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GENERALIZED FRACTIONAL HEAT EQUATION IN EXTENDED

COLOMBEAU ALGEBRAS

A. BENMERROUS1∗, L. S. CHADLI1, M. ELOMARI1, §

Abstract. In this paper, we use the Colombeau generalized algebra to prove the exis-
tence and uniqueness of the solution of fractional heat equation with singular potentials
(i.e., singular distributions). The concept of a generalized fractional semigroup was used
to prove the result.
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1. Introduction

Classical distribution theory, while powerful for linear analysis, fails to provide a con-
sistent framework for multiplying distributions, particularly in the presence of singulari-
ties such as the Dirac delta function or its derivatives. This limitation becomes critical
when studying nonlinear partial differential equations (PDEs) with singular initial data
or coefficients-common in physical models involving point sources, discontinuous media,
or sharp interfaces. To overcome this obstacle, we utilize the framework of Colombeau
generalized algebras, which extend distribution theory by embedding distributions into a
differential algebra where multiplication is well-defined and consistent with smooth func-
tions. This approach not only preserves the operational structure of classical analysis but
also allows for rigorous treatment of nonlinear operations involving singularities. In partic-
ular, it enables us to define and analyze generalized solutions of fractional heat equations
with singular potentials-problems that are otherwise inaccessible using standard methods.

The heat equation is examined in this work with the temporal derivative of the first
order replaced with a caputo derivative. The study on Convolution-type derivatives has
become a focus area of research because some of those dynamical models could be more
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precisely explained with fractional derivatives compared to those that have integer-order
derivatives [26, 27, 28].

In recent years many researchers have centered on the study of phenomena whose mod-
eling is given by nonlinear differential equations with a singularity, to address this, it is
necessary to define the multiplication of two distributions in a manner that is consistent
with the standard multiplication, the thing that led us automatically to do the study in
Colombeau’s algebra. This algebra is commutative, associative, and differential, and allows
embedding of the space of distributions so that the product of the infinitely differentiable
functions and the regular derivative are satisfied [18, 1, 10, 6].

In extended Colombeau algebra, the current research investigates the solution of heat
equation with Caputo fractional derivative. The introduction of Caputo derivative into
algebra of generalized functions was motivated by the opportunity of solving nonlinear
issues with singularities and derivatives of any real order. In order to offer a sense of
our situation, we use a special space of Colombeau algebra type which is a commutative,
associative differential algebra where we are able to inject D′ (space of distributions) so
that the smooth function product as well as the normal distribution derivative have been
preserved [20, 17, 9].

The following is how the paper is structured, after this introduction, we will discuss
various notions related to Colombeau’s algebra. In section 3, we will give and demonstrate
the existence of Caputo derivative in Colombeau algebra. Section 4, introduce the concept
of generalized fractional semigroup. The existence and uniqueness of the solution are
discussed in section 5.

2. Preliminaries

In the section that follows, we will mention the Colombeau generalized function (see
also [14, 16]).

Definition 1. A0 (Rn) is a set of functions ϕ in C∞
0 (Rn) such that

∫
Rn ϕ(t)dt = 1. For

q ∈ N,Aq (Rn) =
{
ϕ ∈ A0 :

∫
Rn t

iϕ(t)dt = 0, 0 < |i| ≤ q
}
, where ti = ti11 · · · tinn .

In [16] sets

Aq (Rn) = {Φ (x1, .., xn) = Φ (x1) ..Φ (xn) : ϕ (xi) ∈ Aq(R)} ,
are used because of applications to initial value problems. We shall follow the Colombeau

original definition.
Obviously, if ϕ ∈ Aq, q ∈ N0, then for every ε > 0, ϕε(x) =

1
εnϕ

(
x
ε

)
, x ∈ Rn, belongs to

Aq. If ϕ ∈ A0, then its support number d(ϕ) is defined by

d(ϕ) = sup{|x| : ϕ(x) ̸= 0}.
E(Ω) represents the set of

R : A0 × Ω → C, (Φ, x) 7→ R(Φ, x),

which are in C∞(Ω) for every fixed ϕ. In the other words elements of E are functions
R : A0 → C∞. Note that for any f ∈ C∞, the mapping

(ϕ, x) 7→ f(x), (ϕ, x) ∈ A0 × Ω,

defines an element in E(Ω) which does not depend on ϕ. Conversely, if an element F in
E(Ω) does not depend on Φ ∈ A0, we have:

F (Φ, x) = F (Ψ, x), x ∈ Ω, for every Φ,Ψ ∈ A0,
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then it defines a function f ∈ C∞(Ω),

f(x) = F (Φ, x), x ∈ Ω, for every ϕ ∈ A0.

In this sense, we identify C∞(Ω) with the corresponding subspace of E(Ω).

