
TWMS J. App. and Eng. Math. V.16, N.1, 2026, pp. 32-47

ALGEBRAIC PROPERTIES OF KERNEL SYMMETRIC

INTUITIONISTIC FUZZY MATRICES

S. CHANTHIRABABU1∗, M. ANANDHKUMAR2, A. VENKATESH1, §

Abstract. The characterization of interval valued secondary k- kernel symmetric Intu-
itionistic fuzzy matrices have been examined in this study. It is discussed how interval
valued s-k kernel symmetric, s- kernel symmetric, interval valued k- kernel symmetric,
and interval valued kernel symmetric matrices relate to one another. We establish the
necessary and sufficient criteria for interval valued s-k kernel symmetric Intuitionistic
fuzzy matrices.
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1. Introduction

Matrices are crucial in many fields of research in science and engineering. The traditional
matrix theory is unable to address problems involving numerous kinds of uncertainties.
Fuzzy matrices are used to solve certain kinds of issues. Many researchers have since com-
pleted numerous works. Only membership values are addressed by fuzzy matrices. These
matrices cannot handle values that are not membership. Several properties on IFMs have
been studied in Khan and Pal [5]. Atanassov [1,2 ] has discussed Intuitionistic Fuzzy Sets
Theory and Applications, Intuitionistic fuzzy sets and Operations over interval-valued
intuitionistic fuzzy sets. Hashimoto has studied Canonical form of a transitive matrix.
Kim and Roush [4] have studied Generalized fuzzy matrices. Pal, Khanand and Shya-
mal have characterize Intuitionistic fuzzy matrices. Lee [6] has studied Secondary Skew
Symmetric, Secondary Orthogonal Matrices. Hill and Waters [7] have analyze On k-Real
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and k-Hermitian matrices. Meenakshi [8] has studied Fuzzy Matrix: Theory and Appli-
cations. Meenakshi and Krishanmoorthy [9] have characterize On Secondary k-Hermitian
matrices. Shyamal and Pal [10] Interval valued Fuzzy matrices. Meenakshi and Kalliraja
[11] Regular Interval valued Fuzzy matrices. But, practically it is difficult to measure the
membership or non-membership value as a point .So, we consider the membership value
as an interval and also in the case of non-membership values, it is not selected as a point,
it can be considered as an interval .Here, we introduce the Secondary k-Kernel Symmetric
Intuitionistic Fuzzy Matrices and introduce some basic operators on IVIFMs.

The concept of interval-valued secondary k-range symmetric neutrosophic fuzzy matri-
ces has been explored in recent works, including Anandhkumar et al. [13], where they
investigate the properties of such matrices within neutrosophic fuzzy systems. Related
studies by Punithavalli and Anandhkumar focus on reverse sharp and left-T right-T par-
tial ordering in intuitionistic fuzzy matrices [14], contributing to the understanding of
fuzzy matrix structures and their applications in decision-making models. Additionally,
Anandhkumar et al. [15] examine reverse tilde (T) and minus partial ordering on intu-
itionistic fuzzy matrices, providing insights into their role in mathematical modeling.

Further, the study of kernel and k-kernel symmetric intuitionistic fuzzy matrices has
been advanced by Punithavalli and Anandhkumar [16], deepening the understanding of
symmetry properties in fuzzy matrix theory. The exploration of Schur complement in
k-kernel symmetric block quadri-partitioned neutrosophic fuzzy matrices by Radhika et
al. [18] offers valuable connections to advanced matrix operations. Additionally, the
work of Radhika et al. [19] discusses interval-valued secondary k-range symmetric quadri-
partitioned neutrosophic fuzzy matrices with a focus on decision-making, highlighting
their practical implications in multi-criteria decision analysis. Another relevant study by
Prathab et al. [20] provides insights into interval-valued secondary k-range symmetric
fuzzy matrices with generalized inverses, expanding their theoretical framework.In this
article we study characterization of interval valued secondary k- kernel symmetric Intu-
itionistic fuzzy matrices have been examined in this study. It is discussed how interval
valued s-k kernel symmetric, s- kernel symmetric, interval valued k- kernel symmetric, and
interval valued kernel symmetric matrices relate to one another. We establish the necessary
and sufficient criteria for interval valued s-k kernel symmetric Intuitionistic fuzzy matrices.

1.1 NOTATIONS

P T = Transpose of the matrix P,
P † = Moore- Penrose inverse of P,
R(P ) = Row space of P,
C(P ) = Column space of P,
N(P ) = Null space of P,

1.2 The main contributions of our work

(i)Characterization of Interval-Valued Secondary k-Kernel Symmetric Intu-
itionistic Fuzzy Matrices: This study provides a comprehensive analysis of interval-
valued secondary k-kernel symmetric intuitionistic fuzzy matrices. We explore their prop-
erties and relationships with other types of fuzzy matrices, particularly those related to
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kernel symmetry.

(ii)Relations Among Different Types of Matrices: We discuss and establish how
interval-valued s-kernel symmetric, s-kernel symmetric, interval-valued k-kernel symmet-
ric, and interval-valued kernel symmetric matrices are interrelated. This comparative
analysis enhances the understanding of how these matrix types differ and connect in the
context of intuitionistic fuzzy systems.

(iii)Necessary and Sufficient Criteria: The study provides the necessary and suffi-
cient conditions for interval-valued s-kernel symmetric intuitionistic fuzzy matrices. This
is a crucial step in developing a more profound theoretical understanding of these matrices
and their application in various fuzzy systems and decision-making models.

1.3 Research gap

Punithavalli and Anandhkumar [20] studied Kernel and K-Kernel Symmetric Intuitionistic
Fuzzy Matrices. I have applied the above concept to Interval-Valued Intuitionistic Fuzzy
Matrices and have also detailed some of the results.

