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APPROXIMATIONS TO CAPUTO FRACTIONAL DERIVATIVE WITH

ARBITRARY KERNELS AND UNIFORM MESHES

N. DERDAR1∗, §

Abstract. The main objective of this paper is to find numerical approximations of the
Caputo fractional derivative for α > 0 with arbitrary kernels and uniform meshes. These
numerical approximations are based on polynomial interpolation. Firstly, we derive three
numerical formulas: the fractional rectangular formula (FRF), fractional trapezoidal
formula (FTF) and fractional Simpson’s formula (FSF). In addition, error estimations
for all these rules are analyzed. A test example from the literature is considered to
validate the effectiveness of the presented formulas. It is observed that FRF, FTF and
FSF yield convergence orders of approximately O(h), O(h2) and O(h3), respectively.
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1. Introduction

In recent years, increasing attention has been devoted to the subject of fractional cal-
culus (FC). For fundamental concepts in fractional calculus, we refer the reader to the
books [15, 21, 26, 32]. The origins of fractional calculus date back to the beginnings of
classical differential calculus, as it deals with the generalization of integrals and derivatives
to non-integer or even complex orders [21, 25, 28]. For more on its applications across
various branches of applied science and ingineering, see [10, 13, 20, 22, 27, 30, 31].
Several definitions of fractional calculus have emerged, including those Riemann-Liouville,
Caputo, Hilfer, Riesz, Erdelyi-Kober and Hadamard, among others. In particular, R.
Almeida [15] proposed generalizations of fractional operators involving arbitrary kernels
and a weight function ψ, thus building upon the work of other researchers [14, 15, 19].
Additional properties of this generalized fractional derivative can be found in [1, 2, 3, 4,
5, 6, 7, 8].
From the definition of the Caputo derivative, the αth-order (where m− 1 < α < m) Ca-
puto derivative of a function f(t) can be viewed as the (m−α)th-order fractional integral
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of the function f (m)(t). Numerical integration plays a fundamental role in computing ap-
proximate values of definite integrals, particularly when analytical evaluation is difficult.
Similarly, numerical integrations for fractional integrals is crucial for developing algorithms
to solve applied problems formulated using fractional derivatives and integrals.
Recently, numerical of the fractional integrals and the fractional derivatives have attracted
many researchers. Therefore, we can use the numerical methods developed by these re-
searchers, see the following references [9, 16, 17, 18, 23, 24], to simulate the numerical
solutions of the Caputo derivative with arbitrary kernels by relying on uniform meshes.
For instance, Li and Zeng (2015) presented detailed numerical methods for fractional in-
tegrals and derivatives in Chapter 2 of their book [18]. They introduced the rectangle,
trapezoidal and Simpson’s methods based on polynomial interpolation, and discussed their
application to approximation the classical Caputo derivative. Moreover, they analyzed the
convergence orders for the case when α > 0, offering valuable tools for future reseach.
In 2021, Green and Yan, carried out a detailed error analysis for a fractional Adams method
on Caputo–Hadamard fractional differential equations, presented an analysis based on an
approximation of the integral. They applied the product trapezoidal quadrature rule using
a uniform mesh.
In 2022, Songsanga and Ngiamsunthorn, in their article [29], single-step and multi-step
methods for Caputo fractional-order differential equations with arbitrary kernels, they
developed four numerical schemes to solve fractional differential equations involving the
Caputo fractional derivative with arbitrary (generalized) kernels, where these schemes
were expressed in terms of the function ψ. The four schemes are: the explicit product
integration rectangular rule (forward Euler method), the implicit product integration rect-
angular rule (backward Euler method), the implicit product integration trapezoidal rule,
and the Adams-type predictor–corrector method.
In 2023, Fan et al. [11] proposed several representative numerical discretization formulas
for the Caputo-type fractional derivative with an exponential kernel. These formulas were
constructed for orders α ∈ (0, 1) and α ∈ (1, 2), including the L1, L1-2, and L2-1 schemes
for α ∈ (0, 1), and the H2N2 and L2 schemes for α ∈ (1, 2), respectively.
It is worth mentioning some limitations of the present work. First, the proposed numerical
methods are constructed under the assumption of uniform meshes and smooth functions,
which may restrict their applicability to problems with singularities or non-uniform behav-
ior. Second, although arbitrary kernels are considered, the study is limited to the Caputo
fractional derivative, and further generalization to other types of fractional derivatives
remains an open question. Moreover, the numerical tests are conducted on benchmark
examples with known exact solutions, and future work will aim at extending the applica-
bility to more realistic problems arising in science and engineering.
In this paper, we investigate the numerical formulas (FRF, FTF and FSF) for the ψ-
Caputo fractional derivative with uniform meshes. In particular, the efficiency of numeri-
cal formulas, error is considered.
The outline of this paper is organized as follows. In Sect. 2, several preliminary knowledge
of fractional derivatives and integrals are presented. Sect. 3, the detailed construction of
the approximations to ψ-Caputo Derivatives and improved algorithm for this three for-
mulas is presented. These numerical approximations based on polynomial interpolation
with uniform meshes and α > 0. In Sect. 4, the truncation error analysis of the proposed
formulas is derived through a series of Theorems. In Sect. 5, an example is presented
to illustrate the performance of our numerical rules. Finally, some conclusions are given
at the end of this paper. In this section, we will examine basic definitions and theorems,
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which will be used to declare and verify our essential results. Let ψ be a continuously
differentiable function on [a, T ] such that ψ′(t) > 0, for all t ∈ [a, T ].

2. Preliminaries

In this section, we have the following definitions

Definition 2.1 ([3, 15]). For α > 0, the left-sided ψ–Riemann–Liouville fractional integral
of order α for an integrable function x : [a, T ] −→ R with respect to another function
ψ : [a, T ] −→ R that is an increasing differentiable function such that ψ′(t) ̸= 0, for all
t ∈ [a, T ] is defined as follows

Iα,ψ
a+

x(t) =
1

Γ(α)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1x(s)ds,

where Γ is the gamma function.

Definition 2.2 ([3]). Let n ∈ N and let ψ, x ∈ Cn([a, T ],R) be two functions such that y is
increasing and ψ′(t) ̸= 0, for all t ∈ [a, b]. The left-sided ψ-Riemann–Liouville fractional
derivative of a function x of order α is defined by

Dα,ψ
a+

x(t) =
( 1

ψ′(t)

d

dt

)n
In−α,ψ
a+

x(t)

=
1

Γ(n− α)

( 1

ψ′(t)

d

dt

)n ∫ t

a
ψ′(s)(ψ(t)− ψ(s))n−α−1x(s)ds,

where n = [α] + 1.

Definition 2.3 ([3]). Let n ∈ N and let ψ, x ∈ Cn([a, T ],R) be two functions such that y
is increasing and ψ′(t) ̸= 0, for all t ∈ [a, T ]. The left-sided ψ-Caputo fractional derivative
of x of order α is defined by

cDα,ψ
a+

x(t) = In−α,ψ
a+

( 1

ψ′(t)

d

dt

)n
x(t),

where n = [α] + 1 for α /∈ N, n = α for α ∈ N.
To simplify notations, we will use the abbreviated symbol

x
[n]
ψ (t) =

( 1

ψ′(t)

d

dt

)n
x(t).

From the definition 3, it is clear that

cDα,ψ
a+

x(t) =


∫ t

a

ψ′(s)(ψ(t)− ψ(s))n−α−1

Γ(n− α)
x
[n]
ψ (s)ds, if α /∈ N,

x
[n]
ψ , if α ∈ N.

Also, the ψ-Caputo fractional derivative of order α of x is defined as

cDα,ψ
a+

x(t) = cDα,ψ
a+

[
x(t)−

n−1∑
k=0

x
[k]
ψ (a)

k!
(ψ(t)− ψ(a))k

]
.