Definition 2. A component R ∈ E(Ω) is moderate if ∀L ⊂⊂ Ω, α ∈ N, ∃N ∈ N such that
for every Φ ∈ AN , ∃η > 0 and C > 0 such that:

∥∂αR (Φϵ, x) ∥ ≤ Cϵ−N x ∈ L, 0 < ϵ < η.

The ensemble of all mild components is expressed as EM (Ω).

Definition 3. An element R ∈ E0(C) is moderate if ∃N ∈ N0 such that for every ϕ ∈ AN ,
∃η > 0, C > 0 such that:

∥R (ϕε) ∥ < Cε−N , 0 < ε < η.

The ensemble of mild components is expressed by E0M (C) (resp. E0M (R) ).

Definition 4. A component R ∈ EM (Ω) is named null if for every L ⊂⊂ Ω and every
α ∈ Nn

0 , ∃N ∈ N0 and {aq} ∈ Γ such that for every q ≥ N and every ϕ ∈ Aq, ∃η > 0 and
C > 0 such that:

∥∂αR (ϕε, x)∥ ≤ Cεaq−N x ∈ L, 0 < ε < η.

The ensemble of null components is expressed by N (Ω).

Definition 5. The spaces of generalized functions G(Ω) expressed by

G(Ω) = EM (Ω)/N (Ω).

The following description describes what the term ”association” means in colombeau
algebra.

Definition 6. [14] Let f, g ∈ G(R).
We said that f,g are associated if ∀ h(φϵ, x) and m(φϵ, x) and arbitrary ξ ∈ D(R) there is
a n ∈ N such that ∀φ(x) ∈ An(R), we have:

lim
ϵ→0+

∫
R
∥h(φϵ, x)−m(φϵ, x)∥ξ(x)dx = 0,

and we denoted by f ≈ g.

3. Caputo derivative in Colombeau algebras

In this section we will introduce the various definitions and features that we will need
in the following.

A fractional integral is defined by: [16]

Iαf(r) =
1

Γ(α)

∫ r

0
(r − s)α−1f(s)ds α ∈ R+.

In the Caputo meaning, the fractional derivative of order α > 0 is defined as: [16]

Dαf(r) =
1

Γ(m− α)

∫ r

0

f (m)(s)ds

(r − s)α+1−m
, m− 1 < α < m.

Let (fε) be a representative of f in G([0,+∞[), so:
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Dαfϵ(r) =
1

Γ(1− α)

∫ r

0

f ′(s)

(r − s)α
ds 0 < α < 1

sup
t∈[0,T ]

∥Dαfε(r)∥ ≤ 1

Γ(1− α)
sup

r∈[0,T ]
∥
∫ r

0

f ′(s)ds

(r − s)α
∥

≤ 1

Γ(1− α)

∥∥f ′∥∥
L∞([0,T ])

sup
t∈[0,T ]

∫ r

0

ds

(r − s)α
ds

≤ 1

Γ(1− α)
ϵ−N T 1−α

1− α
≤ Cα,T ϵ

−N .

Generally [16], for α ∈ (m− 1,m)

sup
r∈[0,T ]

∥Dαfϵ(r)∥ ≤ 1

Γ(m− α)
sup

r∈[0,T ]

∫ r

0

∥f (m)(s)∥
(r − s)α+1−m

ds

≤ 1

Γ(m− α)

∥∥∥f (m)
∥∥∥
L∞([0,T ])

sup
r∈[0,T ]

∫ r

0

1

(r − s)α+1−m
ds

≤ 1

Γ(m− α)
ϵ−N Tm−α

m− α
≤ Cα,T ϵ

−N .

The constant Cα,T depends on two factors α and T .

Proposition 1. [16] Let (ωϵ(t))ϵ be a representative of ω(t) ∈ G([0,+∞)). The regularized
Caputo αth fractional derivative of (ωϵ(t))ϵ, α > 0, is defined by

ifrac :

{
G ([0,+∞)) → G ([0,+∞))

ω →
[ (

D̃αωϵ

)
ϵ>0

]
=

[
(Dαω ∗ φϵ)ϵ>0

]
.

Proposition 2. ( (
D̃αωϵ

)
ϵ>0

)
≈

(
(Dαωϵ)ϵ>0

)
.

Proof. Let: uε ∈ G ([0,+∞)).

We have,

∥D̃αuε(t)∥ = ∥Dαuε ∗ φε(t)∥

= ∥ 1

Γ(2− α)

∫ t

0

u
(2)
ϵ (s)ds

(t− s)α−1
∗ φϵ(t)∥

⩽ ∥ 1

Γ(2− α)

∫ t

0

u
(2)
ϵ (s)

(t− s)α − 1
ds∥ × ∥φε∥L∞(Rn)

⩽ ∥DαUε(t)∥ × ∥φε∥L∞ (Rn) .