1.4 Novelty

The references provided showcase the evolving and diverse contributions to the theory
and applications of intuitionistic fuzzy matrices, interval-valued fuzzy matrices, and their
various extensions. Each of these works brings forward novel concepts, methodologies,
and applications that push the boundaries of fuzzy mathematics and its interaction with
real-world problems. Below is a summary of the novelties introduced by the key references:

Atanassov’s Contributions (References 1, 2): Atanassov’s foundational work on intu-
itionistic fuzzy sets (IFS) and interval-valued intuitionistic fuzzy sets (IVIFS) provides
essential theoretical underpinnings for many later developments in fuzzy matrix theory.
His exploration of operations on interval-valued intuitionistic fuzzy sets (IVIFS) in par-
ticular, helps set the stage for understanding more complex matrix structures and their
algebraic properties.

Hashimoto (Reference 3): Hashimoto introduces a canonical form for transitive matri-
ces, focusing on the role of fuzzy matrices in modeling relations that satisfy transitivity.
This concept is significant as it allows the simplification of matrix representations in var-
ious fuzzy set applications, especially in decision-making and optimization problems.

Kim and Roush (Reference 4): The generalization of fuzzy matrices by Kim and Roush
is notable as it broadens the scope of matrix theory in fuzzy set systems. Their work
allows for more flexibility in modeling and solving problems involving uncertainty, provid-
ing a foundation for further research into generalized fuzzy matrix operations and their
practical use.

Pal, Khan, and Shyamal (References 5, 10): The study of intuitionistic fuzzy matri-
ces and interval-valued fuzzy matrices by Pal, Khan, and Shyamal introduces critical
methodologies for handling uncertainty and vagueness in real-world systems. Their work
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in developing and characterizing these matrices offers robust theoretical tools for appli-
cations in areas such as decision-making, optimization, and systems analysis under fuzzy
conditions.

Meenakshi and Jaya Shree (References 8,9,11): Meenakshi and Jaya Shree’s exploration
of k-kernel symmetric matrices, secondary k-Hermitian matrices, and k-range symmetric
matrices adds an important dimension to the understanding of fuzzy matrix theory. Their
study of k-kernel symmetric matrices establishes essential criteria for analyzing symmetric
properties in fuzzy matrix systems, which is useful for optimization and classification tasks.

Anandhkumar et al. (References 15,17): Anandhkumar and collaborators contribute
significantly to the theory of interval-valued fuzzy matrices and neutrosophic fuzzy matri-
ces. They extend the concepts of symmetry, partial ordering, and decision-making using
secondary k-range symmetric and other advanced matrix forms, which offer new compu-
tational methods and insights for dealing with imprecise data. Their work also includes
applications to decision-making, optimization, and generalized inverses in matrix systems,
making it highly relevant for practical problems in engineering, computer science, and
applied mathematics.

Radhika et al. (References 22, 23, 24): Radhika and colleagues explore the role of Schur
complements in k-kernel symmetric block quadri-partitioned matrices and their applica-
tion in neutrosophic fuzzy matrices. These works contribute to the development of more
advanced algebraic tools for matrix analysis, enabling more efficient handling of complex
fuzzy systems and decision-making processes.

2. PRELIMINARIES AND DEFINITIONS

Definition 2.1. Interval-valued intuitionistic fuzzy matrix (IVIFM): An interval val-
ued intuitionistic fuzzy matrix (IVIFM) P of order m × n is defined as P = [Xij , <
pijµ, pijv >]m×n where pijµ and pijv are both the subsets of [0, 1] which are denoted by
pijµ = [pijµL, pijµU ] and pijv = [pijvL, pijvU ] which maintaining the condition 0 ≤ pijµU +
pijµU ≤ 1, 0 ≤ pijµL + pijvL ≤ 1, 0 ≤ pµL ≤ pµU ≤ 1, 0 ≤ pvL ≤ pvU ≤ 1 for i = 1, 2, ,m
and j = 1, 2, , n.

Example 2.1. Let P =

[
< [0.2, 0.2], [0.3, 0.3] > < [0.2, 0.3], [0.3, 0.4] >
< [0.2, 0.3], [0.3, 0.4] > < [0.2, 0.2], [0.3, 0.3] >

]
PL =

[
< 0.2, 0.2 >,< 0.3, 0.3 >
< [0.2, 0.2 >,< 0.3, 0.3 >

]
, PU =

[
< 0.2, 0.3 >,< 0.3, 0.4 >
< [0.3, 0.2 >,< 0.4, 0.3 >

]
Definition 2.2. If k(X) = (Xk[1], Xk[2], Xk[3], . . . , xk[n] ∈ Fn×1 for X = X1, X2, .., Xn ∈
F[n×1], where K is involuntary, The corresponding permutation matrix is satisfied using

the following. (P.2.1)KKT = KTK = In,K = KT ,K2 = I and R(x) = Kx
By the definition of V,

(P.2.2)V = V T , V V T = V TV = In and V 2 = I

(P.2.3)N([PµL, PV L]) = N([(PµL, PV L]V ), N([(PµL, PV L]) = N([(PµL, PV L]K)
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N([(PµU , PV U ]) = N([(PµU , PV U ]V ), N([(PµU , PV U ]) = N([(PµU , PV U ]K)

(P.2.4)N([PµL, PV L]V )T = N(V [PµL, PV L]
T ), N(V [PµL, PV L])

T = N([PµL, PV L]
TV )

N([(PµU , PV U ]V )T = N(V [(PµU , PV U ]
T ), N(V [(PµU , PV U ])

T = N([(PµU , PV U ]
TV.

Lemma 2.1. For a matrix A belongs to Fn and a permutation fuzzy matrix P, N(P )
= N(Q) iff N(APBT ) = N(AQBT ) .

Lemma 2.2. For IV fuzzy matrix P = KP TK iff KP = (KP )(KP )T (KP ),
interval valued fuzzy matrix ⇔ PK = (PK)(PK)T (PK) IV fuzzy matrix.