For more details see ([3], Theorem 3).

Remark 2.1 ([3]). In particular, the ψ-Caputo fractional derivative is a generalization of
the fractional derivatives. That is, the classical Caputo fractional derivative for ψ(t) = t,
the Caputo-Hadamard fractional derivative for ψ(t) = ln(t) and the Caputo-Erdélyi-Kober
fractional derivative for ψ(t) = tσ.
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3. Approximations to ψ-Caputo Derivatives

In this section, we will present similar numerical approaches used in the section previous
to approach fractional derivatives of order α > 0 in the sense of ψ-Caputo. Indeed, for
f ∈ C([a, T ]), let N be a positive integer and let a = t0 < t1 < t2 < . . . < tN = T be a
partition on [a, T ]. We define the following uniform mesh on [ψ(a), ψ(T )] by

ψ(a) = ψ(t0) < ψ(t1) < ψ(t2) < . . . < ψ(tN ) = ψ(T ),

such that

ψ(tj)− ψ(a)

ψ(tN )− ψ(a)
=

j

N
,

which implies that

ψ(tj) = ψ(a) + (ψ(tN )− ψ(a))(
j

N
),

when j = N and j = 0 we have ψ(tN ) = ψ(T ) and ψ(a) = ψ(t0). Further, we have

ψ(tj) = ψ(t0) + (ψ(T )− ψ(t0))(
j

N
)

= ψ(t0) + hj with h =
ψ(T )− ψ(t0)

N
. (1)

Next, we study numerically the values of the following integral with m = ⌈α⌉+ 1

CDα,ψ
t0

f(t) =
1

Γ(m− α)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))m−α−1f

[m]
ψ (s)ds

We put t = tn, so

[CDα,ψ
t0

f(t)]t=tn =
1

Γ(m− α)

∫ tn

0
ψ′(s)(ψ(tn)− ψ(s))m−α−1f

[m]
ψ (s)ds

and

[CDα,ψ
t0

f(t)]t=tn =
1

Γ(m− α)

n−1∑
k=0

∫ tk+1

tk

ψ′(s)(ψ(tn)− ψ(s))m−α−1f
[m]
ψ (s)ds. (2)

3.1. Fractional Rectangular Formula (FRF). For each subinterval [tk, tk+1], k =

0, 1, . . . , n− 1, the function f
[m]
ψ (t) is approximated by a constant, i.e.,

f
[m]
ψ (t)|[tk,tk+1] ≈ f

[m]
ψ (tk) =

( 1

ψ′(t)

d

dt

)m
f(tk), t ∈ [tk, tk+1]. (3)
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In this case Equation (2) can be written as

[CDα,ψ
t0

f(t)]t=tn

≈ 1

Γ(m− α)

n−1∑
k=0

∫ tk+1

tk

ψ′(s)(ψ(tn)− ψ(s))m−α−1f
[m]
ψ (tk)ds

=
1

Γ(m− α)

n−1∑
k=0

f
[m]
ψ (tk)

∫ tk+1

tk

ψ′(s)(ψ(tn)− ψ(s))m−α−1ds

=
1

Γ(m− α)

n−1∑
k=0

f
[m]
ψ (tk)

[
(ψ(tn)− ψ(s))m−α

m− α

]tk+1

tk

=
1

Γ(m− α+ 1)

n−1∑
k=0

f
[m]
ψ (tk)

[
(ψ(tn)− ψ(tk))

m−α − (ψ(tn)− ψ(tk+1))
m−α

]

=
1

Γ(m− α+ 1)

n−1∑
k=0

f
[m]
ψ (tk)

[
(nh− kh)m−α − (nh− (k + 1)h)m−α

]

=
hm−α

Γ(m− α+ 1)

n−1∑
k=0

f
[m]
ψ (tk)

[
(n− k)m−α − (n− k − 1)m−α

]

=

n−1∑
k=0

vn−k−1f
[m]
ψ (tk) = [CDα,ψ

t0
f(t)]t=tn , (4)

where the coefficients are given by

vk =
hm−α

Γ(m− α+ 1)

(
(k + 1)m−α − km−α).

So, (4) is called the the left fractional rectangular formula (LFRF).
Similarly, when f(x) is approximated by the following piecewise constant function

f
[m]
ψ (t)|[tk,tk+1] ≈ f

[m]
ψ (tk+1) =

( 1

ψ′(t)

d

dt

)m
f(tk+1), t ∈ [tk, tk+1], (5)

then the right fractional rectangular formula (RFRF) in given by

[CDα,ψ
t0

f(t)]t=tn =

n−1∑
k=0

Vn−k−1f
[m]
ψ (tk+1) = [CDα,ψ

t0
f(t)]t=tn . (6)

3.2. Fractional Trapezoidal Formula (FTF). For each subinterval [tk, tk+1], f
[m]
ψ (t)

is approximated by the following piecewise polynomial with degree of order one

f
[m]
ψ (t)|[tk,tk+1] ≈

( 1

ψ′(t)

d

dt

)m
fψ(t)|[tk,tk+1]

=
ψ(tk+1)− ψ(t)

ψ(tk+1)− ψ(tk)
f
[m]
ψ (tk) +

ψ(t)− ψ(tk)

ψ(tk+1)− ψ(tk)
f
[m]
ψ (tk+1), . (7)
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Replacing (7) in (2), we have

[CDα,ψ
t0

f(t)]t=tn

≈ 1

Γ(m− α)

n−1∑
k=0

∫ tk+1

tk

ψ′(s)(ψ(tn)− ψ(s))m−α−1
[ ψ(tk+1)− ψ(s)

ψ(tk+1)− ψ(tk)
f
[m]
ψ (tk)

+
ψ(s)− ψ(tk)

ψ(tk+1)− ψ(tk)
f
[m]
ψ (tk+1)

]
ds

=
1

Γ(m− α)

[∫ t1

t0

ψ′(s)(ψ(tn)− ψ(s))m−α−1 ψ(t1)− ψ(s)

ψ(t1)− ψ(t0)
f
[m]
ψ (t0)ds

+

∫ t1

t0

ψ′(s)(ψ(tn)− ψ(s))m−α−1 ψ(s)− ψ(t0)

ψ(t1)− ψ(t0)
f
[m]
ψ (t1)ds

+

∫ t2

t1

ψ′(s)(ψ(tn)− ψ(s))m−α−1 ψ(t2)− ψ(s)

ψ(t2)− ψ(t1)
f
[m]
ψ (t1)ds

+

∫ t2

t1

ψ′(s)(ψ(tn)− ψ(s))m−α−1 ψ(s)− ψ(t1)

ψ(t2)− ψ(t1)
f
[m]
ψ (t2)ds

+

...

+

∫ tn

tn−1

ψ′(s)(ψ(tn)− ψ(s))m−α−1 ψ(tn)− ψ(s)

ψ(tn)− ψ(tn−1)
f
[m]
ψ (tn−1)ds

+

∫ tn

tn−1

ψ′(s)(ψ(tn)− ψ(s))m−α−1 ψ(s)− ψ(tn−1)

ψ(tn)− ψ(tn−1)
f
[m]
ψ (tn)ds

]

=
n∑
k=0

Wk,nf
[m]
ψ (tk) = [CDα,ψ

t0
f(t)]t=tn , (8)

where
Wk,n

=
1

hΓ(m− α)



∫ t1
t0
ψ′(s)(ψ(tn)− ψ(s))m−α−1(ψ(t1)− ψ(s))ds, k = 0,∫ tk

tk−1
ψ′(s)(ψ(tn)− ψ(s))m−α−1(ψ(s)− ψ(tk−1))ds

+
∫ tk+1

tk
ψ′(s)(ψ(tn)− ψ(s))m−α−1(ψ(tk+1)− ψ(s))ds, 1 ≤ k ≤ n− 1,∫ tn

tn−1
ψ′(s)(ψ(tn)− ψ(s))m−α−1(ψ(s)− ψ(tn−1))ds, k = n.