Then:

∥D̃αuε(t)−Dαuε(t)∥ ⩽∥Dαuε(t)∥
(
∥φε∥L∞(Rn) − 1

)
⩽

1

Γ(2− α)
sup

t∈[0,T ]
∥
∫ t

0

u
(2)
ε (τ)

(t− τ)α−1
dτ∥ ×

(
∥φε∥L∞(Rn) − 1

)
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⩽ 1
Γ(2−α) supt∈[0,T ] ∥u

(2)
ε (t)∥ × T 2−α

2−α ×
(
∥φε∥L∞(Rn) − 1

)
⩽ CT,αε

2−α ε−→0−→ 0.
We utilize the regularization for α ∈ (0, 1)

D̃αuϵ(y) = Dαuϵ ∗ ϕϵ(y).

The form of convolution is provided by :

D̃αuϵ(y) =

∫
R
Dαuϵ(s)ϕϵ(y − τ)dτ.

We state that | D̃αuε(y)−Dαuε(y) |≈ 0.

Proof.

| D̃αuε(y)−Dαuε(y) |=| Dαuε ∗ ϕε(y)−Dαuε(y) |

| D̃αuε(y)−Dαuε(y) |=| Dαuε ∗ ϕε(y)−Dαuε ∗ δ(y) |

| D̃αuε(y)−Dαuε(y) |=| Dαuε ∗ (ϕε(y)− δ(y)) |

| D̃αuε(y)−Dαuε(y) |=|
∫
R
Dαuϵ(y − τ) (ϕϵ(τ)− δ(s)) dτ |

| D̃αuε(y)−Dαuε(y) |=
∫
R
| Dαuε(y − τ) || ϕε(τ)− δ(τ) | dτ −→ 0.

Because of limϵ−→0 | ϕϵ(τ)− δ(τ) |= 0, consequently

D̃αuε(y) ≈ Dαuε(y).

□

By using assumption that ϕϵ(y) has compact support on K0, the following computations
can be made utilizing Holder inequalities:

D̃αuε(y) = Dαuϵ ∗ ϕϵ(y) =

∫
R
Dαuε(y − τ)ϕϵ(τ)dτ

| D̃αuε(y) |=|
∫
R
Dαuε(y − τ)ϕϵ(τ)dτ |=|

∫
K0

Dαuε(y − τ)ϕϵ(τ)ds |

| D̃αuε(y) |=
∫
K0

| Dαuε(y − τ) || ϕε(τ) | dτ

sup
y∈K

| D̃αuε(y) |= sup
y∈K

{∫
K0

| Dαuϵ(y − τ) || ϕϵ(τ) | dτ
}

so,

sup
y∈K0

| D̃αuε(y) |≤ sup
y∈K0

| Dαuε(y) |
∫
K0

| ϕε(τ) | dτ

sup
y∈K

| D̃αuε(y) |≤ C1ε
p.

And
d

dy

(
D̃αuε(y)

)
=

d

dy
(Dαuε) ∗ ϕε(y) = Dαuε ∗

d

dy
(ϕε(y)) .

Then,

sup
y∈K

| d

dy

(
D̃αuε(y)

)
|≤ sup

y∈K0

| Dαuε(y) |
∫
K0

| d

dy
(ϕε(τ)) | dτ ≤ C2ε

p.
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A similar approach is used to demonstrate moderateness for higher derivatives.

sup
y∈K

| ∂nD̃αuε(y) |≤ Cϵε
p.

□

By the same principle we define ”Generalized caputo semigroup”.

4. Generalized Caputo semigroup

Let (X, ∥.∥) be a Banach space and L(X) be the space of all linear continuous mappings
. Firstly, we want to see whether we can create a map A : G −→ G using a provided family
(Aϵ)ϵ∈(0,1) of AϵX −→ X, where Aϵ ∈ L(X). The following are the general requirements:

Lemma 1. Let (Aϵ)ϵ∈]0,1[ be a provided family of maps Aϵ : X −→ X. In each case of

(eϵ)ϵ ∈ EM (X) and (fϵ)ϵ ∈ N (X), suppose that
(1) (Aϵeϵ)ϵ ∈ EM (X),
(2) (Aϵ (eϵ + fϵ))ϵ − (Aϵeϵ)ϵ ∈ N (X).
Then

A :

{
G −→ G
e = [eϵ] 7→ Ae = [Aϵeϵ]

is well defined.