3. Interval valued Secondary k - ks Intuitionistic Fuzzy Matrix

Definition 3.1. For an Intuitionistic fuzzy matrix P =< [PµL, PµU ], [PvL, PvU ] >

∈ IV IFMnn is an IV s - symmetric fuzzy matrix iff [PµL, PvL] = V [PµL, PvL]
TV

and [PµU , PvU ] = V [PµU , PvU ]
TV.

Definition 3.2. For an Intuitionistic fuzzy matrix P =< [PµL, PµU ], [PvL, PvU ] >

∈ IV IFMnn is an IV s - ks fuzzy matrix iff N([PµL, PvL]) = N(V [PµL, PvL]
TV ),

N([PµU , PvU ]) = N([PµU , PvU ]
TV ).

Definition 3.3. For an Intuitionistic fuzzy matrix P =< [PµL, PµU ], [PvL, PvU ] >
∈ IV IFMnn is an IV s - k - ks fuzzy matrix iff N([PµL, PvL])

= N(KV [PµL, PvL]
TV K, [PµU , PvU ] = N(KV [PµU , PvU ]

TV K).

Lemma 3.1. For an Intuitionistic fuzzy matrix P =< [PµL, PµU ], [PvL, PvU ] >
∈ IV IMnn is interval valued s-kernel symmetric Intuitionistic fuzzy matrix ⇔ V P
=< [PµL, PvL], V [PµU , PvU ] > interval valued kernel symmetric Intuitionistic
fuzzy matrix ⇔ PV =< [PµL, PvL]V, [PµU , PvU ] > is interval valued kernel
symmetric Intuitionistic fuzzy matrix.
Proof. An Intuitionistic fuzzy matrix is s-ks fuzzy matrix
P =< [PµL, PµU ], [PvL, PvU ] >∈ IV IMnn is s - ks fuzzy matrix.

⇔ N([PµL, PvL]) = N(V [PµL, PvL]
TV ) [Definition3.2]

⇔ N([PµL, PvL]V ) = N([PµL, PvL]V )
⇔ N([PµL, PvL] is ks. [By P.2.2]

⇔ N(V [PµL, PvL]V V T ) = N(V V [PµL, PvL]
TV )

⇔ N(V [PµL, PvL]) = N(V [PµL, PvL]
T )

⇔ V [PµL, PvL] is kernal symmetric.
Similar manner
⇔ N([PµU , PvU ]) = N(V [PµV , PvU ]

TV )

⇔ N([PµL, PvL]) = N(V [PµL, PvL]
TV ) is ks.

⇔ N(V [PµU , PvU ]) = N(V V [PµU , PvU ]
TV )

⇔ N(V [PµU , PvU ]) = N(V [PµU , PvU ]
T )

⇔ V [PµU , PvU ]iskernalsymmetric is kernel symmetric.
Therefore, V P =< V [PµL, PvU ], V [PµU , PvU ] > is an internal valued symmetric.

Remark 3.1. To be more precise, Definition (3.3) reduces to N([PµL, PvL])

= N(V [PµL, PvL]
TV ), N([PµU , PvU ]) = N(V [PµU , PvU ]

TV ), meaning that the appropri-
ate Intuitionistic fuzzy permutation matrix K is an interval valued s-kernel symmetric
Intuitionistic fuzzy matrix when k(i) = ifori = 1, 2, . . . , n.
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Remark 3.2. For k(i) = n−i+1, the analogous permutation Intuitionistic fuzzy matrix K
can be reduced to V. N([PµL, PvL]) = N([PµL, PvL]

T ), N([PµU , PvU ]) = N(V [PµU , PvU ]
TV ),

means that is an IV kernel symmetric in P =< [PµL, PvL], [PµU , PvU ] > Definition (3.3).

Remark 3.3. If A is interval valued s-k-symmetric, then [PµL, PvL] = KV [PµL, PvL]
TV K,

and AU = KV AT
UV K, indicating that it is interval valued (IV) s-k-ks IFM, then

N([PµL, PvL]) = N(KV [PµL, PvL]
TV K), N([Pµv, PvU ]) = N(KV [Pµv, PvU ]

TV K). We
note that s-k-symmetric Intuitionistic fuzzy matrix is s-k-ks Intuitionistic fuzzy matrix.
The opposite isn’t always true, though. The example that follows illustrates this V.

Example 3.1. Consider IVIFM

K =

[
< 1, 0 > < 0, 1 >
< 0, 1 > < 1, 0 >

]
,V =

[
< 0, 1 > < 1, 0 >
< 1, 0 > < 0, 1 >

]
P=[PµL,PµU ], [PvL,PvU ] >∈ IV IFMnn

P =

[
< [0.2, 0.2], [0.3, 0.3] > < [0.2, 0.3], [0.3, 0.4] >
< [0.2, 0.3], [0.3, 0.4] > < [0.2, 0.2], [0.3, 03.] >

]
,

is an IV symmetric, IV s-k symmetric and hence therefore IV s-k kernal symmetric.
Hence

PL=

[
< 0.2, 0.2 > < 0.3, 0.3 >
< 0.2, 0.2 > < 0.3, 0.3 >

]
,

PU=

[
< 0.2, 0.3 > < 0.3, 0.4 >
< 0.3, 0.2 > < 0.4, 0.3 >

]
,

KV =

[
< 1, 0 > < 0, 1 >
< 0, 1 > < 1, 0 >

] [
< 0, 1 > < 1, 0 >
< 1, 0 > < 0, 1 >

]
=

[
< 0, 1 > < 1, 0 >
< 1, 0 > < 0, 1 >

]
V K =

[
< 0, 1 > < 1, 0 >
< 1, 0 > < 0, 1 >

] [
< 1, 0 > < 0, 1 >
< 0, 1 > < 1, 0 >

]
=

[
< 0, 1 > < 1, 0 >
< 1, 0 > < 0, 1 >

]
KV P T

L V K=

[
< 0, 1 > < 1, 0 >
< 1, 0 > < 0, 1 >

] [
< 0.2, 0.2 > < 0.2, 0.3 >
< 0.2, 0.3 > < 0.2, 0.2 >

] [
< 0, 1 > < 1, 0 >
< 1, 0 > < 0, 1 >

]
= PL

KV P T
L V K=

[
< 0, 1 > < 1, 0 >
< 1, 0 > < 0, 1 >

] [
< 0.3, 0.3 > < 0.3, 0.4 >
< 0.3, 0.4 > < 0.3, 0.3 >

] [
< 0, 1 > < 1, 0 >
< 1, 0 > < 0, 1 >

]
= PL

N(PL) = N(KV P T
L V K) =< 0, 0 >

P = [PL, PU ] is an IV s-k kernal symmetric.

