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GENERALIZED FRACTIONAL HEAT EQUATION IN EXTENDED
COLOMBEAU ALGEBRAS

A. BENMERROUS'™, L. S. CHADLI', M. ELOMARI*, §

ABSTRACT. In this paper, we use the Colombeau generalized algebra to prove the exis-
tence and uniqueness of the solution of fractional heat equation with singular potentials
(i.e., singular distributions). The concept of a generalized fractional semigroup was used
to prove the result.
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potential.

AMS Subject Classification: 35D99, 35K67, 34A45, 46F05.

1. INTRODUCTION

Classical distribution theory, while powerful for linear analysis, fails to provide a con-
sistent framework for multiplying distributions, particularly in the presence of singulari-
ties such as the Dirac delta function or its derivatives. This limitation becomes critical
when studying nonlinear partial differential equations (PDEs) with singular initial data
or coefficients-common in physical models involving point sources, discontinuous media,
or sharp interfaces. To overcome this obstacle, we utilize the framework of Colombeau
generalized algebras, which extend distribution theory by embedding distributions into a
differential algebra where multiplication is well-defined and consistent with smooth func-
tions. This approach not only preserves the operational structure of classical analysis but
also allows for rigorous treatment of nonlinear operations involving singularities. In partic-
ular, it enables us to define and analyze generalized solutions of fractional heat equations
with singular potentials-problems that are otherwise inaccessible using standard methods.

The heat equation is examined in this work with the temporal derivative of the first
order replaced with a caputo derivative. The study on Convolution-type derivatives has
become a focus area of research because some of those dynamical models could be more
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precisely explained with fractional derivatives compared to those that have integer-order
derivatives [26, 27, 28].

In recent years many researchers have centered on the study of phenomena whose mod-
eling is given by nonlinear differential equations with a singularity, to address this, it is
necessary to define the multiplication of two distributions in a manner that is consistent
with the standard multiplication, the thing that led us automatically to do the study in
Colombeau’s algebra. This algebra is commutative, associative, and differential, and allows
embedding of the space of distributions so that the product of the infinitely differentiable
functions and the regular derivative are satisfied [18, 1, 10, 6].

In extended Colombeau algebra, the current research investigates the solution of heat
equation with Caputo fractional derivative. The introduction of Caputo derivative into
algebra of generalized functions was motivated by the opportunity of solving nonlinear
issues with singularities and derivatives of any real order. In order to offer a sense of
our situation, we use a special space of Colombeau algebra type which is a commutative,
associative differential algebra where we are able to inject D’ (space of distributions) so
that the smooth function product as well as the normal distribution derivative have been
preserved [20, 17, 9].

The following is how the paper is structured, after this introduction, we will discuss
various notions related to Colombeau’s algebra. In section 3, we will give and demonstrate
the existence of Caputo derivative in Colombeau algebra. Section 4, introduce the concept
of generalized fractional semigroup. The existence and uniqueness of the solution are
discussed in section 5.

2. PRELIMINARIES

In the section that follows, we will mention the Colombeau generalized function (see
also [14, 16]).
Definition 1. Ay (R"™) is a set Qf functions ¢ in C5° (R™) such ?fhat fRn ¢(75)dt = 1. For
gEN, A (R") ={¢ € Ay : [pn t'd(t)dt = 0,0 < |i| < ¢}, where t' =i - tin.

In [16] sets

Ay (R™) ={® (21, ..,x5) = P (21) ..P (2n) : ¢ (x;) € Ag(R)},
are used because of applications to initial value problems. We shall follow the Colombeau
original definition.
Obviously, if ¢ € Ay, ¢ € Ny, then for every € > 0, ¢.(z) = ﬁ (f) ,x € R™, belongs to
Ay If ¢ € Ag, then its support number d(¢) is defined by

d(¢) = sup{|z| : ¢(z) # 0}.
E(Q) represents the set of
R:AyxQ—C,(P,z) —» R(P,x),

which are in C*°(Q) for every fixed ¢. In the other words elements of £ are functions
R: Ay — C*°. Note that for any f € C°°, the mapping

(¢,JJ) = f($)7 (¢,£L') € AO X Qa

defines an element in £(2) which does not depend on ¢. Conversely, if an element F' in
E(Q) does not depend on ® € Agy, we have:

F(®,2) = F(V,z), x€, for every &, ¥ € Ay,
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then it defines a function f € C*°(2),
f(z) =F(®,2),z € Q, for every ¢ € Ap.
In this sense, we identify C'°°(2) with the corresponding subspace of £(£2).