For k = 0, we have

W0,n =
1

hΓ(m− α)

∫ t1

t0

ψ′(s)(ψ(tn)− ψ(s))m−α−1(ψ(t1)− ψ(s))ds, (9)

by virtue of integration by parts, we put

u = ψ(t1)− ψ(s) =⇒ u′ = −ψ′(s)

v′ = ψ′(s)(ψ(tn)− ψ(s))m−α−1 =⇒ v =
−1

m− α
(ψ(tn)− ψ(s))m−α



54 TWMS J. APP. ENG. MATH. V.16, N.1, 2026

one obtains

W0,n =
1

hΓ(m− α)

{[ −1

m− α
(ψ(t1)− ψ(s))(ψ(tn)− ψ(s))m−α

]t1
t0

− 1

m− α

∫ t1

t0

ψ′(s)(ψ(tn)− ψ(s))m−αds

}

=
1

hΓ(m− α+ 1)

{
nm−αhm−α+1 +

[ 1

m− α+ 1
(ψ(tn)− ψ(s))m−α+1

]t1
t0

}

=
hm−α

Γ(m− α+ 2)

[
(n− 1)m−α+1 − nm−α(n−m+ α− 1).

]
(10)

For 1 ≤ k ≤ n− 1, we also have

Wk,n =
1

Γ(m− α)

{∫ tk

tk−1

ψ(s)− ψ(tk−1)

ψ(tk)− ψ(tk−1)
ψ′(s)(ψ(tn)− ψ(s))m−α−1ds

+

∫ tk+1

tk

ψ(tk+1)− ψ(s)

ψ(tk+1)− ψ(tk)
ψ′(s)(ψ(tn)− ψ(s))m−α−1ds

}

=
1

hΓ(m− α)

{∫ tk

tk−1

ψ′(s)(ψ(s)− ψ(tk−1))(ψ(tn)− ψ(s))m−α−1ds︸ ︷︷ ︸
I1

+

∫ tk+1

tk

ψ′(s)(ψ(tk+1)− ψ(s))(ψ(tn)− ψ(s))m−α−1ds︸ ︷︷ ︸
I2

}
. (11)

Now, we calculate the above integrals separately, we use integration by parts again.

I1 =

∫ tk

tk−1

ψ′(s)(ψ(s)− ψ(tk−1))(ψ(tn)− ψ(s))m−α−1ds.

We put u = ψ(s) − ψ(tk−1), so u
′ = ψ′(s) and v′ = ψ′(s)(ψ(tn) − ψ(s))m−α−1 implies

v = −1
m−α(ψ(tn)− ψ(s))m−α. We get

I1 =
[ −1

m− α
(ψ(s)− ψ(tk−1)))(ψ(tn)− ψ(s))m−α

]tk
tk−1

+
1

m− α

∫ tk

tk−1

ψ′(s)(ψ(tn)− ψ(s))m−αds

=
1

m− α)

{
− (n− k)m−αhm−α+1 −

[ 1

m− α+ 1
(ψ(tn)− ψ(s))m−α+1

]tk
tk−1

}

=
hm−α+1

(m− α)(m− α+ 1)

[
− (m− α+ 1)(n− k)m−α − (n− k)m−α+1

+ (n− k + 1)m−α+1

]
. (12)
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In a similar manner, we calculate

I2 =

∫ tk+1

tk

ψ′(s)(ψ(tk+1)− ψ(s))(ψ(tn)− ψ(s))m−α−1ds.

Putting u = ψ(tk+1) − ψ(s), so u′ = −ψ′(s) and v′ = ψ′(s)(ψ(tn) − ψ(s))m−α−1 implies
v = −1

m−α(ψ(tn)− ψ(s))m−α. We get

I2 =
[ −1

m− α
(ψ(tk+1 − ψ(s)))(ψ(tn)− ψ(s))m−α

]tk+1

tk

− 1

m− α

∫ tk+1

tk

ψ′(s)(ψ(tn)− ψ(s))m−αds

=
1

m− α)

{
(n− k)m−αhm−α+1 +

[ 1

m− α+ 1
(ψ(tn)− ψ(s))m−α+1

]tk+1

tk

}

=
hm−α+1

(m− α)(m− α+ 1)

[
(m− α+ 1)(n− k)m−α + (n− k − 1)m−α+1,

]
. (13)

Combining Eqs. (12), (13), we find that

Wk,n =
1

h(m− α)
[I1 + I2]

=
hm−α

(m− α+ 2)

[
(n− k + 1)m−α+1 + (n− k − 1)m−α+1 − 2(n− k)m−α+1

]
. (14)

For k = n, we have

Wn,n =
1

hΓ(m− α)

∫ tn

tn−1

ψ′(s)(ψ(tn)− ψ(s))m−α−1(ψ(s)− ψ(tn−1))ds,

using integration by parts, let us put u = ψ(s) − ψ(tn−1), so u′ = ψ′(s) and v′ =
ψ′(s)(ψ(tn)− ψ(s))m−α−1 implies v = −1

m−α(ψ(tn)− ψ(s))m−α. Thus, we have

Wn,n =
1

hΓ(m− α)

{[ −1

m− α
(ψ(s)− ψ(tn−1))(ψ(tn)− ψ(s))m−α

]tn
tn−1

+
1

m− α

∫ tn

tn−1

ψ′(s)(ψ(tn)− ψ(s))m−αds

}

=
1

hΓ(m− α+ 1)

[
−1

(m− α+ 1)
(ψ(tn)− ψ(s))m−α+1

]tn
tn−1

=
hm−α

Γ(m− α+ 2)
. (15)

Hence
Wk,n

=
hm−α

Γ(m− α+ 2)


(n− 1)m−α+1 − nm−α(n−m+ α− 1), k = 0,

(n− k + 1)m−α+1(n− k − 1)m−α+1 − 2(n− k)m−α+1, 1 ≤ k ≤ n− 1,

1, k = n.
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3.3. Fractional Simpson’s Formula (FSF). In this method, we will approximate f
[m]
ψ (t)

by a piecewise quadratic polynomial on each sub interval [tk, tk+1], denoted by tk+ 1
2
=

tk+tk+1

2 .

f
[m]
ψ (t)|[tk,tk+1] ≈

( 1

ψ′(t)

d

dt

)m
fψ(t)|[tk,tk+1]

=
(ψ(s)− ψ(tk+ 1

2
))(ψ(s)− ψ(tk+1))

(ψ(tk)− ψ(tk+ 1
2
))(ψ(tk)− ψ(tk+1))

f
[m]
ψ (tk)

+
(ψ(s)− ψ(tk))(ψ(s)− ψ(tk+1))

(ψ(tk+ 1
2
)− ψ(tk))(ψ(tk+ 1

2
)− ψ(tk+1))

f
[m]
ψ (tk+ 1

2
)

+
(ψ(s)− ψ(tk))(ψ(s)− ψ(tk+ 1

2
))

(ψ(tk+1)− ψ(tk))(ψ(tk+1)− ψ(tk+ 1
2
))
f
[m]
ψ (tk+1). (16)

Replacing (16) in (2), we obtain

[CDα,ψ
t0

f(t)]t=tn

≈ 1

Γ(m− α)

n−1∑
k=0

∫ tk+1

tk

ψ′(s)(ψ(tn)− ψ(s))m−α−1

×
[ (ψ(s)− ψ(tk+ 1

2
))(ψ(s)− ψ(tk+1))

(ψ(tk)− ψ(tk+ 1
2
))(ψ(tk)− ψ(tk+1))

f
[m]
ψ (tk)