Example 3.2. For k = (1,2)

K =

[
< 1, 0 > < 0, 1 >
< 0, 1 > < 1, 0 >

]
,V =

[
< 0, 1 > < 1, 0 >
< 1, 0 > < 0, 1 >

]
P =< [PµL, PvU ], [PvL, PvU ] >∈ IV IFMnn

P =

[
< [0, 0.2], [0, 1] > < [0.2, 0.4], [0.2, 0.3] >

< [0.2, 0.4], [0.2, 0.3] > < [0.2, 0.2] >,< [0.3, 0.4] >

]
PU =

[
< 0, 1 > < 0.2, 0.3 >

< 0.2, 0.3 > < 0.3, 0.4 >

]
KV P T

U V K=

[
< 1, 0 > < 0, 1 >
< 0, 1 > < 1, 0 >

] [
< 0, 1 > < 1, 0 >
< 1, 0 > < 0, 1 >

] [
< 0, 1 > < 0.2, 0.3 >

< 0.2, 0.3 > < 0.3, 0.4 >

]
[
< 0, 1 > < 1, 0 >
< 1, 0 > < 0, 1 >

] [
< 1, 0 > < 0, 1 >
< 0, 1 > < 1, 0 >

]
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KV P T
L V K not equal to P T

Here P = KP T − UK
Therefore P is symmetric IFM, s- k-symmetric and IFM but not s- k- symmetric IFM.

Theorem 3.1. The following conditions are equivalent P ∈ IV IFn.
(1)P = [PµL, PvL], [PµU , PvU ]is an IV s-k kS.
(2)KV P =< [KV [PµL, PvL],KV [PµU , PvU ] >is an IV kernal symmetric.
(3)PKV =< [PµL, PvL]KV, [PµU , PvU ] >is an IV kernal symmetric.
(4)V P =< [V [PµL, PvL], V [PµU , PvU ] >is an IV kernal symmetric.
(5)PK =< [[PµL, PvL]K, [PµU , PvU ]K] >is an IV kernal symmetric.

(6)P T is an IV s-k symmetric
(7)N([PµL, PvL]) = N([PµL, PvL])

TV K,N([PµU , PvU ]) = N([PµU , PvU ]
TV K).

(8)N([PµL, PvL]
T ) = N([PµL, PvL])V K,N([PµU , PvU ]

T )N([PµU , PvU ]V K).

(9)N(KV [PµL, PvL]) = N(KV [PµL, PvL]
T )T , N(KV [PµU , PvU ]) = N(KV [PµU , PvU ]

T ).
(10) PV K =< [PµL, PvL]V K, [PµU , PvU ] > VKis an IV kernal symmetric.
(11)PV =< [PµL, PvL]V, [PµU , PvU ] > V is an IV kernal symmetric.
(12)V KP =< VK[PµL, PvL], V K[PµU , PvU ] >is an IV kernal symmetric.
(xii)KP =< K[PµL, PvL],K[PµU , PvU ] >is an IV kernal symmetric.

Proof: (1) iff (2) iff (4)
Let P = [PµL, PvL], [PµU , PvU ]is an IV S-K ks
Let [PµL, PvL] is an S-K ks

⇔ N([PµL, PvL]) = N(KV [PµL, PvL]
TV K), N([PµU , PvU ]) = N(KV [PµU , PvU ]

TV K),

⇔ N(KV [PµL, PvL]) = N(KV [PµL, PvL])
T , N([PµU , PvU ]) = N(KV [PµU , PvU ])

T

(ByP2.3)
⇔ KV P =< KV [PµL, PvL],KV [PµU , PvU ] > is an IV kernal symmetric
⇔ V P =< V [PµL, PvL], V [PµU , PvU ] > is an IV kernal symmetric
As a conclusion (1) iff (2) iff (4) is true
(1) iff (3) iff (5)
Let P = [PµL, PvL], [PµU , PvU ] is an IV S - K kernal symmetric

⇔ N([PµL, PvL]) = N(KV [PµL, PvL]
TV K), N([PµU , PvU ]) = N(KV [PµL, PvL]

TV K),

⇔ N(KV [PµL, PvL]) = N(KV [PµL, PvL]
TV K), N([PµU , PvU ]) = N(KV [PµU , PvU ]

T ),
(ByP2.3) ⇔ N(V K[PµL, PvL])

= N((V K)[PµL, PvL]
T ), N(V K(KV [PµU , PvU ]) = N((V K)[PµU , PvU ]

TV K(V K)T ),

⇔ N([PµL, PvL]) = N [PµL, PvL]
T ), N([PµU , PvU ]KV ) = N([PµU , PvU ]KV T ),

(ByLemma2.2)
⇔ PKV = [[PµL, PvL]KV, [PµU , PvU ]KV ) is IV s - kernal symmetric
⇔ PK = [[PµL, PvL]K, [PµU , PvU ]K) is IV s - kernal symmetric
As a conclusion (1) Iff (3) iff (5) is true
(2) iff (9)
KVA =[KV [PµL, PvL],KV [PµU , PvU ]]is an interval valued ks

⇔ N(KV [PµL, PvL]) = N((KV [PµL, PvL])
T ), N(KV [PµU , PvU ]) = N((KV [PµU , PvU ])

T )
(2) iff (9) is true.
(9) iff (7)
KV P = KV [PµL, PvL],KV [PµU , PvU ] is an IV ks