Definition 2. A component R € £(Q)) is moderate if VL CC Q, a € N, IN € N such that
for every ® € Ay , dn > 0 and C > 0 such that:

|0°R (@, z) || < Ce ™ reL,0<e<n.
The ensemble of all mild components is expressed as Epr(€2).

Definition 3. An element R € £ (C) is moderate if AN € Ny such that for every ¢ € Ay,
dn >0, C > 0 such that:

IR (¢:)|| < Ce™™,0<e<.
The ensemble of mild components is expressed by Eyar(C) (resp. Eopr(R) ).

Definition 4. A component R € Ey(Q) is named null if for every L CC Q and every
a € Ny, IN € Ny and {aq} € I such that for every ¢ > N and every ¢ € A,, 3n >0 and
C > 0 such that:

|0°R (¢, x)|| < Ce™N x €L, 0<e<n.
The ensemble of null components is expressed by N (Q).

Definition 5. The spaces of generalized functions G()) expressed by
G(Q) = Em(Q)/N ().

The following description describes what the term ”association” means in colombeau
algebra.

Definition 6. [14] Let f,g € G(R).
We said that f,g are associated if ¥ h(pe,x) and m(pe, z) and arbitrary & € D(R) there is
an €N such that YVo(x) € A,(R), we have:

|

tim [ hlpea) = mipea)gGe)ds =0,

and we denoted by f ~ g.

3. CAPUTO DERIVATIVE IN COLOMBEAU ALGEBRAS

In this section we will introduce the various definitions and features that we will need
in the following.

A fractional integral is defined by: [16]
1 T
I1°f(r :/ r—s)*"f(s)ds acRT.
)= | =

In the Caputo meaning, the fractional derivative of order o > 0 is defined as: [16]

apiy L T (s)ds
Df(r)_l“(m—a)/o i —s)eriom m—1<a<m.

Let (f-) be a representative of f in G([0, +00]), so:



A. BENMERROUS, et al.: FRACTIONAL HEAT EQUATION 19

Dafe(r)zr(ll_a) /OT (rfl_(?)ads 0<a<l1

1 " f'(s)ds
sup ||[D*f:(r)]| € =——— sup
B L ek S =T

1 y T ds
< F(l _ a) Hf HLOO([O,T]) tes[%g“]/(; (,,n _ S)Ozds

Generally [16], for a € (m — 1,m)

sup D740 < s swp [ TGN,
T’E[O,T] F(m - Oé) TE[O,T] 0 (r — S)Oé m
1 T 1
<= |fm s
—T'(m—a) ‘f HLOO([O,T]) T:}(l)%}/o (r —g)atl-m ds
! - L < Ca,TE_N-

<
_1“(171—04)6 m—«

The constant C, 7 depends on two factors o and T'.

Proposition 1. [16] Let (we(t))e be a representative of w(t) € G([0,+00)). The reqularized
Caputo ath fractional derivative of (we(t))e, o > 0, is defined by

prae {g ([0,+00)) = G ([0, +00))

w — [ (.ﬁawg) €>O] = [(Daw * 906)e>0]‘

Proposition 2.

)~ ((D%we)eso )

()

>0
Proof. Let: u. € G (]0,400)).

We have,
D% (1) = D% (1)
1 t UEQ)(S)dS
= Igg=a |, G =20
1 tou®(s)
< o0 n
<Nigma , Tyl x Ieellmeey
<D0 % o 2 (B").
Then:
5% (t) — Due®)] <ID*uc®) (el ey — 1)

1 t ug)(r)
S5 Sup —= 2 dr| x (||ee|l poo(rny — 1
['(2 = a) sefo.) I o (t—7)ot I (lsellzoe ) = 1)
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2 2—a
ey sWsego.ry a8 (O] % B x (llpell ooy — 1)

CT’a€2_O‘ €:>0 0.
We utilize the regularization for « € (0,1)

f)aue(y) = D% * QZ)e(y)
The form of convolution is provided by :
Ducly) = | Ducls)oly — )i
~0

We state that | D%u.(y) — D%ue(y)

<
<

Proof.
| D¥ue(y) — Due(y) |=| Due * de(y) — Duc(y) |
| De(y) — Duc(y) |=] Due * ¢e(y) — Due * 6(y) |
| Duc(y) — D*uc(y) |=| D¥ue * (6e(y) — 6(y)) |

| Doue(y) — Duc(y) =] /R Duyly — 1) (bel(r) — 6(s)) dr |

| Due(y) — Dus(y) |= /R | D%uc(y —7) || ¢e(7) —6(7) | dT — 0.