Proof. We can see from the first attribute that the class [(Aϵeϵ)ϵ] ∈ G.
Let eϵ + fϵ be an additional member of e = [eϵ]. We have from the second property:

(Aϵ (eϵ + fϵ))ϵ − (Aϵeϵ)ϵ ∈ N (X),

and [(Aϵ (eϵ + fϵ))ϵ] = [(Aϵeϵ))ϵ] in G.
Thus A is properly defined. □

Definition 7. We define
ES
M ([0,+∞[,L(X)) = {Sϵ : [0,+∞[−→ L(X)), ϵ ∈]0, 1[, such that ∀T > 0, ∃a ∈

R, we have

sup
r∈[0,T ]

∥∥∥Sϵ

(
r

1
α

)∥∥∥ = Oϵ→0 (ϵ
a)},

and
N S ([0,+∞[,L(X)) = {Nϵ : [0,+∞[−→ L(X)), ϵ ∈]0, 1[, such that ∀T > 0, ∀b ∈
R, we have

sup
r∈[0,T ]

∥∥∥Nϵ

(
r

1
α

)∥∥∥ = Oϵ→0

(
ϵb
)
}.

With the following characteristics:
1) ∃s > 0 and ∃a ∈ R such that

sup
t<s

∥∥∥∥∥∥
Nϵ

(
r

1
α

)
r

∥∥∥∥∥∥ = Oϵ→0 (ϵ
a) ,

2) ∃ (Hϵ)ϵ in L(X) and ϵ ∈]0, 1[ such that

lim
s→0

Nϵ

(
s

1
α

)
s

e = Hϵe, e ∈ X,

For every b > 0,

∥Hϵ∥ = Oϵ→0

(
ϵb
)
,



22 TWMS J. APP. ENG. MATH. V.16, N.1, 2026

Proposition 1. ES
M ([0,+∞[,L(X)) is algebra in terms of composition and

N S ([0,+∞[,L(X)) is an ideal of ES
M ([0,+∞[,L(X)).

Proof. Let (Sϵ)ϵ ∈ ES
M ([0,+∞[,L(X)) and (Nϵ)ϵ ∈ N S ([0,+∞[,L(X)).

We shall simply establish the second statement, specifically,(
Sϵ

(
r

1
α

)
Nϵ

(
r

1
α

))
ϵ
,
(
Nϵ

(
r

1
α

)
Sϵ

(
r

1
α

))
ϵ
∈ N S ([0,+∞[,L(X)) .

Where Sϵ

(
r

1
α

)
Nϵ

(
r

1
α

)
represents the composition.

By (1) and the definition of N S from the previous definition, we have:∥∥∥Sϵ

(
r

1
α

)
Nϵ

(
r

1
α

)∥∥∥ ≤
∥∥∥Sϵ

(
r

1
α

)∥∥∥∥∥∥Nϵ

(
r

1
α

)∥∥∥ = Oϵ→0

(
ϵa+b

)
,

The same is also true for
∥∥∥Nϵ

(
r

1
α

)
Sϵ

(
r 1
α

)∥∥∥.
Furthermore, (1) and (2) provide

sup
t<s

∥∥∥∥∥∥
Sϵ

(
r

1
α

)
Nϵ

(
r

1
α

)
r

∥∥∥∥∥∥ ≤ sup
r<s

∥∥∥Sϵ

(
r

1
α

)∥∥∥ sup
r<s

∥∥∥Nϵ

(
r

1
α

)∥∥∥
= Oϵ→0 (ϵ

a) .

In some situations s > 0. We have,

sup
r>s

∥∥∥∥∥∥
Nϵ

(
r

1
α

)
Sϵ

(
r

1
α

)
r

∥∥∥∥∥∥ = Oϵ→0 (ϵ
a) ,

For some s > 0 and a ∈ R. Let now ϵ ∈]0, 1[ be fixed. We have∥∥∥∥∥Sϵ(r
1
α )Nϵ(r

1
α )

r
x− Sϵ(0)Hϵx

∥∥∥∥∥
=

∥∥∥∥∥Sϵ(r
1
α )

Nϵ(r
1
α )

r
x− Sϵ(r

1
α )Hϵx+ Sϵ(r

1
α )Hϵx− Sϵ(0)Hϵx

∥∥∥∥∥
≤

∥∥∥Sϵ(r
1
α )
∥∥∥∥∥∥∥∥Nϵ(r

1
α )

r
x−Hϵx

∥∥∥∥∥+
∥∥∥Sϵ(r

1
α )Hϵx− Sϵ(0)Hϵx

∥∥∥ .
According to (1) and (2), in addition to the continuity of t 7→ Sϵ(r

1
α )(Hϵx) at 0, the final

expression becomes zero as r → 0. Likewise, we have:∥∥∥∥∥Nϵ(r
1
α )Sϵ(r

1
α )

r
x−HϵSϵ(0)x

∥∥∥∥∥ =

∥∥∥∥∥Nϵ(r
1
α )

r
Sϵ(r

1
α )x− Nϵ(r

1
α )

r
Sϵ(0)x

+
Nϵ(r

1
α )

r
Sϵ(0)x−HϵSϵ(0)x

∥∥∥∥∥
≤

∥∥∥∥∥Nϵ(r
1
α )

r

∥∥∥∥∥∥∥∥Sϵ(r
1
α )x−Hϵ(t)Sϵ(0)x

∥∥∥
+

∥∥∥∥∥Nϵ(r
1
α )

r
(Sϵ(0)x)−Hϵ (Sϵ(0)x)

∥∥∥∥∥ .
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Assertions (1) and (2) require that the final expression goes to zero since r 7→ 0. As a
result, the proposition is proven in both circumstances. □

The factor algebra is now defined as Colombeau type algebra by:

GS ([0,+∞[,L(X)) = ES
M ([0,+∞[,L(X)) /N S ([0,+∞[,L(X)) .