⇔ N(KV [PµL, PvL]) = N((KV [PµL, PvL])
T ), N(KV [PµU , PvU ]) = N((KV [PµU , PvU ])

T )

⇔ N([PµL, PvL]) = N((KV [PµL, PvL])
T ), N([PµU , PvU ]) = N((KV [PµU , PvU ])

T )

⇔ N([PµL, PvL]) = N([PµL, PvL])
TV K), N([PµU , PvU ]) = N([PµU , PvU ])

TV K)
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As a conclusion (2) iff (7) is true.
(3) iff (8)
PV K = [[PµL, PvL]V K, [PµL, PvL]V K

⇔ N([PµL, PvL]V K) = N(([PµL, PvL]V K)T ), N([PµU , PvU ]V K) = N(([PµU , PvU ]V K)T )

⇔ N([PµL, PvL]V K) = N(([PµL, PvL])
T ), N([PµU , PvU ]V K) = N([PµU , PvU ])

T

As a conclusion (3) iff (8 is true
(1) iff (6)
Let P =< [PµL, PvL], [PµU , PvU ] > is an IV S - K KS

⇔ N([PµL, PvL]) = N(KV [PµL, PvL])
TV K), N([PµU , PvU ]) = N(KV [PµU , PvU ])

TV K),

(By Definition 3.3)
(KV P )T = (KV [PµL, PvL],KV [PµU , PvU ])

T is an IV kernal symmetric

⇔ P TV K = ([PµL, PvL]V K, [PµU , PvU ]V K) is an IV kernal symmetric

⇔ P T = ([PµL, PvL]
T , [PµU , PvU ]

T ) is an IV S - K kernal symmetric
As a conclusion (1) iff (6) is true
Let P =< [PµL, PvL], [PµU , PvU ] > is an IV S -K ks
Consider [PµL, PvL] is a S - K ks

⇔ N([PµL, PvL]) = N(KV [PµL, PvL]
TV K), N([PµU , PvU ]) = N(KV [PµU , PvU ]

TV K)

⇔ N([PµL, PvL]V K) = N([PµL, PvL]V K), N([PµU , PvU ]V K) = N([PµU , PvU ]
TV K)

By(P.2.3)
⇔ PV K = [[PµL, PvL]V K), [PµU , PvU ]V K) is an IV kernal symmetric
⇔ PV = [[PµL, PvL]V ), [PµU , PvU ]V ) is an IV k -kernal symmetric
Therefore (1) iff (10) iff (11) is true
(1) iff (12) iff (13)
Let P =< [PµL, PvL], [PµU , PvU ] is an IV s-k ks

⇔ N([PµL, PvL]) = N(KV [PµL, PvL]
TV K), N([PµU , PvU ]) = N(KV [PµU , PvU ]

TV K)
(ByDefinition3.3)
⇔ N(V K[PµL, PvL]) = N(V K[PµL, PvL]

T ), N(V K[PµU , PvU ]) = N(V K[PµU , PvU ]
T )

By(P.2.3)
⇔ N(KV (V K[PµL, PvL]))

= N((KV )[PµL, PvL])
TKV (KV )T , N(KV (V K[PµL, PvL]))

= N((KV [PµU , PvU ]
TKV (KV )T )

⇔ N(V K[PµL, PvL])

= N(V K[PµL, PvL]
T ), N(V K[PµL, PvL]) = N(V K[PµL, PvL]

T )T [ByLemma2.2]
⇔ V KP = [V K[PµL, PvL], V K[PµU , PvU ]] is an IV kernal symmetric
⇔ KP = [K[PµL, PvL],K[PµU , PvU ]] is an IV s - kernal symmetric
As a conclusion (1) iff (12) iff (13) is true
The above statement can be reduced to the equivalent requirement that a matrix be
an IV s- CS for K = I in particular.

Corollary 3.1. The following statements are equivalent for P ∈ IV IMnn

(1) P =< [PµL, PvL], [PµU , Pvu] > is an IV s- ks.

(2) V P =< V [PµL, PvL], V [PµU , PvU ] > is an IV kernel symmetric.

(3) PV =< [PµL, PvL]V, [PµU , Pvu]V > is an IV s kernel symmetric.
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(4) P T =< [PµL, PvL]
T , [PµU , Pvu]

T >is an IV s- kernel symmetric.

(5) N([PµL, PvL]) = N([PµL, PvL]
TV ), N([PµU , Pvu]) = N([PµU , Pvu]

TV ).

(6) N([PµL, PvL]
T ) = N([PµL, PvL]V ), N([PµU , Pvu]

T ) = N([PµU , Pvu]
TV ).

(7) N(KV [PµL, PvL]) = N(V [PµL, PvL]
T ), N(KV [PµU , Pvu]) = N(V [PµU , Pvu]

T ).

Theorem 3.2. For P = [PµL, PvL], [PµU , PvU ] then any two of the conditions below imply
the other

1) P =< [PµL, PvL], [PµU , PvU ] > is an IV K - ks.

2) P =< [PµL, PvL], [PµU , PvU ] > is an IV S-K- ks.

3) N([PµL, PvL]
T ) = N(V K[PµL, PvL])

T , N([PµU , PvU ])
T = N(V K[PµU , PvU ]

T ).

Proof: (1) and (2) implies (3)
Let P =< [PµL, PvL], [PµU , PvU ] > is an IV S -K range symmetric.