Because of lim._,g | ¢(7) — d(7) |= 0, consequently
D (y) = D% (y).
([l

By using assumption that ¢.(y) has compact support on Ky, the following computations
can be made utilizing Holder inequalities:

Dus(y) = D * dely) = /R DOu(y — )be(r)dr
| DPus(y) |=| /R Dus(y — 7)e(r)dr |=| /K Doy — 7)e(7)ds |
| Do (y) |= /K | Dous(y — 7) || ¢e(7) | dr

sup | D%u.(y) = sup { | 1Dty =) ] e ar |

yeK yeK
S0,
sup | Duc(y) [< sup [ Duc(y) | [ | ¢=(7) | dr
yeKo yeKo Ko
sup | Duc(y) |< Cre?.
yeK
And J J J
gy (Dhuey)) = 3 (D*ue) » 6ely) = Due x4 (6:(0)
Then,

d (= d
sup | 5 (D*0.(0) 1< sup D) | [ 145 (0.(7) | dr < G
yeKo Ko dy
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A similar approach is used to demonstrate moderateness for higher derivatives.

sup | "D (y) | < CeeP.
yeK

By the same principle we define ” Generalized caputo semigroup”.

4. GENERALIZED CAPUTO SEMIGROUP

21

Let (X, ||.||) be a Banach space and £(X) be the space of all linear continuous mappings
. Firstly, we want to see whether we can create a map A : G — G using a provided family
(Ae) cc(0,1) of Ac. X — X, where A, € £(X). The following are the general requirements:

Lemma 1. Let (Ae)ee]o,l[ be a provided family of maps Ac : X — X. In each case of

(ee), € Em(X) and (fe), € N(X), suppose that
(1) (Acec). € En(X),
912/{ (A (ec + fe)) — (Aeee) € N(X).

1s well defined.
Proof. We can see from the first attribute that the class [(Acec),.] € G.

Let e + f. be an additional member of e = [e.]. We have from the second property:

(Ac (ec + fe)) — (Aeee). € N(X),
and [(Ac (ec + fo))] = [(Aeee)) ] in G.
Thus A is properly defined.

Definition 7. We define
EXr ([0, 400, £(X)) = {Sc : [0, +oo[— L(X)), €€]0,1[, such that
R, we have

Se (r7)| = 0o (e},

sup
rel0,77]

and
NS ([0, +o0[, £L(X)) = {N, : [0, +oo[— L(X)), €€]0,1], such that

R, we have 1
s [V (2 = 0o ()

With the following characteristics:
1) 3s > 0 and Ja € R such that

sup
t<s

2) 3(H,), in L(X) and € €]0, 1] such that

()
lim ——*e=He, eclX,

5—=0 S
For every b > 0,

|l = O ()

VT > 0,

VT >0,

da €

Vb e
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Proposition 1. &3 ([0, +oc[, £(X)) is algebra in terms of composition and
N ([0, +o0[, L(X)) is an ideal of 3, ([0, +00], L(X)).

Proof. Let (S), € £y ([0,+00[, £(X)) and (N.), € N5 ([0, +oo[, L(X)).
We shall simply establish the second statement, specifically,

(SE (Té> N (ré>)e, (N6 (’I”i> Se (ré))6 e N ([0, 400, L(X)).

Where S (ri) N, (r%) represents the composition.
By (1) and the definition of NS from the previous definition, we have:

Jsc () ¥ ()| < s (o) v ()| = 0o (7).

The same is also true for HNE (ré> Se (ré) H
Furthermore, (1) and (2) provide
Se <ri> N, (ré)

1
sup < sup || Se (7"5>
t<s r r<s

= Oc0 (ﬁa) .

sup
r<s

N

In some situations s > 0. We have,

1 1
. N, (ra) Se (ra) O (€,

r>s r

For some s > 0 and a € R. Let now € €]0, 1] be fixed. We have

1 1
Wx — S.(0)H.x
Ne(ra)
= Se(ré) e:a x— Se(ri)HEa: + Se(ré)HEx — S.(0)Hx
Ne(ra)
< ‘ S.(r3) ] Trx ~ He| + ‘ S.(r%)Hex — S.(0)Hex ‘ .