+
(ψ(s)− ψ(tk))(ψ(s)− ψ(tk+1))

(ψ(tk+ 1
2
)− ψ(tk))(ψ(tk+ 1

2
)− ψ(tk+1))

f
[m]
ψ (tk+ 1

2
)

+
(ψ(s)− ψ(tk))(ψ(s)− ψ(tk+ 1

2
))

(ψ(tk+1)− ψ(tk))(ψ(tk+1)− ψ(tk+ 1
2
))
f
[m]
ψ (tk+1)

]
ds

=
2

h2Γ(m− α)

{∫ t1

t0

ψ′(s)(ψ(tn)− ψ(s))m−α−1
[
(ψ(s)− ψ(t 1

2
))(ψ(s)− ψ(t1))f

[m]
ψ (t0)

− 2(ψ(s)− ψ(t0))(ψ(s)− ψ(t1))f
[m]
ψ (t 1

2
) + (ψ(s)− ψ(t0))(ψ(s)− ψ(t 1

2
))f

[m]
ψ (t1)

]
ds

+

∫ t2

t1

ψ′(s)(ψ(tn)− ψ(s))m−α−1
[
(ψ(s)− ψ(t 3

2
))(ψ(s)− ψ(t2))f

[m]
ψ (t1)

− 2(ψ(s)− ψ(t1))(ψ(s)− ψ(t2))f
[m]
ψ (t 3

2
) + (ψ(s)− ψ(t1))(ψ(s)− ψ(t 3

2
))f

[m]
ψ (t2)

]
ds

+

...

+

∫ tn

tn−1

ψ′(s)(ψ(tn)− ψ(s))m−α−1
[
(ψ(s)− ψ(tn− 1

2
))(ψ(s)− ψ(tn))f

[m]
ψ (tn−1)

− 2(ψ(s)− ψ(tn−1))(ψ(s)− ψ(tn))f
[m]
ψ (tn− 1

2
)

+ (ψ(s)− ψ(tn− 1
2
))(ψ(s)− ψ(tn−1))f

[m]
ψ (tn)

]
ds

}
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=
n∑
k=0

ek,nf
[m]
ψ (tk) +

n−1∑
k=0

êk,nf
[m]
ψ (tk+ 1

2
) = [CDα,ψ

t0
f(t)]t=tn , (17)

where
ek,n

=
2

h2Γ(m− α)



∫ t1
t0
ψ′(s)(ψ(tn)− ψ(s))m−α−1(ψ(s)− ψ(t 1

2
))(ψ(s)− ψ(t1))ds,

k = 0,∫ tk
tk−1

ψ′(s)(ψ(tn)− ψ(s))m−α−1(ψ(s)− ψ(tk−1))(ψ(s)− ψ(tk− 1
2
))ds

+
∫ tk+1

tk
ψ′(s)(ψ(tn)− ψ(s))m−α−1(ψ(s)− ψ(tk+ 1

2
))(ψ(s)− ψ(tk+1))ds,

1 ≤ k ≤ n− 1,∫ tn
tn−1

ψ′(s)(ψ(tn)− ψ(s))m−α−1(ψ(s)− ψ(tn−1))(ψ(s)− ψ(tn− 1
2
))ds,

k = n,

and

êk,n =
−4

h2Γ(m− α)

∫ tk+1

tk

ψ′(s)(ψ(tn)− ψ(s))m−α−1(ψ(s)− ψ(tk))(ψ(s)− ψ(tk+1))ds,

0 ≤ k ≤ n− 1.

For k = 0, we have

e0,n =
2

h2Γ(m− α)

∫ t1

t0

ψ′(s)(ψ(tn)− ψ(s))m−α−1(ψ(s)− ψ(t 1
2
))(ψ(s)− ψ(t1))ds.

Using integration by parts, let we put u = (ψ(s)−ψ(t 1
2
))(ψ(s)−ψ(t1)), so u′ = 2ψ′(s)ψ(s)−

ψ(t 1
2
)ψ′(s) − ψ(t1)ψ

′(s) and v′ = ψ′(s)(ψ(tn) − ψ(s))m−α−1 implies v = −1
m−α(ψ(tn) −

ψ(s))m−α. We get

e0,n =
2

h2Γ(m− α+ 1)

{[
− (ψ(s)− ψ(t 1

2
))(ψ(s)− ψ(t1))(ψ(tn)− ψ(s))m−α

]t1
t0

+

∫ t1

t0

2ψ′(s)(ψ(s)− ψ(t 1
2
)− ψ(t1))(ψ(tn)− ψ(s))m−αds

}

=
nm−αhm−α

Γ(m− α+ 1)
− 2

h2Γ(m− α+ 2)

{[
(2ψ(s)− ψ(t 1

2
)− ψ(t1))

× (ψ(tn)− ψ(s))m−α+1
]t1
t0
+ 2

∫ t1

t0

(ψ(tn)− ψ(s))m−α+1ds

}

=
hm−α

Γ(m− α+ 3)

{
4[nm−α+2 − (n− 1)m−α+2]− (m− α+ 2)[3nm−α+1

+ (n− 1)m−α+1] + (m− α+ 1)(m− α+ 2)nm−α

}
. (18)
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For 1 ≤ k ≤ n− 1, we see that

ek,n =
2

h2Γ(m− α)

{∫ tk

tk−1

ψ′(s)(ψ(s)− ψ(tk−1))(ψ(s)− ψ(tk− 1
2
))(ψ(tn)− ψ(s))m−α−1ds︸ ︷︷ ︸

I3

+

∫ tk+1

tk

ψ′(s)(ψ(s)− ψ(tk+ 1
2
))(ψ(s)− ψ(tk+1))(ψ(tn)− ψ(s))m−α−1ds︸ ︷︷ ︸

I4

}
.

We calculate the above integrals separately, we use integration by parts again

I3 =

∫ tk

tk−1

ψ′(s)(ψ(s)− ψ(tk−1))(ψ(s)− ψ(tk− 1
2
))(ψ(tn)− ψ(s))m−α−1ds,

we put u = (ψ(s) − ψ(tk−1))(ψ(s) − ψ(tk− 1
2
)), so u′ = 2ψ′(s)ψ(s) − ψ(tk−1)ψ

′(s) −
ψ(tk− 1

2
)ψ′(s) and v′ = ψ′(s)(ψ(tn)− ψ(s))m−α−1 implies v = −1

m−α(ψ(tn)− ψ(s))m−α.

We observe that

I3 =
1

m− α

{[
− (ψ(s)− ψ(tk−1))(ψ(s)− ψ(tk− 1

2
))(ψ(tn)− ψ(s))m−α

]tk
tk−1

+

∫ tk

tk−1

ψ′(s)(2ψ(s)− ψ(tk−1)− ψ(tk− 1
2
))(ψ(tn)− ψ(s))m−αds

}

=
1

(m− α)(m− α+ 1)

{[
(2ψ(s)− ψ(tk−1)− ψ(tk− 1

2
))(ψ(tn)− ψ(s))m−α+1

]tk
tk−1

+ 2

∫ tk

tk−1

(ψ(tn)− ψ(s))m−αds

}
− hm−α+2(n− k)m−α

2(m− α)

=
hm−α+2

2(m− α)(m− α+ 1)(α+ 2)

[
− (m− α+ 1)(m− α+ 2)(n− k)m−α

− 3(α+ 2)(n− k)m−α+1 − (m− α+ 2)(n− k + 1)m−α+1 − 4(n− k)m−α+2

+ 4(n− k + 1)m−α+2
]
. (19)