Components of GS ([0,+∞[,L(X)) will be represented by S = [Sϵ], where (Sϵ)e is a mem-
ber of the preceding class.

Definition 8. S ∈ G ([0,+∞[,L(X)) is referred to as a Colombeau C0Semigroup if it has
a member (Sϵ)ϵ such that, for ϵ > 0, Sϵ is a C0Semigroup.

When ϵ low sufficient, we will only utilize members (Sϵ)ϵ of a Colombeau C0semigroup.

Proposition 2. Let
(
S̃ϵ

)
ϵ
and (Sϵ)ϵ be members of a Colombeau C0semigroup (Sϵ)ϵ, with

the infinitesimal generators Ãϵ, ϵ < ϵ̃0, and Aϵ, ϵ < ϵ0, respectively, where ϵ̃0 and ϵ0
correspond (in the sense of definition 5.6) to (Sϵ)ϵ and (Sϵ)ϵ, respectively.

Then, D
(
D

(
Ãϵ

)
= Aϵ

)
, ∀ϵ̃ = min {ϵ0, ϵ̃0} > ϵ and Ãϵ − Aϵ can be prolonged to a

component ofL(X). Moreover, for every a ∈]−∞,+∞[,∥∥∥Ãϵ −Aϵ

∥∥∥ = Oϵ→0 (ϵ
a) ,

Proof. Indicate Nϵ =
(
Sϵ − S̃ϵ

)
ϵ
∈ N S ([0,+∞[,L(X)).

Let ϵ < ϵ̃0 be fixed and y ∈ X. we have

Sϵ

(
t
1
α

)
y − y

t
−

S̃ϵ

(
t
1
α

)
y − y

t
=

Nϵ

(
t
1
α

)
t

y.

This indicates that by allowing ttomapto0 : D (Aϵ) = D
(
Āϵ

)
.

After that, we have

(
Aϵ − (Ã)ϵ

)
y = lim

t→0

Sϵ

(
t
1
α

)
y − y

t
− lim

t→0

Sϵ

(
t
1
α

)
y − y

t

= lim
t→0

Nϵ

(
t
1
α

)
t

y = Hϵy, y ∈ D (Aϵ) ,

since ¯D (Ae) = X and characteristics (1), (2) and definition(7) imply that ∀a ∈ R,∥∥∥Aϵ − Ãϵ

∥∥∥ = Oϵ→0 (ϵ
a) .

□

The following definition makes sense because of Proposition 2.

Definition 9. If there exists a representative (Aϵ)ϵ of A such that Aϵ is the infinitesimal
generator of Sϵ for ϵ small sufficiently, then A is the infinitesimal generator of a Colombeau
C0semigroup S.

By Pazy we presente the following suggestion:
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Proposition 3. Assume S is a Colombeau C0semigroup with an infinitesimal generator
A.
Then ∃ϵ0 ∈]0, 1[ such that:

1) Mapping r 7−→ Sϵ

(
r

1
α

)
y : [0,+∞[−→ X is continuous ∀y ∈ X and ϵ < ϵ0.

2)

lim
h→0

∫ r+h

r
Sϵ

(
s

1
α

)
ydsα = Sϵ

(
t
1
α

)
y, ϵ < ϵ0, y ∈ X.

3) ∫ r

0
Sϵ

(
s

1
α

)
ydsα ∈ D (Aϵ) , ϵ < ϵ0, y ∈ X.

4) ∀y ∈ D (Aϵ) and r ≥ 0 Sϵ

(
t
1
α

)
y ∈ D (Aϵ) and

dα

dtα
Sϵ

(
r

1
α

)
y = AϵSϵ

(
r

1
α

)
y = Sϵ

(
r

1
α

)
Aϵy, ϵ < ϵ0.

5) Take (Sϵ)ϵ and
(
S̃ϵ

)
ϵ
be representatives of Colombeau C0semigroup S, with infinitesimal

generators Aϵ and Ãϵ, ϵ < ϵ0, accordingly. So, ∀a ∈ R, r ≥ 0, we have:∥∥∥∥ dα

dtα
Sϵ

(
r

1
α

)
−AϵSϵ

(
r

1
α

)∥∥∥∥ = O (ϵa) .