According to (1) and (2), in addition to the continuity of ¢ — Sﬁ(ré)(HEx) at 0, the final
expression becomes zero as r — 0. Likewise, we have:

wa ~ H.S.(0)z|| = H Nf(:é)sg(ri)x - Nﬁ(:i“)Se(o)x
L) S.(0)z — H.S.(0)z
< N” | Setr#)e = H)sc0)s
+ Nﬁ(:“) (S.(0)z) — H. (S.(0))
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Assertions (1) and (2) require that the final expression goes to zero since r — 0. As a
result, the proposition is proven in both circumstances. ]

The factor algebra is now defined as Colombeau type algebra by:
G% ([0, +00[, L(X)) = €3y ([0, +00[, L(X)) /N ([0, +00[, L(X)) .

Components of G ([0, +oc[, £(X)) will be represented by S = [S], where (S,), is a mem-
ber of the preceding class.

Definition 8. S € G ([0, 400, L(X)) is referred to as a Colombeau CySemigroup if it has
a member (Se), such that, for e > 0,S. is a CoSemigroup.

When e low sufficient, we will only utilize members (S¢), of a Colombeau Cpsemigroup.

Proposition 2. Let (5}) and (S¢), be members of a Colombeau Cosemigroup (Se)e, with
€ ~
the infinitesimal generators A., € < €y, and A., € < €y, respectively, where éy and €y

correspond (in the sense of definition 5.6) to (S¢), and (Se),, respectively.

€ €’

Then, D (D ([le) = AE), Vé = min{eg, €9} > € and A, — Ac can be prolonged to a

component ofL(X). Moreover, for every a €] — oo, +0o0],

HAe - Ae - Oe%O (ea) )

Proof. Indicate N, = (Se - 5}) € N ([0, +o00[, L(X)).

€

Let € < €y be fixed and y € X. we have

Se(ﬁ)y—y S'e(té)y—y_Ne té)

t / - v
This indicates that by allowing ttomapto0 : D (A¢) = D (f_le).
After that, we have
1 1
Se (ta)y—y Se <t5)y—y

(A€ - (fl)e) y = lim

t—0 t t—0
N. (ti )
t

since D (A¢) = X and characteristics (1), (2) and definition(7) imply that Va € R,

= lim

50 y= Heya ye D (Ae) y

HAe A =00 ().

The following definition makes sense because of Proposition 2.

Definition 9. If there exists a representative (A¢), of A such that A. is the infinitesimal
generator of S for € small sufficiently, then A is the infinitesimal generator of a Colombeau
Cosemigroup S.

By Pazy we presente the following suggestion:
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Proposition 3. Assume S is a Colombeau Cysemigroup with an infinitesimal generator
A.

Then ey €]0, 1] such that:
1) Mapping r — S, (ré) y : [0, +o0[—> X is continuous Vy € X and € < €.
2)
r+h 1 L
lim Se (55) ydse = Se (tE>y, € <e€, yeX.
h—0 /,

3)
r 1
/SE(Sa)ydsaED(Ae), e<e, yeX
0

4)Vy € D (Ae) andr >0 S( )yGD(Ae) and

%SS (ré> y = AcSe (ré) y =S (Té) Ay, € <eo.

5) Take (Se), and (i) be representatives of Colombeau Cosemigroup S, with infinitesimal

generators A. and fle, € < €, accordmgly. So, Va € R, r > 0, we have:

Hdtaﬁ AS( )

6)Vy € D (Ae) and t,r >0,

S. ( )y S. ( )y_/:sﬁ <ec1x>Aaydea:/tA€SE <eé)ydea.

Theorem 1. Let S and S be Colombeau Cysemigroup with infinitesimal generators A and
A, respectively. If A= A then S = 5.

=0 ().

Proof. Applying the previous properties will be easy to proof the theorem. O

5. MAIN RESULT

This section describes the use of Colombeau Caputo Cy-semigroup in the solution of a
family of heat equations with singular data and potentials. We considering the next issue,
Before we explore the subject, we will create some working areas.
We put || - [[2@) = | - [l2-

Definition 10. We indicate H2 by the set of a function ue L2(R) with, D*u € L(R)
In accordance with the norm
lull iz = J Jul + | Do
The following is the definition of the Colombeau algebra type:
Gz = Ear (Hz) /N (HZ)
where Eyp (H2) = {(G:), € H2NT >0 JaeR: 1Gellpz = O (")},
And N (H7) = {(Ge). € H3,VT >0 Wb eR: [|Gellyz = O (€")}

