C=A® (B®C(C)

Consider £ € [N] having £(z) € 0 for every z. Then A® € = A for every A € [N] .
Now, for A € [N] define

A1 by AN z) = (1 — A7 N(2), (1 — A7 (%), ...(1 — A;1(2))). Then clearly, A~! € [N] and
A Al =¢
Hence, ([N],®) forms a group.

5. COMPARISON OF MULTIDIMENSIONAL FUZZY SETS WITH SOME OTHER FUZZY MODELS

Although Zadeh fuzzy sets were introduced to address data with uncertainty, this structure
is inadequate for managing additional uncertainty issues that have arisen throughout time. For
instance, it did not adequately represent the resistance of an object in precise set notation
(non-membership). In numerous instances, the non-membership value of an object is as signifi-
cant as its membership value. Fuzzy extensions, including intuitionistic fuzzy sets, Pythagorean
fuzzy sets, and spherical fuzzy sets, were developed to address scenarios where non-membership
and neutral values must be considered[2, 27]. However, fuzzy extensions like interval-valued
fuzzy sets and hesitant fuzzy sets complicate operations and various measurements due to their
tedious structure and lack of compactness in presentation whereas n-dimensional and m-polar
fuzzy sets do not provide personal attention to each object by applying a uniform dimension
across all studied objects while assigning membership grades [4]. Consequently, it is essential
to create a fuzzy framework capable of addressing all these issues simultaneously, leading to a
more refined and simplified variant of fuzzy sets, referred to in literature as multidimensional
fuzzy sets. The importance of MDFS is evident in scenarios where each element may possess a
varying number of qualities, necessitating the separate consideration of each property. Examine
a more complex scenario in which neurotransmitters convey differing amounts of impulses to
neurons. To quantify the bond strength of each chemical they release, we may use the represen-
tations (0.50,0.55,0.60)/(0.49,0.53,0.65,0.69)/(0.40,0.45) or (0.564,0.415,0.54,) (unordered),
resulting in a MDFS. Nonetheless, in an m-polar fuzzy collection, the representation must be
confined to a single dimension m. Utilizing a 3-polar fuzzy set or a 3-dimensional fuzzy set
to characterize the aforementioned information necessitates that each data member possesses a
membership value of (0.50,0.52,0.53)/(0.55,0.56,0.58), derived by disregarding certain chem-
icals emitted by neurons and assigning a constant dimension to each element. A comparable
scenario occurs when modeling an Al-based image processing system using fuzzy variations like
m—polar or m—dimensional fuzzy sets, since the fixed dimension influences the unrestricted
image processing by leveraging all of its attributive properties. This adversely affects the au-
thentic representation of the facts, when viewed by the researcher conducting the study. Thus,
the data representation using MDFS has various advantages over the existing fuzzy models.
Hence, the study of algebraic structures in an MDFS environment has an important role in
completing the literature of algebra.

6. CONCLUSION

This paper extended the concepts of fuzzy algebra into multidimensional fuzzy sets in the
usual sense and in a strong sense using multidimensional t-norms and multidimensional t-
conorms. This work explored multidimensional fuzzy algebra, focusing on the algebraic struc-
tures of groupoids, monoids, and groups. We introduced multidimensional characteristic func-
tions to provide a comprehensive characterization of these structures. The generality of our
results stemmed from the foundational use of multidimensional t-norms and t-conorms. We
delved into the relationship between multidimensional fuzzy groups and normal sets, as well
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as the concept of homomorphisms. Additionally, we introduced equivalence relations on the
collection of all multidimensional fuzzy sets and constructed examples of monoids. Finally,
we demonstrated how a group structure can be imposed on a subcollection of orderless mul-
tidimensional fuzzy sets. Future research will explore the potential of multidimensional fuzzy
structures, such as rings and fields.
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