6) ∀y ∈ D (Aϵ) and t, r ≥ 0,

Sϵ

(
t
1
α

)
y − Sϵ

(
s

1
α

)
y =

∫ t

r
Sϵ

(
e

1
α

)
Aαydeα =

∫ t

s
AϵSϵ

(
e

1
α

)
ydeα.

Theorem 1. Let S and S̃ be Colombeau C0semigroup with infinitesimal generators A and
Ā, respectively. If A = Ã then S = S̃.

Proof. Applying the previous properties will be easy to proof the theorem. □

5. Main result

This section describes the use of Colombeau Caputo C0-semigroup in the solution of a
family of heat equations with singular data and potentials. We considering the next issue,

Before we explore the subject, we will create some working areas.
We put ∥ · ∥L2(R) = ∥ · ∥2.

Definition 10. We indicate H2
α by the set of a function u∈ L2(R) with, D̃αu ∈ L2(R)

In accordance with the norm

∥u∥H2
α
=

√
∥u∥22 +

∥∥∥D̃αu
∥∥∥2
2
.

The following is the definition of the Colombeau algebra type:

GH2
α
= EM

(
H2

α

)
/N

(
H2

α

)
,

where EM
(
H2

α

)
= {(Gε)ε ∈ H2

α,∀T > 0 ∃a ∈ R : ∥Gε∥H2
α
= O (εa)},

And N
(
H2

α

)
= {(Gε)ε ∈ H2

α,∀T > 0 ∀b ∈ R : ∥Gε∥H2
α
= O

(
εb
)
} .

Definition 11. EC1,H2
α
([0, T ],R) = {Gε ∈ C

(
[0, T ], H2

α

)
∩C1

(
[0, T ], L2(R)

)
, ∀T > 0 ∃a ∈

R :

max

{
supt∈[0,T1] ∥Gε∥H2

α
, supt∈[0,T ]

∥∥∥D̃αGε

∥∥∥
L2(R)

}
= Oε→0 (ε

a)}.
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And,
NC1,H2

α
([0, T ],R)

)
= {Gε ∈ C

(
[0, T ], H2

α

)
∩ C1

(
[0, T ], L2(R)

)
,∀T > 0 ∀b ∈ R :

max

{
supt∈[0,T1] ∥Gε∥H2

α
, supt∈[0,T ]

∥∥∥D̃αGε

∥∥∥
L2(R)

}
= Oε→0

(
εb
)
}.

Then the Colombeau type vector space, define by:

GC1,H2
α
(R+,R) = EC1,H2

α
(R+,R)/NC1,H2

α
(R+,R).

Proposition 4. Let v ∈ GH2
α
and x ∈ GC1,H2

α
(R+,R) which is proposed as the solution to

the following problem: ∂α
t x(t, y) = (∆− v(y))x(t, y) y ∈ R, t ∈ R+

x(0, y) = x0(y) = δ(y)
v(y) = δ(y).

(1)

Then the multiplication v(y).x(t,y) makes sense.

Definition 12. A generalized function G ∈ GC1,H2
α
is considered to be a solution to the

equation D̃αG = AG. With A is characterized by a nets (Aϵ) ε of linear operators with the
consistent framework H2

α(R) and values in L2(R), if and only if

sup
t∈[0,T ]

∥∥∥D̃αGϵ(t, .)−AεGε(t, .)
∥∥∥
2
= O (ϵa) , ϵ → 0 ∀a ∈ R.

Definition 13. An component U ∈ GH2
α
is logarithmic type if it has an identification

(Uϵ)ϵ ∈ EC1,H2
α
with,

∥Uε∥H2
α
= Oε→0

(
ln ε−1

)
.

An componen U ∈ GH2
α
is claimed to be log-log type if it has a identification (Uϵ)ϵ ∈ EC1,H2

α

with,
∥Uϵ∥H2

α
= O

(
lna ln ε−1

)
ϵ → 0.

We put

E(t, y) =
1

2
√
πt

exp
−|y|2
4t .

5.1. Existence and uniqueness in the Colombeau algebra.

Theorem 2. Consider a function v that belongs to the set GH2
α and is logarithmic type.

(1) The infinitesimal generators of Caputo semigroups Tϵ ∀ϵ > 0 is given by (∆ − v)u =
Aϵu, with u ∈ H2

α. The collection of these semigroups (Tϵ)ϵ, is a representative of a
Colombeau Caputo C0-semigroup.

T (t) ∈ GS
(
[0,+∞[,L

(
L2

))
.

(2) Consider Tϵ be as in (1) and let v be a member of the set GH2
α
.

Then, ∀T > 0, the issue 1 has unique solution in GH2
α.

Proof. (1) Put ϵ > 0 as small as possible. The operator Aϵ is the infinitesimal generator
of the associated semigroup according to the Feynman-Kac formula.