Similarly, we calculate

I4 =

∫ tk+1

tk

ψ′(s)(ψ(s)− ψ(tk+ 1
2
))(ψ(s)− ψ(tk+1))(ψ(tn)− ψ(s))m−α−1ds,

we put u = (ψ(s) − ψ(tk+ 1
2
))(ψ(s) − ψ(tk+1)), so u′ = 2ψ′(s)ψ(s) − ψ(tk+ 1

2
)ψ′(s) −

ψ(tk+1)ψ
′(s) and v′ = ψ′(s)(ψ(tn) − ψ(s))m−α−1 implies v = −1

m−α(ψ(tn) − ψ(s))m−α.
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We get

I4 =
2

h2Γ(m− α+ 1)

{[
− (ψ(s)− ψ(tk+ 1

2
))(ψ(s)− ψ(tk+1))(ψ(tn)− ψ(s))m−α

]tk+1

tk

+

∫ tk+1

tk

ψ′(s)(2ψ(s)− ψ(tk+ 1
2
)− ψ(tk+1))(ψ(tn)− ψ(s))m−αds

}

= − 1

(m− α)(m− α+ 1)

{[
(2ψ(s)− ψ(tk+ 1

2
)− ψ(tk+1))(ψ(tn)− ψ(s))m−α

]tk+1

tk

+ 2

∫ tk+1

tk

(ψ(tn)− ψ(s))m−α+1ds

}
+
hm−α+2(n− k)m−α

2(m− α)

=
hm−α+2

2(m− α)(m− α+ 1)(m− α+ 2)

[
(m− α+ 1)(m− α+ 2)(n− k)m−α

+ 4(n− k)m−α+2 − (m− α+ 2)(n− k − 1)m−α+1 − 4(n− k − 1)m−α+2

− 3(m− α+ 2)(n− k)m−α+1
]
. (20)

Combining Eqs. (19), (20), we find that

ek,n = I3 + I4

=
hm−α

Γ(m− α+ 3)

{
− (m− α+ 2)

[
(n− k + 1)m−α+1 + (n− k − 1)m−α+1

+ 6(n− k)m−α+1
]
+ 4
[
(n− k + 1)m−α+2 − (n− k − 1)m−α+2

]}
.

For k = n

en,n =
2

hm−αΓ(m− α)

∫ tn

tn−1

ψ′(s)(ψ(tn)−ψ(s))m−α−1(ψ(s)−ψ(tn−1))(ψ(s)−ψ(tn− 1
2
))ds,

using integration by parts, let us put u = (ψ(s) − ψ(tn−1))(ψ(s) − ψ(tn− 1
2
)), so u′ =

2ψ′(s)ψ(s) − ψ(tn−1)ψ
′(s) − ψ(tn− 1

2
)ψ′(s) and v′ = ψ′(s)(ψ(tn) − ψ(s))m−α−1 implies

v = −1
m−α(ψ(tn)− ψ(s))m−α, we have

en,n =
2

hm−αΓ(m− α+ 1)

[
− (ψ(s)− ψ(tn−1))(ψ(s)− ψ(tn− 1

2
))(ψ(tn)− ψ(s))m−α

]tn
tn−1

+
2

hm−αΓ(m− α+ 1)

∫ tn

tn−1

ψ′(s)(2ψ(s)− ψ(tn−1)− ψ(tn− 1
2
))(ψ(tn)− ψ(s))m−αds

=
2

hm−αΓ(m− α+ 2)

[
− (2ψ(s)− ψ(tn−1)− ψ(tn− 1

2
))(ψ(tn)− ψ(s))m−α+1

]tn
tn−1

+
4

hm−αΓ(m− α+ 2)

∫ tn

tn−1

ψ′(s)(ψ(tn)− ψ(s))m−α+1ds

=
2

hm−αΓ(m− α+ 2)

{
−hm−α+2

2
−
[ 2

m− α+ 2
(ψ(tn)− ψ(s))m−α+2

]tn
tn−1

}

=
hm−α

Γ(m− α+ 3)
(2−m+ α). (21)
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For 0 ≤ k ≤ n− 1

êk,n =
−4

h2Γ(m− α)

∫ tk+1

tk

ψ′(s)(ψ(s)− ψ(tk))(ψ(s)− ψ(tk+1))(ψ(tn)− ψ(s))m−α−1ds,

using integration by parts twice, let us put u = (ψ(s) − ψ(tk))(ψ(s) − ψ(tk+1)), so u
′ =

2ψ′(s)ψ(s) − ψ(tk)ψ
′(s) − ψ(tk+1)ψ

′(s) and v′ = ψ′(s)(ψ(tn) − ψ(s))m−α−1 implies v =
−1
m−α(ψ(tn)− ψ(s))m−α, we get

êk,n =
4

h2Γ(m− α+ 1)

[
(ψ(s)− ψ(tk))(ψ(s)− ψ(tk+1))(ψ(tn)− ψ(s))m−α

]tk+1

tk

− 4

h2Γ(m− α+ 1)

∫ tk+1

tk

ψ′(s)(2ψ(s)− ψ(tk)− ψ(tk+1))(ψ(tn)− ψ(s))m−αds

=
4

h2Γ(m− α+ 1)

{[
(ψ(s)− ψ(tk))(ψ(s)− ψ(tk+1))(ψ(tn)− ψ(s))m−α

]tk+1

tk

−
∫ tk+1

tk

ψ′(s)(2ψ(s)− ψ(tk)− ψ(tk+1))(ψ(tn)− ψ(s))m−αds

}

=
4hm−α

Γ(m− α+ 3)

{
(m− α+ 2)

[
(n− k)m−α+1 + (n− k − 1)m−α+1

]
− 2
[
(n− k)m−α+2 − (n− k − 1)m−α+2

]}
. (22)

Therefore,
ek,n

=
hm−α

Γ(m− α+ 3)



4
[
nm−α+2 − (n− 1)m−α+2

]
− (m− α+ 2)

[
3nm−α+1

+(n− 1)m−α+1
]
+ (m− α+ 1)(m− α+ 2)nm−α, k = 0,

−(m− α+ 2)
[
(n− k + 1)m−α+1 + (n− k − 1)m−α+1

+6(n− k)m−α+1
]
+ 4
[
(n− k + 1)m−α+2

−(n− k − 1)m−α+2
]
, 1 ≤ k ≤ n− 1,

2−m+ α, k = n.

For 0 ≤ k ≤ n− 1, we have

êk,n =
4hm−α

Γ(m− α+ 3)

{
(m− α+ 2)

[
(n− k)m−α+1 + (n− k − 1)m−α+1

]
− 2
[
(n− k)m−α+2

− (n− k − 1)m−α+2
]}
. (23)

4. Error analysis

In this section, we present the error analysis for our numerical algorithms. In order to
fulfill error analysis, some Theorems are mentioned below.
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4.1. Truncation error analysis for the main algorithm. We first discuss the errors
of rectangle, trapezoidal and Simpson’s formula.
Given f ∈ Cr+1[a, T ], r ∈ N. Let Pr ∈ Pr (a polynomial of degree r) interpolate the
function f in r + 1 distinct nodes tj ∈ [a, T ] with a = t0 and T = tN . The function f(t)
at t = t0 can be expanded in the following form,

f(t) = fψ(t0) + f
[1]
ψ (t0)(ψ(t)− ψ(t0)) +

1

2!
f
[2]
ψ (t0)(ψ(t)− ψ(t0))

2 + . . .+

+
1

r!
f
[r]
ψ (t0)(ψ(t)− ψ(t0))

r +
1

(r + 1)!
f
[r+1]
ψ (ξ)(ψ(t)− ψ(t0))

r+1, (24)

which is just the Taylor expansion in the span {1, ψ(t), ψ2(t), . . .} with

f
[r]
ψ (s) =

( 1

ψ′(s)

d

ds

)r
f(s), the truncation error in the following form

f(t)− Pr(t) =
f
[r+1]
ψ (ξr)

(r + 1)!

r∏
j=0

(ψ(t)− ψ(tj)). (25)

where ξr is between t and t0, see [11].