Definition 11. 1 2 ([0, T],R) = {G. € C ([0, T], H3)NC* ([0,T], L*(R)) ,YT >0 3a €
R:

e {supicio 1 16 g supicpo

3 LQ(R)} = OE‘)O (5 )}
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And,
New2([0,T),R)) = {G- € C ([0,T], HZ) N C* ([0, T], L*(R)) ,¥T >0 VYbeR:

L2(R)} = Oeno ()

Then the Colombeau type vector space, define by:
Ger 2 (RT,R) = Ec1 2 (RT,R) /N 2 (RT, R).

max {SUPtE[O,Tl] IGell 12 » SUPtefo,y HDO‘Ge

Proposition 4. Let v € Gy2 and © € Gen g2 (RT,R) which is proposed as the solution to
the following problem:
Ofa(ty) =(A—v(y)z(ty) yeRteRT
2(0,y) = zo(y) = 0(y) (1)
v(y) = 0(y).

Then the multiplication v(y).z(t,y) makes sense.

Definition 12. A generalized function G € Gen g2 is considered to be a solution to the

equation D*G = AG. With A is characterized by a nets (Ae) € of linear operators with the
consistent framework H2(R) and values in L*(R), if and only if

sup Hﬁo‘Ge(t, ) — AG(t, )H —0(%,e =0 YacR.
t€[0,T] 2
Definition 13. An component U € Gpz is logarithmic type if it has an identification
(Ue), € Ecr gz with,
[Uell g2 = Oz—0 (Ine™').

An componen U € Gz is claimed to be log-log type if it has a identification (Ue), € Eor m2
with,

1Uell gz = O (In” Ine ') €—0.
We put

5.1. Existence and uniqueness in the Colombeau algebra.

Theorem 2. Consider a function v that belongs to the set GH2 and is logarithmic type.
(1) The infinitesimal generators of Caputo semigroups T, Ve > 0 is given by (A —v)u =
Acu, with uw € H2. The collection of these semigroups (T.)e, is a representative of a
Colombeau Caputo Cy-semigroup.

T(t) € GS (0,400, L (L?)) .
(2) Consider T be as in (1) and let v be a member of the set Gy .
Then, VT > 0, the issue 1 has unique solution in GH?.

Proof. (1) Put € > 0 as small as possible. The operator A, is the infinitesimal generator
of the associated semigroup according to the Feynman-Kac formula.

T.(5)o) = | <exp< Is ”4“’(6”6’6)) & (@ (%)) ity

Q

for ¢ € L*(R), @ = R and p, is is the Wiener measure centered at x € R. Since v is of
logarithmic type, 3C' > 0, such that

| Tu(s)6(0) < expl" e [ | g(uo9) | dy



26 TWMS J. APP. ENG. MATH. V.16, N.1, 2026

1 ly—el?
< €Cs /ex T e) | de.
<o [ew T 00|

Consequently, 3Cy > 0, such that

sup [|Te(s)6(y)lly < Coe”™"[|¢l2.
s€(0,7T

Then (T¢), € GS ([0, 4o0[, £ (L*(R))).

(2) Existence

By the principle of Duhamel , then the solution x.(t,y) of issue 1 satisfies:

z(s,y) = /RE (s, y —e)be(e)de

+ /0 /RE (s =)y —e)ve(e)xe(t, e)dedt.

By Young’s inequality, we have:

S
(s, )y < [lbell +/0 [ve( )l oo llze(t, )5 dt.
By Gronwall’s inequality, we have:
lze(s, )l < [lbelly explollveOleclieetlldt gy ¢ [0, 7).

Since v € GH? is logarithmic type and (z.), € EH2, it follows that supgefo;r) llze(ss )l
has a moderate bound.

For the first derivative to y;,j € 1,...,n we obtain

(s5,9) /E be(y—z)da
/ /E (s =) )dc; (y — 2)ze(t,y — x)
+o(y — w)dy xe(t,y — x)dxdt.
Then
d d
dy H 2 O d—yve(.) - lze(s, )l + llve()|l foo deygjg(s,‘))u%

consequently by Gronwall’s inequality implies that sup¢ 1y Hd%xg(s, )H2 is moderate.
With the same proof, we can prove that all types of derivatives exists in o1 pz.

So
(1'6)6 S (S‘Cl’Hg.

