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MOMENTS OF ORDER STATISTICS AND K-RECORD VALUES
ARISING FROM THE BETA-LOMAX DISTRIBUTION WITH

APPLICATION

A. A. K. ALAKRAA1,2, A. A. HEYDARI1∗, H. JABBARI KHAMNEI1∗, S. MAKOUEI3, §

Abstract. The concept of k-record values plays a significant role in extreme value the-
ory, which is essential for modeling rare events. In this paper, we focus on k-record values
from the Beta-Lomax distribution(BLD), a flexible probability distribution widely used
to model extreme events in various fields. We begin by introducing the BLD, highlight-
ing its key properties and characteristics. We then define the notion of k-record values,
which represent the maximum of k consecutive observations from a given dataset. The
k-record values provide valuable insights into the extreme behavior of the data and are
particularly useful for estimating tail probabilities and quantiles. Next, we discuss the
statistical properties of k-record values from the BLD, including their moments, dis-
tributional properties, and asymptotic behavior. We explore various methodologies for
estimating the parameters of the BLD using maximum likelihood estimation (MLE)
and discuss strategies for validating the goodness-of-fit of the resulting models. Further-
more, we present applications of k-record values from the BLD in real-world scenarios.
These include assessing the risk associated with extreme events, such as natural disas-
ters or financial market crashes, and making informed decisions regarding prevention,
mitigation, or insurance coverage. Finally, we conclude by summarizing the key findings
and contributions of this study. The analysis of k-record values from the BLD pro-
vides valuable insights into extreme event modeling and enhances our understanding of
rare occurrences. The results presented in this paper can help practitioners in diverse
fields accurately assess and manage risks associated with extreme events, leading to more
robust decision-making processes.
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1. Introduction

The BLD, additionally referred to as the Lomax distribution or the Pareto kind II dis-
tribution, is a heavy-tailed distribution usually utilized in reliability and survival analysis.
It has applications in numerous domain names, particularly when modeling the conduct of
strain and power systems. The BLD is bendy in modeling distinct varieties of statistics.
It is able to manage a diffusion of shapes, which includes symmetrical and skewed distri-
butions. Since the BLD has heavy tails, it is good for modeling severe values or outliers.
In lots of real-international scenarios, mainly in engineering and materials technology, ex-
treme activities (like sudden stress disasters) are huge. The BLD debts for those instances
effectively, offering a more sensible illustration of strain and strength traits.
A k-record value represents the maximum value among k consecutive observations from a
dataset. It provides insights into the occurrence and magnitude of extreme events within
a given sequence. By considering different values of k, one can investigate the behavior of
extreme events at varying scales and time intervals. Estimating the parameters of the BLD
is essential for accurate modeling. In particular, the k-record values, defined as the smallest
k order statistics from a random sample of a given distribution, have received considerable
attention in recent years due to their usefulness in extreme value analysis, survival analysis,
and reliability theory. In this paper, we focus on the k-record values from the BLD and
derive their exact expressions for the probability density function, cumulative distribution
function, and moments. We also investigate some statistical properties of k-record values
from the BLD, such as their asymptotic behavior, estimation, and inference. Our results
provide valuable insights into the behavior of k-record values from the BLD, which can be
useful for researchers and practitioners working in various fields. MLE is a commonly used
technique to estimate the α and λ parameters based on observed data. Efficient estimation
ensures that the distribution adequately captures the extreme behavior of the dataset.
Suppose the random variables X1, . . . , Xn are a sample extracted from a statistical popula-
tion with the density f and the CDF F . If we arrange them in order of size, then we reach
to the corresponding order statistics (OS) of the sample denoted by X1:n ≤ · · · ≤ Xn:n.
The density of the ith OS, Xi:n, is [14]

fi:n(x) = i

(
n

i

)[
F (x)

]i−1
f(x)

[
1− F (x)

]n−i
. (1)