Tϵ(s)ϕ(y) =

∫
Ω

(
exp

(
−

∫ sα

0 vϵ(ω(e))de
))

ϕ (ω (sα)) dµy(ω),

for ϕ ∈ L2(R), Ω = R and µy is is the Wiener measure centered at x ∈ R. Since v is of
logarithmic type, ∃C > 0, such that

| Tϵ(s)ϕ(y) |≤ exp(s
α supe∈R|vϵ(e)|)

∫
Ω
| ϕ(ω(s)) | dµy(ω)
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≤ ϵCsα 1

2
√
πsα

∫
R
exp−

|y−e|2
4sα | ϕ(e) | de.

Consequently, ∃C0 > 0, such that

sup
s∈(0,T ]

∥Tϵ(s)ϕ(y)∥2 ≤ C0ϵ
Csα∥ϕ∥2.

Then (Tϵ)ϵ ∈ GS
(
[0,+∞[,L

(
L2(R)

))
.

(2) Existence

By the principle of Duhamel , then the solution xϵ(t, y) of issue 1 satisfies:

xϵ(s, y) =

∫
R
E (sα, y − e) bϵ(e)de

+

∫ s

0

∫
R
E ((s− t)α, y − e) vϵ(e)xϵ(t, e)dedt.

(2)

By Young’s inequality, we have:

∥xϵ(s, .)∥2 ≤ ∥bϵ∥2 +
∫ s

0
∥vϵ(.)∥L∞ ∥xϵ(t, .)∥2 dt.

By Gronwall’s inequality, we have:

∥xϵ(s, .)∥2 ≤ ∥bϵ∥2 exp
∫ s
0 ∥vϵ(.)∥L∞∥xϵ(t,.)∥2dt,∀t ∈ [0, T ].

Since v ∈ GH2
α is logarithmic type and (xϵ)ϵ ∈ EH2

α, it follows that sups∈[0;T ] ∥xϵ(s, .)∥2
has a moderate bound.

For the first derivative to yj , j ∈ 1, ..., n we obtain

d

dy
xϵ(s, y) =

∫
R
E (sα, x)

d

dy
bϵ(y−x)dx

+

∫ s

0

∫
R
E ((s− t)α, x)

d

dy
v(y − x)xϵ(t, y − x)

+ v(y − x)
d

dy
xϵ(t, y − x)dxdt.

Then∥∥∥∥ d

dy
xϵ(s, .)

∥∥∥∥
2

≤
∥∥∥∥ d

dy
bϵ

∥∥∥∥
2

+

∫ s

0

∥∥∥∥ d

dy
vϵ(.)

∥∥∥∥
L∞

∥xϵ(s, .)∥2 + ∥vϵ(·)∥L∞ ∥ d

dy
xϵ(s, .))∥2,

consequently by Gronwall’s inequality implies that sups∈[0,T ]

∥∥∥ d
dyxϵ(s, .)

∥∥∥
2
is moderate.

With the same proof, we can prove that all types of derivatives exists in EC1,H2
α
.

So
(xϵ)ϵ ∈ EC1,H2

α
.

Uniqueness:

Let xϵ and zϵ two solution of issue (1).
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We set Gϵ = xϵ − zϵ, we get

Gϵ(s, y) =

∫
R
E (sα, y − e)Nϵ(e)de

+

∫ s

0

∫
R
E ((s− t)α, y − e) vϵ(e)Gϵ(t, e)dedt

+

∫ s

0

∫
R
E ((s− t)α, y − x)Nϵ(e)dedt,

where Nϵ(y) = G(0, y), and Nϵ =
dα

dsαGϵ − (∆− v)Gϵ.
So Young’s and Gronwall’s inequalities imply that:

∥Gϵ(s, .)∥2 ≤ ∥Nϵ∥2 +
∫ s

0
∥vϵ(t, .)∥L∞ ∥Gϵ(t, .)∥2 dt+

∫ s

0
∥Nϵ(t, .)∥2 dt.

Thus

Gϵ ∈ NH2
α.

□

Remark 1 (Application of Theorem 2). To illustrate the applicability of the main result,
consider the following initial value problem:{

∂α
t u(t, x) = (∆− δ(x))u(t, x), x ∈ R, t > 0,

u(0, x) = δ(x),

where δ(x) denotes the Dirac delta distribution and ∂α
t is the Caputo fractional deriva-

tive of order α ∈ (0, 1). This equation models anomalous diffusion in media with highly
concentrated singular potentials, such as point interactions in quantum mechanics or heat
propagation with localized defects.

In classical distribution theory, the product δ(x) ·u(t, x) is not well-defined. However, by
embedding the problem in the Colombeau algebra GH2

α, both the singular initial data and
the singular potential become tractable. Theorem 2 guarantees the existence and uniqueness
of a generalized solution within this framework, demonstrating the power and necessity of
Colombeau algebras for analyzing fractional PDEs with strong singularities.