⇒ N([PµL, PvL]) = N([PµL, PvL]
TV K), N([PµU , PvU ]) = N([PµU , PvU ]

TV K)
(By Theorem3.1)
⇒ N(K[PµL, PvL]K) = N(K[PµL, PvL]

TK), N(K[PµU , PvU ]K) = N(K[PµU , PvU ]
TK)

(ByLemma2.2)
⇒ N([PµL, PvL]

T ) = N((V K)[PµL, PvL]
T )), N([PµU , PvU ]

T ) = N(V K[PµU , PvU ]
T )

(ByTheorem3.1)
(i) and (ii) implies (iii) is true
(i) and (iii) implies (ii)
P =< [PµL, PvL], [PµU , PvU ] > is an IV k - ks

⇒ N([PµL, PvL]) = N(K[PµL, PvL]
TK), N([PµL, PvL]) = N(K[PµL, PvL]

TK)
⇒ N([PµL, PvL]K)

= N(([PµL, PvL])
T ), N(K[PµU , PvU ]K) = N(([PµL, PvL])

T )[ByLemma2.5]
Therefore, (1)and(3)
⇒ N([PµL, PvL]K) = N((V [PµL, PvL])

T ), N(K[PµU , PvU ]K) = N((V [PµU , PvU ]K)T )

N([PµL, PvL] = N((KV [PµL, PvL])
T ), N([PµU , PvU ]) = N((K[PµU , PvU ])

T )
⇒ (2) is true
(2)and(3)implies(1)
P =< [PµL, PvL], [PµU , PvU ] > is an IV s- k - ks

⇒ N([PµL, PvL]) = N([PµL, PvL]
TV K), N([PµU , PvU ]) = N([PµL, PvL]

TV K)

⇒ N(K[PµL, PvL]K) = N(K[PµL, PvL]
TK), N([PµU , PvU ]) = N(K[PµL, PvL]

TK)
P =< [PµL, PvL], [PµU , PvU ] > is an IV k - kernal symmetric
Therefore, (1) is true
Hence the theorem.

4. Interval valued s - k kernel symmetric regular Intuitionistic fuzzy
matrices

In this section, it was discovered that there are various generalized inverses of matrices
in IVIFM. The comparable standards for different g-inverses of an IV s-k ks Intuitionistic
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fuzzy matrix to be IV s-k ks are also established. The generalized inverses of an IV s-ks
P corresponding to the sets P{1, 2}, P{1, 2, 3} and P{1, 2, 4} are characterized.

Theorem 4.1. Let P =< [PµL, PvL], [PµU , PvU ] > IV IMnn, X belongs to P{1, 2} and
PX, XP are an IV s- k-Ks. Then P is an IV s - k -ks iff X =< [XµL, XvL], [PµU , PvU ] >
is an s - k - ks.
Proof: Let N(KV [PµL, PvL]) = N(KV [PµL, PvL]X[PµL, PvL]) ⊆ N(X[PµL, PvL])
[Since[PµL, PvL] = [PµL, PvL]X[PµL, PvL]]
= N(XUV [PµL, PvL]) ⊆ M(XUKKV [PµL, PvL]) ⊆ N(KV [PµL, PvL])
Hence, N(KV [PµL, PvL]) = N(X[PµL, PvL])

= N(KV [XPµL, PvL]
TV K)[XPisIV s− k − ks]

= N([PµL, PvL]
T [[XµL, XvL]

TV V K])

= N([XµL, XvL]
TV K)

= N((KV [XµL, XvL])
T )

N((KV [PµL, PvL])
T ) = N [PµL, PvL]

TV K

= N([XµL, XvL]
T [PµL, PvL]

TV K)

N((KV [PµL, PvL][XµL, XvL])
T )

= (KV [PµL, PvL][XµL, XvL]) [VP is s- k IV ks]
= N(KV [XµL, XvL])
Similarly,
Hence, N(KV [XµL, XvL]) = N((KV [PµL, PvL])

T ) (KVX is an IV ks)

⇔ N(KV [PµL, PvL]) = N((KV [PµL, PvL])
T ), N(KV [PµL, PvL]) = N((KV [PµU , PvU ])

T )

⇔ N(KV [XµL, XvL]) = N((KV [XµL, XvL])
T ), N((KV [XµL, XvL])

T )
⇔ KVX = [KV [XµL, XvL]],KV [xµL, XvL] is an IV ks
X =< [XµL, XvL], [PµU , PvU ] > is an IV s- k -ks.

Theorem 4.2. P =< [PµL, PvL], [PµU , PvU ] >∈ IV IFnn, X =< [XµL, XvL], [XµU , XvU ] >

∈ P{1, 2, 3},
N(KV [PµL, PvL]) = N(KV [XµL, XvL])

T , N(KV [PµL, PvL]) = N(KV [XµL, XvL])
T .

Then
P =< [PµL, PvL], [PµU , PvU ] > is IV s- k- ks ⇔ X =< [XµU , XvU ] > is IV s- k - ks.
Proof: Given P{1, 2, 3}. Hence [PµL, PvL][XµL, XvL] = [PµL, PvL],
[XµL, XvL][PµL, PvL][XµL, XvL] = [XµL, XvL],

([PµL, PvL][XµL, XvL])
T = [PµL, PvL][XµL, XvL]

Consider, N((KB[PµL, PvL])
T ) = N([XµL, XvL])[PµL, PvL]

TV K[ByusingP = PXP ]

= N(KV ([PµL, PvL][XµL, XvL])
T )

= N(([PµL, PvL][XµL, XvL])
T )[ByP.2.3]

= N([PµL, PvL][XµL, XvL]) [([PµL, PvL][XµL, XvL])
T = [PµL, PvL][XµL, XvL]]

= N([XµL, XvL]) [ByUsing[XµL, XvL] = [[XµL, XvL][PµL, PvL][XµL, XvL]]
N(KV [XµL, XvL]) [ByP.2.3]

Similarly, we can consider, N((KV [PµL, PvL])
T ) = N(XT

U [PµL, PvL]
TV K)

[By usingP = PXP ]
= N(KV ([PµL, PvL][XµU , XvU ])

T ) = N([PµU , PvU ][XµU , XvU ]) (P.2.3)

= N([PµU , PvU ][XµU , XvU ]) [(AX)T = AX]
= N([XµU , XvU ]) [ByusingX = XAX]
= NKV [XµU , XvU ] [ByP.2.3]
If KVP is an Kernal Symmetric
⇔ N(KV [PµL, PvL]) = N((KV [PµL, PvL])

T ), N(KV [PµL, PvL]) = N((KV [PµL, PvL])
T )

⇔ N(KV [XµL, XvL])
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= N((KV [XµL, XvL])
T ), N(KV [XµL, XvL]) = N((KV [XµU , XvU ])

T )
KVX = [KV [XµL, XvL],KV [XµU , XvU ]] is an IV Ks
X = [[XµL, XvL], [XµU , XvU ]] is an s-k-ks.