The OS′s arises in many practical and theoretical issues such as the parameter estimation
methods, e.g. L-moments, best linear unbiased estimation for the location-scale family of
distributions [10],goodness-of-fit tests, characterizations of probability distributions, ana-
lyze of censored samples and reliability theory. There are also some statistics which are
constructed by employing the OS′s. Record values and their generalization, k-record val-
ues, belong to this class. To have a background for the former topic, let {Xi, i ≥ 1} be a
sequence of random variables coming from a population with density f and CDF , F . An
observation Xj is called an upper record value if it exceeds all previous observations, i.e.,
Xj is an upper record if Xj > Xi for every i < j. An analogous definition deals with the
lower record statistics: Xj is a lower record if Xj < Xi for every i < j. For convenience,
assume that the first upper U1 and lower L1 records be taken as U1 = L1 ≡ X1, and the
nth (n ≥ 1) upper and lower records as Un and Ln, respectively. The density of Un is of
the form

fUn(u) =

[
− ln F̄ (u)

]n
(n− 1)!

f(u). (2)
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Record statistics are of interest and importance in several situations such as industrial
stress testing, meteorological data analysis, sporting, and athletic events, oil and min-
ing surveys. The k-record values from a probability distribution are important statistical
quantities that provide useful information about extreme events and outliers. The formal
examine of document value concept probably started with the pioneering paper by way of
[13]. In [6] the varieties of file values, a few distributional properties, and statistical infer-
ences of report values and their packages are reviewed. [19] acquired the ML and empirical
Bayes estimate for the parameter of the exponential model based totally on record records.
[9] proposed families of premiere self belief regions for the location and scale parameters
of the two-parameter exponential distribution based totally on higher facts. [3] considered
several distributional properties of the upper facts from the exponential distribution and
provided some characterizations of the exponential distribution. [4] mentioned some dis-
tributional residences of the report values of non-identically distributed random variables
having geometric distributions. One can refer to the useful books [8], [14] and also to the
papers [2] and 24, for more details on the OS and the k-records. In [22] some recurrence
relations satisfied by single and product moments of k-th upper record values from the
exponential-Weibull lifetime distribution are discussed. In [23] discussed the OS′s and
k-record from the CB distribution. In [25] discusses the properties and applications of
k-record values derived from the generalized exponential distribution. In [18] the k-record
values of the Weibull distribution discussed. In [11] some properties have been studied
about the order statistics and k-record values. In [5] information measurements and si-
multaneous k-value records are based on bivariate distributions of the Sarmanov family.
In [1] the residual extropy of records from any continuous distribution is calculated in
terms of the residual extropy of records from the uniform distribution. In [21] the major
developments of the past decade in the study of record values, record times, inter-record
times, and some related statistics from a series of observations are reviewed. The k-record
concept can be seen as a generalization to the ordinary record value. In fact, the upper
k-record values are defined in terms of the kth largest data yet seen. More specifically,
let {Xn, n ≥ 1} be a sequence of independent and identically distributed (iid) random
variables with the CDF F and the density f . Then, Y (k)

1 = X1:k is taken as the starting
point of the k-record process. For n ≥ 2, let the record times be given by

Tn+1(k) = min
{
j > Tn(k), Xj:j+k−1 > XTn(k):Tn(k)+k−1

}
,

where T1(k) = k. Then Y
(k)
n := XTn(k)

, n ≥ 1, is the nth upper k-record statistic arising

from the X-sequence. The density of Y
(k)
n and the joint density of Y

(k)
m and Y

(k)
n are

respectively as follows [15]

f
Y

(k)
n

(x) =
kn

Γ(n)

[
− ln F̄ (x)

](n−1)[
F̄ (x)

](k−1)
f(x), n ≥ 1, k ≥ 1, (3)

and

f
Y

(k)
m ,Y

(k)
n

(x, y) =
kn

Γ(m) Γ(n−m)

[
− ln F̄ (x)

]m−1 f(x)

F̄ (x)

×
[
ln F̄ (x)− ln F̄ (y)

]n−m−1
[F̄ (y)]k−1f(y), (4)

where x < y, 1 ≤ m < n, k ≥ 1, n > 1, and F̄ (x) = 1 − F (x). Comparing densities (2)
and (3) confirms that the k-records reduce to the ordinary records for k = 1. In particu-
lar, the smallest k OS′s, known as k-record values, have attracted considerable attention
in recent years due to their applications in various fields such as reliability theory, sur-
vival analysis, and extreme value analysise. The BLD is a flexible probability distribution
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that has been widely used in modeling data with different skewness and kurtosis levels,
heavy tails or outliers. However, there is limited research on the k-record values from the
BLD, which hinders its applications in practical problems. Therefore, there is a need for
investigating the k-record values from the BLD and deriving their exact expressions for
the PDF , CDF , and moments. Moreover, it is also essential to investigate some of the
statistical properties of k-record values from the BLD, such as their asymptotic behavior,
estimation, and inference. Addressing these research gaps will provide valuable insights
into the behavior of k-record values from the BLD and enhance our understanding of this
important probability distribution.