5.2. Existence and uniqueness in the extension of Colombeau algebra. We prove
the existence and uniqueness solution for the problem 1, in this case initial data and the
equation controlled by the fractional derivative in the framework of the extended algebra
type of generalized functions GH2

α with α ∈ R.

Theorem 3. We consider Tϵ be as in Theorem 2 and let v be a member of the set GH2
α
.

Then, the problem 1 has unique solution in GH2
α.

Proof. We shall prove only the fractional part since the entire part is already proved in
the theorem (1). Consider the fractional derivative Dβ with 0 < β < 1.
Without loss of generality, the same holds for m− 1 < β < m, m ∈ N.
Existence

By the principle of Duhamel , the solution xϵ(t, y) of issue (1) satisfies:

xϵ(s, y) =

∫
R
E (sα, y − e) bϵ(e)de

+

∫ s

0

∫
R
E ((s− t)α, y − e) vϵ(e)xϵ(t, e)dedt.

(3)
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Take the fractional derivative to the spatial variable, we have

Dβxϵ(s, y) =

∫
R
E (sα, x)Dβbϵ(y−x)dx

+

∫ s

0

∫
R
E ((s− t)α, x)Dβv(y − x)xϵ(t, y − x)

+ v(y − x)Dβxϵ(t, y − x)dxdt.

Then Young’s inequality implies that∥∥∥Dβxϵ(s, .)
∥∥∥
2
≤

∥∥∥Dβbϵ

∥∥∥
2
+

∫ s

0

∥∥∥Dβvϵ(.)
∥∥∥
L∞

∥xϵ(s, .)∥2 + ∥vϵ(·)∥L∞ ∥Dβxϵ(s, .))∥2.

Consequently by Gronwall’s inequality, we have sups∈[0,T ]

∥∥Dβxϵ(s, .)
∥∥
2
is moderate.

Uniqueness:

Let u1ϵ and u2ϵ two solution of issue (1).

We set Gϵ = u1ϵ − u2ϵ, we get

Gϵ(s, y) =

∫
R
E (sα, y − e)Nϵ(e)de

+

∫ s

0

∫
R
E ((s− t)α, y − e) vϵ(e)Gϵ(t, e)dedt

+

∫ s

0

∫
R
E ((s− t)α, y − x)Nϵ(e)dedt,

where Nϵ(y) = G(0, y), and Nϵ =
dα

dsαGϵ − (∆− v)Gϵ.
Take the fractional derivative to the spatial variable, we have

Dβ (x1ε(s, y)− x2ε(s, y)) =

∫
Rn

E(sα, y − e)DβN0,ε(e)de

+

∫ t

0

∫
Rn

E((s− τ)α, y − e)Dβvε(e) (x1ε(τ, e)− x2ε(τ, e)) dedτ

+

∫ t

0

∫
Rn

E((s− τ)α, y − e)vε(e)D
β (x1ε(τ, e)− x2ε(τ, e)) dedτ

+

∫ t

0

∫
Rn

E((s− τ)α, y − e)DβNε(τ, e)dedτ,

we get∥∥∥Dβ (x1ε(s, y)− x2ε(s, y))
∥∥∥
L∞(Rn)

≤ ∥E(sα, y − .)∥L1

∥∥∥DβN0,ε(.)
∥∥∥
L∞(Rn)

+ ∥E((s− τ)α, y − .)∥L1

×
∫ t

0
∥vε(.)∥L∞(Rn)

∥∥∥Dβ (x1ε(s, y)− x2ε(s, y))
∥∥∥
L∞(Rn)

dτ

+ ∥E((s− τ)α, y − e)∥L1

×
∫ t

0
∥vε(.)∥L∞ (Rn) ∥Dβ

(
x1ε(s, y)− x2ε(s, y)∥L∞(Rn)dτ

+ ∥E((s− τ)α, y − e)∥L1

∫ t

0

∥∥∥DβNε(τ, .)
∥∥∥
L∞(Rn)

dτ.
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Then Gronwall’s inequality imply that∥∥∥Dβ (u1,ε(t, .)− u2,ε(t, .))
∥∥∥
L∞(Rn)

≤ C
(
∥N0,ε∥L∞(Rn)

+ c1

∥∥∥Dβvε(.)
∥∥∥
L∞(Rn)

∥x1ε(s, y)− x2ε(s, y)∥L∞ dτ

+
∥∥∥DβNε

∥∥∥
L∞)

exp
(
CT ∥vε∥L∞(Rn)

)
.

Finally, ∥∥∥Dβ (u1,ε(t, .)− u2,ε(t, .))
∥∥∥
L∞(Rn)

≤ Cεq, ∀q ∈ N.

Thus

Gϵ ∈ NH2
α.

□
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