4.2. Rectangular Formula. In this subsection, we prove the following error estimate for
the rectangular formula over the given uniform mesh.

Theorem 4.1. For 0 < α < 1 and f
[1]
ψ ∈ C[t0, T ], then the following truncation error

RReα , where h = ψ(tk+1)− ψ(tk) =
ψ(T )− ψ(t0)

N
has the estimate below

|RReα | ≤ CReα (ψ(T )− ψ(t0))
αh, (26)

where CReα = M1
Γ(1−α) , M1 = maxξ0∈[t0,tn] |f

[1]
ψ (ξ0)| and ξ0 ∈ [t0, tn].

Proof. The truncation error given

RReα = [CDα,ψ
t0

f(t)]t=tn − [CDα,ψ
t0

f(t)]t=tn

≤ 1

Γ(1− α)

n−1∑
k=0

∫ tk+1

tk

ψ′(s)(ψ(tn)− ψ(s))−α[f(s)− P0(s)]
[1]
ψ (s)ds. (27)
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Using integration by parts, for u = (ψ(tn) − ψ(s))−α, so u′ = αψ′(s)(ψ(tn) − ψ(s))−α−1

and v′ = ψ′(s)[f(s)− P0(s)]
[1]
ψ implies v = [f(s)− P0(s)]ψ. We get

RReα =
1

Γ(1− α)

n−1∑
k=0

{[
[f(s)− P0(s)]ψ(ψ(tn)− ψ(s))−α

]tk+1

tk

− α

∫ tk+1

tk

ψ′(s)[f(s)− P0(s)]ψ(ψ(tn)− ψ(s))−α−1ds

}

=
1

Γ(1− α)

n−1∑
k=0

{
f
[1]
ψ (ξ0)

1!
(ψ(s)− ψ(t0))(ψ(tn)− ψ(s))−α︸ ︷︷ ︸

=0

∣∣∣tk+1

tk

− α

∫ tk+1

tk

f
[1]
ψ (ξ0)

1!
ψ′(s)(ψ(s)− ψ(t0))(ψ(tn)− ψ(s))−α−1ds

}

=
−α

Γ(1− α)

n−1∑
k=0

∫ tk+1

tk

f
[1]
ψ (ξ0)ψ

′(s)(ψ(s)− ψ(t0))(ψ(tn)− ψ(s))−α−1ds, (28)

We estimate RReα and obtain

|RReα | ≤ α

Γ(1− α)
|f [1]ψ (ξ0)||(ψ(ξ0)− ψ(t0)))|

n−1∑
k=0

∫ tk+1

tk

ψ′(s)(ψ(tn)− ψ(s))−α−1ds

≤ α

Γ(1− α)
max

ξ0∈[t0,tn]
|f [1]ψ (ξ0)|h

n−1∑
k=0

[
(ψ(tn)− ψ(s))−α

−α

∣∣∣∣∣
tk+1

tk

]

≤ α

Γ(1− α)
max

ξ0∈[t0,tn]
|f [1]ψ (ξ0)|h

n−1∑
k=0

[
(ψ(tn)− ψ(tk))

−α

−α
− (ψ(tn)− ψ(tk+1))

−α

−α

]

≤ M1

Γ(1− α)
(ψ(tn)− ψ(t0))

−αh

≤ CReα (ψ(T )− ψ(t0))
−αh, (because, tn ≤ T as t ∈ [t0, T ]), (29)

where CReα = M1
Γ(1−α) is a constant that depends only on α, M1 = maxξ0∈[t0,tn] |f

[1]
ψ (ξ0)|

and ξ0 ∈ [t0, tn]. □

Remark 4.1. It is easy also to see that rectangular formula convergent with order O(h),
when 1 < α < 2.

4.3. Trapezoidal Formula. In this subsection, we prove the following error estimate for
the trapezoidal formula over the given uniform mesh.

Theorem 4.2. For 0 < α < 1 and f
[2]
ψ ∈ C[t0, T ], then the following truncation error RαT ,

where h = ψ(tk+1)− ψ(tk) =
ψ(T )− ψ(t0)

N
has the estimate below

|RTrα | ≤ CTrα (ψ(T )− ψ(t0))
αh2, (30)

where CTrα = M3
2Γ(1−α) , M2 = maxξ1∈[t0,tn] |f

[2]
ψ (ξ1)| and ξ1 ∈ [t0, tn].
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Proof. The truncation error given

RTrα = [CDα,ψ
t0

f(t)]t=tn − [CDα,ψ
t0

f(t)]t=tn

≤ 1

Γ(1− α)

n−1∑
k=0

∫ tk+1

tk

ψ′(s)(ψ(tn)− ψ(s))−α[f(s)− P1(s)]
[1]
ψ (s)ds, (31)

In the same manner, we get
RTrα

=
1

Γ(1− α)

n−1∑
k=0

{[
[f(s)− P1(s)]ψ(ψ(tn)− ψ(s))−α

]tk+1

tk

− α

∫ tk+1

tk

ψ′(s)[f(s)− P1(s)]ψ(ψ(tn)− ψ(s))−α−1ds

}

=
1

Γ(1− α)

n−1∑
k=0

{
f
[2]
ψ (ξ1)

2!
(ψ(s)− ψ(t0))(ψ(s)− ψ(t1))(ψ(tn)− ψ(s))−α︸ ︷︷ ︸

=0

∣∣∣tk+1

tk

− α

∫ tk+1

tk

f
[2]
ψ (ξ1)

2!
ψ′(s)(ψ(s)− ψ(t0))(ψ(s)− ψ(t1))(ψ(tn)− ψ(s))−α−1ds

}

=
−α

2Γ(1− α)

n−1∑
k=0

∫ tk+1

tk

f
[2]
ψ (ξ1)ψ

′(s)(ψ(s)− ψ(t0))(ψ(s)− ψ(t1))

× (ψ(tn)− ψ(s))−α−1ds, (32)

we estimate RTrα and obtain

|RTrα | ≤ α

2Γ(1− α)
|f [2]ψ (ξ1)||(ψ(ξ1)− ψ(t0))(ψ(ξ1)− ψ(t1))|

×
n−1∑
k=0

∫ tk+1

tk

ψ′(s)(ψ(tn)− ψ(s))−α−1ds

≤ α

2Γ(1− α)
max

ξ1∈[t0,tn]
|f [2]ψ (ξ1)|h2

n−1∑
k=0

[
(ψ(tn)− ψ(s))−α

−α

∣∣∣∣∣
tk+1

tk

]

≤ α

2Γ(1− α)
max

ξ1∈[t0,tn]
|f [2]ψ (ξ1)|h2

n−1∑
k=0

[
(ψ(tn)− ψ(tk))

−α

−α
− (ψ(tn)− ψ(tk+1))

−α

−α

]

≤ M2

2Γ(1− α)
(ψ(tn)− ψ(t0))

−αh2

≤ CTrα (ψ(T )− ψ(t0))
−αh2, (because, tn ≤ T as t ∈ [t0, T ]), (33)

where CTrα = M2
2Γ(1−α) is a constant that depends only on α, M2 = maxξ1∈[t0,tn] |f

[2]
ψ (ξ1)|

and ξ1 ∈ [t0, tn]. □

Remark 4.2. It is easy also to see that trapezoidal formula convergent with order O(h2),
when 1 < α < 2.