2. A Four Parameter Beta Lomax Distribution

Let G(X) denote the CDF of a random variable X. The cumulative distribution func-
tion for a generalized class of distribution for the random variable X, as defined by [16], is
generated by applying the inverse CDF to the beta distributed random variable to obtain

F (x) =
1

B(a, b)

∫ G(x)

0
ta−1(1− t)b−1dt a > 0, b > 0 (5)

The corresponding PDF for F (x) is given by

f(x) =
1

B(a, b)
[G(X)]a−1[1−G(X)]b−1Ǵ(X) (6)

In the present study, we let G(x) be the CDF of the Lomax random variable with param-
eters (λ, α) and density function g(x) = α

λ [1 + x
λ ]

−(α+1) and CDF G(x) = 1 − [1 + x
λ ]

−α

for x ≥ 0. From Equations (5) and (6), the PDF and CDF of the BL random variable is
given by respectively,

f(x) =
α

λB(a, b)

[
1−

(
1 +

x

λ

)−α
]a−1 (

1 +
x

λ

)−(αb+1)
, (7)

and

F (x) =
α

B(a, b)

a−1∑
i=0

(
a− 1

i

)
(−1)i

1

α(i+ b)

[
1−

(
1 +

x

λ

)−α(i+b)
]
. (8)

The BLD is a probability distribution that combines characteristics of the beta and Lomax
distributions. It is commonly used for modeling extreme events due to its flexibility in
capturing heavy tails and skewness. The distribution is defined by two parameters, α
(shape) and λ (scale), which control its shape and location.
The plot of the PDF of four parameter Beta Lomax Distribution for difrent parameters

are given in Figure (1)-(3). Moreover, it exhibits that as the value of α increases the
cumulative probability of failure increases sharply which is a similar characteristic to Pareto
distribution. The expression for the reliability Function associated with four parameter
BLD is given by

R(x) = 1− α

B(a, b)

a−1∑
i=0

(
a− 1

i

)
1

α(b+ i)

[
1−

(
1 +

x

λ

)−α(i+b)
]
. (9)

There is an inverse relationship between the shape parameter α and the reliability function.
The hazard function of the five parameter BLD can be obtained by the relation h(x) = f(x)

R(x)
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Figure 1. Plot of the PDF for Beta-Lomax based on (7).

Figure 2. Plot of the PDF for Beta-Lomax based on (7).

and is given by

h(x) =

α
λB(a,b)

[
1−

(
1 + x

λ

)−α
]a−1 (

1 + x
λ

)−(αb+1)

1− α
B(a,b)

∑a−1
i=0

(
a−1
i

)
1

α(b+i)

[
1−

(
1 + x

λ

)−α(i+b)
] . (10)

Therefore, it can be said that the four parameter BLD can be used for modeling such
failure times in which initial failure probability is higher and it decreases during the aging
process. The expression for the cumulative hazard function corresponding to the proposed
density function of four parameter BLD is given by

H(x) = − ln

[
1− α

B(a, b)

a−1∑
i=0

(
a− 1

i

)
1

α(b+ i)

[
1−

(
1 +

x

λ

)−α(i+b)
]]

. (11)
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Figure 3. Plot of the PDF for Beta-Lomax based on (7).

3. Expression for the rth Moment of the Four Parameter Beta Lomax
distribution

The probability density function of the four parameter BLD can be written as

f(x) =
α

λB(a, b)

[
1−

(
1 +

x

λ

)−α
]a−1 (

1 +
x

λ

)−(αb+1)
. (12)

Then we have,

E

(
1 +

X

λ

)
=

∫ ∞

0

(
1 +

x

λ

) α

λB(a, b)

[
1−

(
1 +

x

λ

)−α
]a−1 (

1 +
x

λ

)−(αb+1)
dx.

By setting y = (1 + x
λ)

−α, the above integration becomes

E

(
1 +

X

λ

)
=

∫ 1

0

1

B(a, b)
(1− y)a−1yb−

1
α
−1dy =

B
(
b− 1

α , a
)

B(a, b)
.