Theorem 4.3. Let P =< [PµL, PvL], [PµU , PvU ] >∈ IV IFMnn, X ∈ P{1, 2, 4},
N(KV [PµL, PvL])

T = N(KV [XµL, XvL]), N(KV [PµU , PvU ])
T = N(KV [XµU , XvU ]).

Then KVP is an s - k - ks ⇔ X =< [XµL, XvL], [XµU , XvU ] > is an IV s - k - ks.
Proof: Given, P{1, 2, 4}, Hence [PµL, PvL]L[XµL, XvL][PµL, PvL] = [PµL, PvL],
[XµL, XvL][PµL, PvL][XµL, XvL] = [XµL, XvL],

([XµL, XvL][PµL, PvL]
T ) = [XµL, XvL][PµL, PvL]

Consider, N((KV [PµL, PvL])
T )−N([XµL, XvL]

T [PµL, PvL]
TV K)[ByusingP = PXP ]

= N(KV ([PµL, PvL][XµL, XvL])
T )

= N(([PµL, PvL][XµL, XvL])
T )

= N(([PµL, PvL][XµL, XvL])
T )[ByP.2.3]

= N([PµL, PvL][XµL, XvL])
= N([XµL, XvL])
= N(KV [XµL, XvL])[ByP.2.3]

N((KKV [PµU , PvU ])
T ) = N([XµU , XvU ]

T [XµL, XvL]
TV K) [ByusingP = PXP ]

= N(KV ([PµU , PvU ][XµU , XvU ])
T )

= N(([PµU , PvU ][xµU , XvU ])
T ) [ByP.2.3]

= N([PµU , PvU ][XµU , XvU ]) [(PX)T = PX]
= N([XµU , XvU ])
= N(KV [XµU , XvU ]) [ByP.2.3.
If KVP is an kernal symmetric]
⇔ N(KV [PµL, PvL]) = N((KV [PµL, PvL])

T ), N(KV [PµU , PvU ]) = N((KV [PµU , PvU ])
T )

⇔ N(KV [XµL, XvL])

= N((KV [XµL, XvL])
T ), N(KV [XµU , XvU ]) = N((KV [XµU , XvU ])

T )
KVX = [KV [XµL, XvL],KV [XµU , XvU ]] is an Ks.
X = [[XµL, XvL],KV [XµU , XvU ]] is an IV s - k ks.
The aforementioned Theorems reduce to comparable criteria, in particular for K = I,
for different g-inverses of IV s-ks to be IV secondary ks.

Corollary 4.1. For P =< [PµL, PvL], [PµU , PvU ] >∈ IV IFMnn X goes to P{1, 2} and
PX =< [PµL, PvL][XµL, XvL], [PµU , PvU ][XµU , XvU ] >,
XP =< [XµL, XvL][PµL, PvL][PµU , PvU ] >, are is an s-ks . Then P is an IV s- ks
⇔ X =< [XµL, XvL][XµU , XvU ] > is an IV s - ks.

Corollary 4.2. For P =< [PµL, PvL], [PµU , PvU ] >∈ IV IFMnn X goes to P{1, 2, 3}
and N(KV [PµL, PvL]) = N(V [XµL, xvL])

T , N(KV [PµU , PvU ]) = N([XµU , XvU ]
T > .

Then P is an IV s- ks ⇔ X =< [XµL, XvL][XµU , XvU ] > is an IV s - ks.

Corollary 4.3. For P =< [PµL, PvL], [PµU , PvU ] >∈ IV IFMnn X goes to P{1, 2, 4}
and N(V [PµL, PvL])

T = N(V [XµL, xvL])
T , N(V [PµU , PvU ])

T = N([XµU , XvU ] > .
Then P is an IV s- ks iff X is an IV s - ks.

4.1. Graphical Representation of kernel symmetric Adjacency IFM.

Definition 4.1. Adjacency IFM : An adjacency Intuitionistic Fuzzy Matrix is a square
matrix that serves as a representation for a finite graph. The matrix’s elements convey
information regarding whether pairs of vertices within the graph are connected or not. In
the specific scenario of a finite simple graph, the adjacency matrix can be described as a
binary matrix, often denoted as a (1, 0) and (0, 1) -matrix, where the diagonal elements are
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uniformly set to (0, 1). If G(V,E) denote a simple graph with n vertices. The adjacency
matrix A = [aij ] is a symmetric matrix defined

A = [aj ] =

{
(1, 0) when v, is adiancent to Vj

(0, 1) otherwise
denoted by A(G) or AG.

Example 4.1. Consider an adjacency IFM and a corresponding graph

A =


v1 v3 v4 v2 v5

v1 < 0, 1 > < 1, 0 > < 1, 0 > < 0, 1 > < 0, 1 >
v3 < 1, 0 > < 0, 1 > < 0, 1 > < 0, 1 > < 1, 0 >
v4 < 1, 0 > < 0, 1 > < 0, 1 > < 1, 0 > < 0, 1 >
v2 < 0, 1 > < 0, 1 > < 1, 0 > < 0, 1 > < 1, 0 >
v5 < 0, 1 > < 1, 0 > < 0, 1 > < 1, 0 > < 0, 1 >



Figure 1

Definition 4.2. Incidence IFM: If G(V,E) represent a simple graph with n vertices.
Let V = V1, V2, . . . , Vn and E = e1, e2, ..., em. Then, the incidence IFM I = [mij ] is a
matrix defined by

A = [aj ] =

{
(1, 0) when v is incidence to ej

(0, 1) otherwise
denoted by A(G) or AG.