Uniqueness:

Let z, and z. two solution of issue (1).
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We set G = xe — 2, we get

Ge(s,y) = /RE (s*,y —e) Ne(e)de
+ /0 /RE (s —t)*, y — e)ve(e)Ge(t, e)dedt
+ /0 /RE ((s —t)*, y — ) Nc(e)dedt,

where N(y) = G(0,y), and N, = C%GE — (A —v)Ge.
So Young’s and Gronwall’s inequalities imply that:

1Ge(s, )y < ||Ne||2+/0 [[ve(t; I oo 1G (2, .)||2dt+/0 [[Ne(t, )l dt.

Thus
Ge € NH2.
O

Remark 1 (Application of Theorem 2). To illustrate the applicability of the main result,
consider the following initial value problem:

{agu(t,x) = (A-6@)ult,z), T€R, t>0,
u(0,z) = 6(x),

where §(x) denotes the Dirac delta distribution and 0f is the Caputo fractional deriva-
tive of order o € (0,1). This equation models anomalous diffusion in media with highly
concentrated singular potentials, such as point interactions in quantum mechanics or heat
propagation with localized defects.

In classical distribution theory, the product §(x)-u(t, z) is not well-defined. However, by
embedding the problem in the Colombeau algebra GH?2, both the singular initial data and
the singular potential become tractable. Theorem 2 guarantees the existence and uniqueness
of a generalized solution within this framework, demonstrating the power and necessity of
Colombeau algebras for analyzing fractional PDFEs with strong singularities.

5.2. Existence and uniqueness in the extension of Colombeau algebra. We prove
the existence and uniqueness solution for the problem 1, in this case initial data and the
equation controlled by the fractional derivative in the framework of the extended algebra
type of generalized functions GH?2 with a € R.

Theorem 3. We consider T, be as in Theorem 2 and let v be a member of the set Gpz.
Then, the problem 1 has unique solution in GH?>.

Proof. We shall prove only the fractional part since the entire part is already proved in
the theorem (1). Consider the fractional derivative D? with 0 < 8 < 1.

Without loss of generality, the same holds for m — 1 < 8 < m, m € N.

Existence

By the principle of Duhamel , the solution (¢, y) of issue (1) satisfies:

xe(s,y) = /RE (s, y —e)be(e)de

+ /0 /RE ((s = )%,y — e)ve(e)ze(t, e)dedt.
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Take the fractional derivative to the spatial variable, we have

Dl (s,y) = / B (5%, ) DPhyy_pda

//E ((s — ), x) DPu(y — 2)zc(t,y — )

- :U)Dﬂxe(t y — x)dxdt.

Then Young’s inequality 1mphes that

[o%zto0], <]

0| s My + 0Ol e 1D72e(s, ) 2

0

is moderate.

Consequently by Gronwall’s inequality, we have sup c(o 7 HDﬁ ze(s, )H2

Uniqueness:
Let uj. and uge two solution of issue (1).

We set G¢ = u1e — uge, we get

Ge(s,y) = /RE (s, y —e) Ne(e)de

+/OS/RE((3—t)a,y—e) ve(€)Gel(t, e)dedt
+/S/E((s—t)a,y—x) Ne(e)dedt,

where N.(y) = G(0,y), and N, = LG, — (A —v)G..
Take the fractional derivative to the spatial variable, we have

‘DB (5618(8, y) - 1,‘25(8, y)) = E(Sa’ Yy — B)DBN()’E(@)CZG
R7l

+ / o E((s —1)% y — e)DPv.(€) (z1:(T, €) — zoc (7, €)) dedr
+ / - E((s —7)% y — e)ve(e)DP (z1.(1, €) — z0c (7, €)) dedr
+ / E((s — 7)%y — e)DP N.(1, e)dedr,

R

we get

HDB (11:(8,9) — 5625(873/))”

gy < HEG .y =l [ DN ()

B = 1)y =l
[ Ol
FIB((s— )%y — )l

t
x /0 e ()} L (B [ D (212(5,y) — w2 (5, )| 1oy

‘Dﬁ (21c(5,9) — Toc (s, y))HLw(Rn) dr

HIE((s —7)% 5 — e /Ot [N ) gy 7



A. BENMERROUS, et al.: FRACTIONAL HEAT EQUATION 29

Then Gronwall’s inequality imply that

HDﬁuqﬁuw)—uzAtJﬂ‘ SCYQAhAhwmﬂ

Lo (Rn)
DPuq(. H ) — 22e(5, ) oo d
e | D20 o Ir1e(s,) = 2ol ) 7
Finally,
D? t,.) — n“ < Ce9,¥q € N.
|D? et ) ot )|, < O Ve
Thus
Ge € NH2.
O
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