4.4. Simpson’s Formula. In this subsection, we prove the following error estimate for
the Simpson’s formula over a given uniform mesh.
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Theorem 4.3. For 0 < α < 1 and f
[3]
ψ ∈ C[t0, T ], then the following truncation error RαS,

where h = ψ(tk+1)− ψ(tk) =
ψ(T )− ψ(t0)

N
has the estimate below

|RSiα | ≤ CSiα (ψ(T )− ψ(t0))
αh3, (34)

where CSiα = M1
6Γ(1−α) , M3 = maxξ2∈[t0,tn] |f

[3]
ψ (ξ2)| and ξ2 ∈ [t0, tn].

Proof. The truncation error given

RSiα = [CDα,ψ
t0

f(t)]t=tn − [CDα,ψ
t0

f(t)]t=tn

≤ 1

Γ(1− α)

n−1∑
k=0

∫ tk+1

tk

ψ′(s)(ψ(tn)− ψ(s))−α[f(s)− P2(s)]
[1]
ψ (s)ds. (35)

In a manner similar
RSiα

=
1

Γ(1− α)

n−1∑
k=0

{[
[f(s)− P2(s)]ψ(ψ(tn)− ψ(s))−α

]tk+1

tk

− α

∫ tk+1

tk

ψ′(s)[f(s)− P2(s)]ψ(ψ(tn)− ψ(s))−α−1ds

}

=
1

Γ(1− α)

n−1∑
k=0

{
f
[3]
ψ (ξ2)

3!
(ψ(s)− ψ(t0))(ψ(s)− ψ(t1))(ψ(s)− ψ(t2))(ψ(tn)− ψ(s))−α︸ ︷︷ ︸

=0

∣∣∣tk+1

tk

− α

∫ tk+1

tk

f
[3]
ψ (ξ2)

3!
ψ′(s)(ψ(s)− ψ(t0))(ψ(s)− ψ(t1))(ψ(s)− ψ(t2))

× (ψ(tn)− ψ(s))−α−1ds

}

=
−α

6Γ(1− α)

n−1∑
k=0

∫ tk+1

tk

f
[3]
ψ (ξ2)ψ

′(s)(ψ(s)− ψ(t0))(ψ(s)− ψ(t1))(ψ(s)− ψ(t2))

× (ψ(tn)− ψ(s))−α−1ds. (36)
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We estimate RSiα and obtain

|RSiα | ≤ α

6Γ(1− α)
|f [3]ψ (ξ1)||(ψ(ξ2)− ψ(t0))(ψ(ξ2)− ψ(t1))(ξ2)− ψ(t2))|

×
n−1∑
k=0

∫ tk+1

tk

ψ′(s)(ψ(tn)− ψ(s))−α−1ds

≤ α

6Γ(1− α)
max

ξ2∈[t0,tn]
|f [3]ψ (ξ2)|h3

n−1∑
k=0

[
(ψ(tn)− ψ(s))−α

−α

∣∣∣∣∣
tk+1

tk

]

≤ α

6Γ(1− α)
max

ξ2∈[t0,tn]
|f [3]ψ (ξ1)|h3

n−1∑
k=0

[
(ψ(tn)− ψ(tk))

−α

−α

− (ψ(tn)− ψ(tk+1))
−α

−α

]

≤ M3

6Γ(1− α)
(ψ(tn)− ψ(t0))

−αh3

≤ CSiα (ψ(T )− ψ(t0))
−αh3, (because, tn ≤ T as t ∈ [t0, T ]), (37)

where CSiα = M3
6Γ(1−α) is a constant that depends only on α, M3 = maxξ2∈[t0,tn] |f

[3]
ψ (ξ2)|

and ξ2 ∈ [t0, tn]. □

Remark 4.3. It is easy also to see that simpson’s formula convergent with order O(h3),
when 1 < α < 2.

5. Numerical example

In this section, to illustrate the maximum absolute errors and the experimental order
of convergence (EOC) of FRF, FTF and FSF proposed above, we present some numerical
example.
we assume that J = [a, T ] and ψ ∈ C(J) be a differentiable function such that ψ′(t) > 0,
t ∈ J , α > 0. Moreover, we solve the numerical example by using MATLAB(v2016a)
software and investigate different choices of suitable functions ψ in the numerical example
as below.
Let N be a positive integer and let ψ(a) = ψ(t0) < ψ(t1) < . . . < ψ(tN ) = ψ(T ) be
the uniform mesh on the interval [ψ(a), ψ(T )]. such that ψ(t) = ψ(a) + hj with h =
ψ(T )− ψ(a)

N
, j = 0, 1, . . . , N .

Therefore, the maximum absolute errors

∥eN∥∞ = max
0≤j≤N

|[CDα,ψ
t0

f(t)]t=tn − [CDα,ψ
t0

f(t)]t=tn |.

For this example the experimental order of convergence or EOC as

log2

(
∥eN∥∞
∥e2N∥∞

)
.

The main purpose is to check the order of convergence of the numerical method with
respect to the fractional order α. For various choices of α > 0, we computed the errors.
We can now plot this graph such that y = log2 ∥eN∥ and x = log2(h) and h = 1/(5× 2l),
l = 1, 2, 3, 4, 5, 6, 7. Doing this, we get that the gradient of the graph would equal the
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EOC. To compare this to the theoretical order of convergence, we have also plotted the
straight line y = x, y = 2x and y = 3x.

Example. Let f(t) = (ψ(t)− ψ(0))5, [t0, T ] = [0, 1]. Then one has

CDα,ψ
t0

f(t) =
Γ(6)

Γ(6− α)
(ψ(t)− ψ(0))5−α. (38)

α 0.25 0.75 1.25 1.75
N Error E Error E Error E Error E

O O O O
C C C C

10 3.52e-01 - 3.66e-01 - 1.32e-00 - 1.25e-00 -
20 1.76e-01 1.00 2.06e-01 0.83 6.62e-01 1.00 7.02e-01 0.83

F 40 8.86e-02 0.99 1.14e-01 0.85 3.33e-01 0.99 3.85e-01 0.87
R 80 4.46e-02 1.00 6.18e-02 0.88 1.67e-01 1.00 2.08e-01 0.89
F 160 2.24e-02 0.99 3.31e-02 0.90 8.41e-02 0.99 1.10e-01 0.92

320 1.12e-02 1.00 1.75e-02 0.92 4.22e-02 0.99 5.80e-02 0.92
640 5.63e-03 0.99 9.13e-03 0.94 2.11e-02 1.00 3.02e-02 0.94
10 2.19e-02 - 2.44e-02 - 6.08e-02 - 5.88e-02 -
20 5.55e-03 1.98 6.71e-03 1.86 1.53e-02 1.99 1.59e-02 1.89

F 40 1.40e-03 1.99 1.80e-03 1.90 3.86e-03 1.99 4.23e-03 1.91
T 80 3.51e-04 2.00 4.77e-04 1.92 9.67e-04 2.00 1.11e-03 1.93
F 160 8.80e-05 2.00 1.25e-04 1.93 2.42e-04 2.00 2.88e-04 1.95

320 2.20e-05 2.00 3.23e-05 1.95 6.06e-05 2.00 7.42e-05 1.96
640 5.51e-06 2.00 8.32e-06 1.97 1.52e-05 2.00 1.90e-05 1.97
10 3.03e-05 - 1.39e-04 - 3.05e-05 - 1.48e-04 -
20 2.42e-06 3.65 1.52e-05 3.19 2.43e-06 3.65 1.57e-05 3.24

F 40 1.90e-07 3.67 1.63e-06 3.22 1.91e-07 3.67 1.67e-06 3.23
S 80 1.48e-08 3.68 1.74e-07 3.22 1.48e-08 3.69 1.76e-07 3.25
F 160 1.14e-09 3.70 1.84e-08 3.24 1.14e-09 3.70 1.85e-08 3.25

320 8.72e-11 3.71 1.94e-09 3.25 8.82e-11 3.69 1.96e-09 3.24
640 6.72e-12 3.70 2.06e-10 3.24 7.02e-12 3.65 2.07e-10 3.24