Now the E(X) about origin is defined as

E(X) =

[
B
(
b− 1

α , a
)

B(a, b)
− 1

]
λ. (13)

Table (1) presents numerical values of E(X) for BLD given by (13) for some selected
values of a, b and α = 2.5, λ = 1, up to tow decimals. Table (2) presents numerical values
of E(X) for BLD given by (13) for some selected values of a, b and α = 3, λ = 1.5, up
to tow decimals. Table (3) presents numerical values of E(X) for BLD given by (13) for
some selected values of a, b and α = 5, λ = 0.5, up to tow decimals. In the following, We
use the method of changing the distribution function to obtain higher Moments.
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Table 1. The numerical values of E(X) for the BLD for some choices of
a, b and α = 2.5, λ = 1.

a
b 0.2 0.5 1 2 5

0.5 1.32 2.60 4.00 5.81 9.06
1 0.17 0.39 0.66 1.08 1.91
2 0.05 0.14 0.25 0.44 0.86
5 0.02 0.05 0.09 0.16 0.36
10 0.00 0.02 0.04 0.08 0.19

Table 2. The numerical values of E(X) for the BLD for some choices of
a, b and α = 3, λ = 1.5.

a
b 0.2 0.5 1 2 5

0.5 1.02 1.98 3.00 4.28 6.47
1 0.20 0.44 0.75 1.20 2.05
2 0.07 0.16 0.30 0.52 1.01
5 0.02 0.06 0.11 0.20 0.44
10 0.01 0.03 0.05 0.10 0.23

Theorem 3.1. Suppose that X ∼ BL(a, b, α, λ), then we have

E(Xr) =
λr

B(a, b)

r∑
j=0

(−1)r−j

(
r

i

)
B

(
a, b− j

α

)
. (14)

Proof. According to the main definition of the distribution density function BG we have:

E(Xr) =
1

B(a, b)

∫ ∞

0
xsG(x)a−1[1−G(x)]b−1g(x)dx, (15)

Where G(x) represents the Lomax(α, λ) distribution. let G(x) = u, then we have x =

λ[(1− u)
−1
α − 1] and we can write,

E(Xr) =
1

B(a, b)

∫ ∞

0
[(1− u)

−1
α − 1]rua−1[1− u]b−1du, (16)

Use the binomial formal we have,

E(Xr) = λr

B(a,b)

∑r
j=0(−1)r−j

(
r
i

) ∫∞
0 ua−1 [1− u]b−

j
α
−1 du

= λr

B(a,b)

∑r
j=0(−1)r−j

(
r
i

)
B
(
a, b− j

α

)
. (17)

□

Remark 3.1. The expressions for the second four raw moments are given by r = 2 in (14)

E(X2) =
2λ

B(a, b)

[
B(a, b)− 2B

(
a, b− 1

α

)
+B

(
a, b− 2

α

)]
. (18)
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Remark 3.2. By using appropriate moment expressions, the variance σ2
X as

Var(X) = σ2
X

=
2λ

B(a, b)

[
B(a, b)− 2B

(
a, b− 1

α

)
+B

(
a, b− 2

α

)]

−

([
B
(
b− 1

α , a
)

B(a, b)
− 1

]
λ

)2

.

(19)

Table (3) presents numerical values of E
(
X2
)

for BL given by (18) for some selected
values of a, b and α = 5, λ = 0.5, up to tow decimals.

Table 3. values of E(X2) for the BLD for some choices of a, b and α =
5, λ = 0.5.

a
b 0.2 0.5 1 2 5

0.5 0.86 1.71 2.66 3.97 6.42
1 0.04 0.09 0.17 0.31 0.64
2 0.00 0.01 0.03 0.06 0.09
5 0.00 0.00 0.00 0.00 0.03
10 0.00 0.00 0.00 0.00 0.01

Table (4) presents numerical values of E(X2) for BL given by (18) for some selected
values of a, b and α = 3, λ = 1.5, up to tow decimals.