Example 4.2. Consider an incidence IFM and a corresponding graph. The incidence
NFM is

A =


< 1, 0 > < 1, 0 > < 0, 1 < 0, 1 > < 0, 1 > < 0, 1 > < 1, 0 >
< 1, 0 > < 1, 0 > < 0, 1 > < 1, 0 > < 0, 1 > < 1, 0 > < 0, 1 >
< 0, 1 > < 1, 0 > < 1, 0 > < 0, 1 > < 0, 1 > < 0, 1 > < 0, 1 >
< 0, 1 > < 0, 1 > < 1, 0 > < 1, 0 > < 1, 0 > < 0, 1 > < 0, 1 >
< 0, 1 > < 0, 1 > < 0, 1 > < 0, 1 > < 1, 0 > < 1, 0 > < 1, 0 >


Corresponding Graph

4.2. Relation between isomorphism, non-isomorphism and KS.
Graph A

Consider the graph G and name as follows
Let us consider adjacency matrix of the given graph is
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Figure 2

Figure 3

Figure 4

A =


< 0, 1 > < 0, 1 > < 0, 1 > < 0, 1 > < 0, 1 > < 0, 1 >
< 1, 0 > < 0, 1 > < 1, 0 > < 0, 1 > < 0, 1 > < 1, 0 >
< 0, 1 > < 1, 0 > < 0, 1 > < 1, 0 > < 0, 1 > < 1, 0 >
< 0, 1 > < 0, 1 > < 1, 0 > < 0, 1 > < 1, 0 > < 0, 1 >
< 0, 1 > < 0, 1 > < 0, 1 > < 1, 0 > < 0, 1 > < 0, 1 >
< 0, 1 > < 0, 1 > < 1, 0 > < 0, 1 > < 0, 1 > < 0, 1 >


Consider the graph H and name as follows

Figure 5

Consider the graph H and name as follows

Let us consider adjacency matrix of the given graph is
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A =


< 0, 1 > < 0, 1 > < 0, 1 > < 0, 1 > < 0, 1 > < 0, 1 >
< 1, 0 > < 0, 1 > < 1, 0 > < 0, 1 > < 0, 1 > < 1, 0 >
< 0, 1 > < 1, 0 > < 0, 1 > < 1, 0 > < 0, 1 > < 1, 0 >
< 0, 1 > < 0, 1 > < 1, 0 > < 0, 1 > < 1, 0 > < 0, 1 >
< 0, 1 > < 0, 1 > < 0, 1 > < 1, 0 > < 0, 1 > < 0, 1 >
< 0, 1 > < 0, 1 > < 1, 0 > < 0, 1 > < 0, 1 > < 0, 1 >


The two graphs have the same number of vertices, same number of edges and same degree
sequence. Though both the graphs have 3 pendent vertices, 2 vertices of degree 2 and 1
vertex of degree 3, the incidence relation of 3 pendent vertices are not preserved because
in graph G 2 pendent vertices are attached to vertices of degree 2 and 1 pendent vertex
is attached to vertex of degree 3 but in graph H only 1 pendent vertex is attached to
vertex of degree 2 an 2 pendent vertices are attached to vertex of degree 3. Therefore, the
isomorphism between the two graphs cannot be established.
Thus, the given two graphs are non-isomorphic.

Figure 6

Let us consider adjacency matrix of the given graph is

G =


< 0, 1 > < 1, 0 > < 0, 1 > < 1, 0 > < 0, 1 >
< 1, 0 > < 0, 1 > < 1, 0 > < 0, 1 > < 1, 0 >
< 0, 1 > < 1, 0 > < 0, 1 > < 1, 0 > < 0, 1 >
< 1, 0 > < 0, 1 > < 1, 0 > < 0, 1 > < 1, 0 >
< 0, 1 > < 1, 0 > < 0, 1 > < 1, 0 > < 0, 1 >



H =


< 0, 1 > < 1, 0 > < 0, 1 > < 1, 0 > < 0, 1 >
< 1, 0 > < 0, 1 > < 1, 0 > < 0, 1 > < 1, 0 >
< 0, 1 > < 1, 0 > < 0, 1 > < 1, 0 > < 0, 1 >
< 1, 0 > < 0, 1 > < 1, 0 > < 0, 1 > < 1, 0 >
< 0, 1 > < 1, 0 > < 0, 1 > < 1, 0 > < 0, 1 >


There is a 1-1 correspondence between the vertices and edges. Therefore, the two graphs
G and H are isomorphic.
The given two graphs have same number of vertices, edges and degree sequence and also
the adjacency matrices are equal. Therefore the given Graph is isomorphic and also KS
IFM.
Every isomorphic and non-isomorphic graph is KS adjacency IFM but converse need not
be true.

5. Conclusions and Future Work:

In this study, we have examined the characterization of interval-valued secondary k-
kernel symmetric Intuitionistic fuzzy matrices. We have explored the relationships be-
tween different types of matrices, including interval-valued s-kernel symmetric, s-kernel
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symmetric, interval-valued k-kernel symmetric, and interval-valued kernel symmetric ma-
trices. Through this examination, we have provided a thorough understanding of the
interplay among these matrix types and established the necessary and sufficient condi-
tions for interval-valued s-kernel symmetric Intuitionistic fuzzy matrices. The findings
contribute to the broader field of fuzzy matrices, offering a deeper insight into their struc-
tural properties and applications.

Future research could focus on extending the results of this study to more complex fuzzy
structures, such as higher-order fuzzy matrices or fuzzy relational systems. Investigating
the practical applications of interval-valued secondary k-kernel symmetric Intuitionistic
fuzzy matrices in various fields, such as decision-making, optimization, and data analysis,
would be a valuable direction. Moreover, exploring the computational aspects and algo-
rithmic development for efficiently handling these matrices could lead to advancements in
their practical implementation. Further studies could also examine the stability, robust-
ness, and sensitivity of these matrices in real-world scenarios, potentially contributing to
improved decision-making models in uncertain environments..
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