Table 1: Maximum errors and EOC for (5.1) with ψ(t) = t
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α 0.25 0.75 1.25 1.75
N Error E Error E Error E Error E

O O O O
C C C C

10 6.16e-02 - 7.71e-02 - 3.33e-01 - 3.82e-01 -
20 3.09e-02 1.00 4.34e-02 0.83 1.67e-01 1.00 2.13e-01 0.84

F 40 1.55e-02 1.00 2.40e-02 0.85 8.42e-02 0.99 1.17e-01 0.86
R 80 7.81e-03 0.99 1.30e-02 0.88 4.24e-02 0.99 6.31e-02 0.89
F 160 3.92e-03 0.99 6.96e-03 0.90 2.13e-02 0.99 3.35e-02 0.91

320 1.97e-03 0.99 3.68e-03 0.92 1.07e-02 0.99 1.76e-02 0.93
640 9.87e-04 1.00 1.92e-03 0.94 5.34e-03 1.00 9.18e-03 0.94
10 3.83e-03 - 5.13e-03 - 1.54e-02 - 1.79e-02 -
20 9.73e-04 1.98 1.41e-03 1.86 3.88e-03 1.99 4.83e-03 1.89

F 40 2.45e-04 1.99 3.80e-04 1.89 9.76e-04 1.99 1.28e-03 1.92
T 80 6.16e-05 1.99 1.01e-04 1.91 2.45e-04 1.99 3.37e-04 1.93
F 160 1.54e-05 2.00 2.63e-05 1.94 6.13e-05 2.00 8.75e-05 1.95

320 3.86e-06 2.00 6.81e-06 1.95 1.53e-05 2.00 2.26e-05 1.95
640 9,67e-07 2.00 1.75e-06 1.96 3.84e-06 1.99 5.78e-06 1.97
10 5.32e-06 - 2.93e-05 - 7.72e-06 - 4.49e-05 -
20 4.25e-07 3.65 3.20e-06 3.19 6.15e-07 3.64 4.78e-06 3.23

F 40 3.34e-08 3.67 3.44e-07 3.22 4.82e-08 3.67 5.06e-07 3.24
S 80 2.59e-09 3.69 3.66e-08 3.23 3.74e-09 3.69 5.35e-08 3.24
F 160 2.00e-10 3.69 3.88e-09 3.24 2.88e-10 3.70 5.63e-09 3.25

320 1.53e-11 3.71 4.10e-10 3.24 2.23e-11 3.69 5.95e-10 3.24
640 1.18e-12 3.70 4.33e-11 3.24 1.78e-12 3.65 6.30e-11 3.24

Table 2: Maximum errors and EOC for (5.1) with ψ(t) = log(t+ 1)
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α 0.25 0.75 1.25 1.75
N Error E Error E Error E Error E

O O O O
C C C C

10 1.55e-01 - 1.76e-01 - 6.90e-01 - 7.18e-01 -
20 7.76e-02 1.00 9.90e-02 0.83 3.47e-01 0.99 4.01e-01 0.84

F 40 3.90e-02 0.99 5.47e-02 0.86 1.74e-01 1.00 2.20e-01 0.87
R 80 1.96e-02 0.99 2.97e-02 0.88 8.76e-02 0.99 1.18e-01 0.99
F 160 9.86e-03 0.99 1.59e-02 0.90 4.40e-02 0.99 6.30e-02 0.91

320 4.95e-03 0.99 8.39e-03 0.92 2.21e-02 0.99 3.31e-02 0.93
640 2.48e-03 1.00 4.39e-03 0.93 1.11e-02 0.99 1.72e-02 0.94
10 9.63e-03 - 1.17e-02 - 3.18e-02 - 3.36e-02 -
20 2.44e-03 1.98 3.22e-03 1.86 8.03e-03 1.99 9.08e-03 1.89

F 40 6.16e-04 1.99 8.66e-04 1.89 2.02e-03 1.99 2.41e-03 1.91
T 80 1.55e-04 1.99 2.29e-04 1.92 5.06e-04 2.00 6.32e-04 1.93
F 160 3.88e-05 2.00 5.99e-05 1.93 1.27e-04 1.99 1.64e-04 1.95

320 9.70e-06 2.00 1.55e-05 1.95 3.17e-05 2.00 4.24e-05 1.95
640 2.43e-06 2.00 3.99e-06 1.96 7.94e-06 2.00 1.09e-05 1.96
10 1.34e-05 - 6.69e-05 - 1.60e-05 - 8.44e-05 -
20 1.07e-06 3.65 7.30e-06 3.20 1.27e-06 3.66 8.98e-06 3.23

F 40 8.39e-08 3.67 7.84e-07 3.22 9.98e-08 3.67 9.51e-07 3.24
S 80 6.51e-09 3.69 8.34e-08 3.23 7.75e-09 3.69 1.00e-07 3.25
F 160 5.02e-10 3.70 8.84e-09 3.24 5.97e-10 3.70 1.06e-08 3.24

320 3.84e-11 3.71 9.34e-10 3.24 4.62e-11 3.69 1.12e-09 3.24
640 2.96e-12 3.70 9.88e-11 3.24 3.67e-12 3.65 1.18e-10 3.25

Table 3: Maximum errors and EOC for (5.1) with ψ(t) = sin(t)
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Figure 1. The experimentally determined orders of convergence (EOC)
at T = 1 using FRF with arbitrary kernels ψ(t) and α = 0.75

Figure 2. The experimentally determined orders of convergence (EOC)
at T = 1 using FTF with arbitrary kernels ψ(t) and α = 0.75
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Figure 3. The experimentally determined orders of convergence (EOC)
at T = 1 using FSF with arbitrary kernels ψ(t) and α = 0.75

In Tables 1, 2 and 3 we notice that if we change the value of α from 0.25 to 1.75, the
maximum error is not affected almost. Also, whenever we change the function kernels
ψ(t) from (t, log(t+1), sin(t)), the maximum error does not change. We can see that the
experimental results for the order of convergence (EOC) are consistent with the theoretical
results (Theorem 4.1, Theorem 4.2, Theorem 4.3).
In Figures 1, 2, and 3, for α = 0.75 we can see that the three lines for each the function
kernels ψ(t) are almost parallel to the line y = x for FRR, parallel to the line y = 2x
for FTR, and parallel to the line y = 3x for FSR. Hence, we can conclude that the
order of convergence (EOC) of this FRR, FTR and FSR is almost O(h), O(h2) and O(h3)
respectively, such that y = log2 ∥eN∥ and x = log2(h), where h = 1/(5×2l), l = 1, 2, . . . , 7.

6. Conclusions

In this work, three numerical methods have been proposed: the fractional rectangular
formula (FRF), the fractional trapezoidal formula (FTF), and the fractional Simpson’s
formula (FSF). These methods are general and efficient methods for approximating the
generalized Caputo fractional derivative with random kernels, using uniform grids. Nu-
merical experiments reveals that changing the kernel function ψ(t) has a negligible effect
on the accuracy of the results whether in terms of the maximum error or the experimen-
tally observed orders of convergence (EOC). The same remains true for variations in the
fractional order α > 0, as no significant impact on the accuracy was observed. Moreover,
the experimentally observed orders of convergence are in complete agreement with the
theoretical predictions outlined in Theorems 4.1, 4.2, and 4.3. Specifically, the observed
convergence rates for the FRF, FTF, and FSF formulas are O(h), O(h2) and O(h3), re-
spectively. These are the same convergence rates previously obtained for approximating
the classical Caputo derivative, as reported in reference [18]. In conclusion, the obtained
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results confirm the consistency, reliability, and effectiveness of the proposed numerical
methods in approximating fractional derivatives with arbitrary kernels.
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