Table 4. The numerical values of E(X2) for the BLD for some choices of
a, b and α = 3, λ = 1.5.

a
b 0.2 0.5 1 2 5

0.8 2.55 5.88 10.71 18.96 33.96
1 0.63 1.55 3.00 7.70 12.83
2 0.05 0.13 0.30 0.69 1.98
5 0.01 0.02 0.03 0.19 0.32
10 0.00 0.00 0.01 0.02 0.09

4. Some Extensions and Properties

In this section we present some representations of the CDF of BLD. The mathematical
relation given in below will be useful in this, and next, section.
Proposition 1. We can express (5) as a mixture of distribution function of BLD as follows:
If a; b;λ;α > 0 we have,

FX(x) = IG(x)(a, b) = 1− I1−G(x)(b, a) (20)

which G(x) is the Lomax distribution with parameters λ, α, and Iy(a, b) =
By(a,b)
B(a,b) denotes

the incomplete beta function ratio, and

By(a, b) =

∫ y

0
wa−1(1− w)b−1dw.
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denotes the incomplete beta function.
Read More, we need to summarize the content of the complementary beta distribition
(CBD) article [23] because in the next section we will draw on the results of this article.
To calculate the raw moments of the CBD, we need to tackle the following integral

M(s)(a, b, k) =

∫ 1

0

[
Iu(a, b)

]s
uk du k = 0, 1, . . . , s = 1, 2, . . . , (21)

where Iu(a, b) = FB(u) denote the incomplete beta rate function. More precisely, the
following fact can be readily concluded

X ∼ CB(a, b) =⇒ E(Xs) = M(s)(a, b, 0).

The integral (21) will also be used for computing the moments of OS′s and k-records in
the next two sections. The following lemma provides a recurrence solution for the above
integral.

Lemma 4.1. Assume that a and b are two positive numbers and k be a non-negative integer
value, then the integral (21) is derived from the recurrence form

M(s)(a, b, k) =
1

k + 1

[
1− s

B(a, b)

∞∑
j=0

(
b− 1

j

)
(−1)jM(s−1)(a, b, a+ k + j)

]
, s ≥ 1,

Obviously, if b is an integer value, then the upper bound of the above summation will stops
at j = b− 1.

Proof.

M(s)(a, b, k) =

∫ 1

0

[
Iu(a, b)

]s
uk du

=
uk+1

k + 1
[Iu(a, b)

]s∣∣∣∣1
0

− s

(k + 1)B(a, b)

∫ 1

0
uk+1[Iu(a, b)

]s−1
ua−1(1− u)b−1du,

we consider the series expansion [17, formula 1.110]

(1− x)q =
∞∑
j=0

(
q

j

)
(−1)jxj .

If q is neither a natural number nor zero, the series converges absolutely for |x| < 1
and diverges. If q = n is a natural number, this series is reduced to the finite sum
(1 − x)n =

∑n
j=0

(
n
j

)
(−1)jxj . Therefore, knowing that |u| < 1, the above series can be

used to convert (1− u)b−1 for b > 0. With the starting point for s = 1 we have

M(1)(a, b, k) =

∫ 1

0
Iu(a, b)u

kdu =

∫ 1

0

ua(1− u)b

aB(a, b)
2F1(a+ b, 1; a+ 1;u)ukdu

=
B(a+ k + 1, b+ 1)

aB(a, b)
3F2

(
a+ b, 1, a+ k + 1
a+ 1, a+ b+ k + 2

; 1

)
.

We used Bz(a, b) =
za(1−z)b

a 2F1(a+b, 1; a+1; z) from [20] and [17]. The 3F2 is a generalized
hypergeometric function. [17, formula 7.512.5].

□
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Theorem 4.1. Suppose that X1, . . . , Xn are iid random variables from CB(a, b) distri-
bution. Then the density of the ith OS′s, say Xi:n, from this sample will be simplified
as

fi:n(x) =
B(a, b)

B(i, n− i+ 1)
FC(x)

i−a
[
1− FC(x)

]n−i−b+1
, 0 < x < 1, i = 1, . . . , n. (22)

Let M (s)
i:n (1 ≤ i ≤ n) denotes the sth moment of the Xi:n arising the CB distribution. We

can then compute it with the use of (22) as the following recurrence relation

M
(s)
(i:n) =

1

B(i, n− i+ 1)

n−i∑
j=0

(
n− i

j

)
(−1)jM(s)(a, b, i+ j − 1), (23)

where M(s)(a, b, i+ j − 1) complies with Lemma (1).

5. Moments of BLD OS′s based the CB distribution

Moments of order statistics play an important role in evaluating control quality and
relability. For example, if a product has high relability, the time will be expensive in time
and money for all products to fail the life test. Therefore, practitioners must predict the
failure of their plans based on the failure of some early failures. These estimates are mostly
based on time analysis.
Let X1, X2, ..., Xn be a random sample of size n from BL(a, b, λ, α). Then the pdf and cdf
of the ith order statistic, say X(i:n), are given by (1), where F (x) and f(x) denote the (20)
and (6) respectively.

Theorem 5.1. Suppose that X1, X2, ..., Xn are iid random variables from BL(a, b, λ, α)

with distribution (7). Then the µ
(s)
i:n denote the sth moment of the ith OS′s, from this

sample will be simplified as

µ
(s)
i:n = E(Xs

i:n)

= iλs

(
n

i

) s∑
j=0

i−1∑
p=0

(
s

j

)(
i− 1

p

)
(−1)p+1B

(
b− 1

α(2 + j), a
)

B(a, b)

×M
(n−i+p)

(b− 1
α
(2+j):a+b− 1

α
(2+j)−1)

(U). (24)

Where U ∼ CB(b, a) and M(s)(a, b, i+j−1) complies with Lemma (1) and M
(j)
(i:n)(u) denot

the sth moment of the ith OS′s from the CB distribution (23) which is fully and accurately
stated and proven in [23].

Proof.

µ
(s)
i:n = i

(
n
i

) ∫∞
0 xsfi:n(x)dx = i

(
n
i

) ∫∞
0 xs[F (x)]i−1[1− F (x)]n−if(x)dx

= i
(
n
i

) ∫∞
0 xs[Iw(b, a)]

n−i[1− Iw(b, a)]
i−1 α

λB(a,b) [1− w]a−1w(b− 1
α
)dx

Where w = 1−G(x) = (1 + x
λ)

−α and x = λ(w
−1
α − 1) . In the continuation of the proof,

we write x as w and we have dx = −λ
α w−(1+ 1

α
)dw, then continue the proof.

□
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Remark 5.1. Placing s = 1 in (24) specifies the expectation of Xi:n as

µi:n = iλ

(
n

i

) i−1∑
p=0

1∑
j=0

(−1)j+p

(
i− 1

p

)(
1

j

)
B
(
b− 1

α(2 + j), a
)

B(a, b)

×M
(n−i+p)

(b− 1
α
(2+j):a+b− 1

α
(2+j)−1)

(U). (25)

And we can writh

µi:n =
iλ

B(a, b)

(
n

i

) i−1∑
p=0

(−1)p
(
i− 1

p

)

×
[
M

(n−i+p)

(b− 2
α
:a+b− 2

α
−1)

(U)B

(
b− 2

α
, a

)
−M

(n−i+p)

(b− 3
α
:a+b− 3

α
−1)

(U)B

(
b− 3

α
, a

)]
. (26)

Where U ∼ CB(b, a).

The (27) with i = 1 reduces to

µ1:n =
nλ

B(a, b)

[
B(b− 2

α
, a)M

(n−1)

(b− 2
α
:a+b− 2

α
−1)

(U)−B(b− 3

α
, a)M

(n−1)

(b− 3
α
:a+b− 3

α
−1)

(U)
]
.

Where U ∼ CB(b, a), And with i = n reduces to

µn:n =
nλ

B(a, b)

[
B(a, b− 3

α
)M

(n−1)

(a:a+b− 3
α
−1)

(U)−B(a, b− 2

α
)M

(n−1)

(a:a+b− 2
α
−1)

(U)
]
.

Where U ∼ CB(a, b).

The values of µ(1)
(i:8) and µ

(2)
(i:8) (1 ≤ i ≤ 8) calculated by (24) are shown in Tables (5) and

(6) for some selected values of parameters up to three decimals.

Table 5. The values of µ
(1)
(i:8) given by (24) for some selected values of

parameters and i.

b = 7, a = 2, α = 0.5 i
λ 1 2 3 4 5 6 7 8

0.5 0.045 0.072 0.096 0.121 0.139 0.162 0.188 0.221
1 0.087 0.145 0.193 0.239 0.284 0.332 0.379 0.430
2 0.178 0.287 0.383 0.274 0.567 0.660 0.759 0.860

b = 7, a = 4, α = 0.5 i
λ 1 2 3 4 5 6 7 8

0.5 0.048 0.062 0.072 0.079 0.085 0.090 0.095 0.099
1 0.096 0.125 0.144 0.158 0.169 0.179 0.189 0.197
2 0.196 0.251 0.289 0.315 0.339 0.359 0.378 0.396
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Table 6. The values of µ
(2)
(i:8) given by (24) for some selected values of

parameters and i

b = 5, a = 3, α = 1 i
λ 1 2 3 4 5 6 7 8

0.5 0.0004 0.0006 0.0009 0.0011 0.0013 0.0016 0.0018 0.0020
1 0.0016 0.0027 0.0037 0.0046 0.0055 0.0068 0.0074 0.0082
2 0.0064 0.0112 0.0154 0.0193 0.0226 0.0262 0.0298 0.0331

b = 5, a = 3, α = 0.3 i
λ 1 2 3 4 5 6 7 8

0.5 0.0051 0.0087 0.0123 0.0155 0.0189 0.0223 0.0255 0.0287
1 0.0202 0.0355 0.0498 0.0635 0.0767 0.0897 0.1029 0.1163
2 0.0810 0.1435 0.1990 0.2508 0.3039 0.3561 0.4100 0.4628

6. Moments of k-record statistics based the CB distribution

As already mentioned in the introduction section, the k-record concept can be seen as a
generalization to the ordinary record value. In fact, the upper k-record values are defined
in terms of the kth largest data yet seen. More specifically, let {Xn, n ≥ 1} be a sequence
of iid random variables with the cdf F and the density f . Then, Y (k)

1 := X1:k is taken as
the starting point of the k-record process. For n ≥ 2, let the record times be given by

Tn+1(k) = min
{
j > Tn(k), Xj:j+k−1 > XTn(k):Tn(k)+k−1

}
,

where T1(k) = k. Then Y
(k)
n := XTn(k)

, n ≥ 1, is the nth upper k-record statistic arising

from the X-sequence. The density of Y (k)
n and the joint density of Y (k)

m and Y
(k)
n are given

by (3) and (4) respectively by [15], where F̄ (x) = 1− F (x). Comparing densities (2) and
(3) confirms that the k-records reduce to the ordinary records for k = 1. In the next
theorem we obtain a recurrence relation for the single moments of the k-records arising
from the BLD.

Theorem 6.1. If Y (k)
n is the nth upper k-record statistic extracted from a random sequence

following the BLD(a, b, λ, α) with the density (7), then, its moments will be obtained as

E
[
Y (k)
n

]
=

λkn

B(a, b)Γ(n)

∞∑
s=0

k−1∑
j=0

(
k − 1

j

)
as(n−1)(−1)j (27)

×
[
B(a, b− 2

α
)M

(n+s+j−1)

(a:b+a− 2
α
−1)

(U)−B(a, b− 3

α
)M

(n+s+j−1)

(a:b+a− 3
α
−1)

(U)

]
,

where U ∼ CB(a, b), M (j)
(i:n)(u) and as(n−1) are given by (23) and (28), respectively.

Proof. In view of [10], note that[
− ln(1− t)

]j
=

( ∞∑
p=1

tp

p

)j

=

∞∑
p=0

ap(j)t
j+p, |t| < 1, (28)

ap(j) is the coefficient of tj+p in the expansion of (
∑∞

p=1
tp

p )
j [17, p.17. formula AD-

6361]. □
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Remark 6.1. Setting k = 1 in (27) then we have the nth upper record, the sth moments
of nth upper record will be obtained as

E[Un]
s =

λs

B(a, b)Γ(n)

s∑
j=0

∞∑
p=0

ap(n−1)

(
s

j

)
(−1)j+sB(a, b− 2 + j

α
)M

(n+p−1)

(a:b+a− 2+j
α

−1)
(U). (29)

Where U ∼ CB(b, a), M (j)
(i:n)(u) and as(n−1) are given by (23) and (28), respectively.

In Table (7), we provide E[Un] for n = 1, · · · , 5 and some selected values of a and b up
to three decimals.

Table 7. The values of E[Un] in (29) for some selected values of parameters.

a = 2, b = 3, α = 0.5 n
λ 1 2 3 4 5

0.5 0.137 0.174 0.189 0.195 0.198
2 0.249 0.304 0.325 0.334 0.338
5 0.338 0.402 0.425 0.432 0.435

a = 2, b = 3, α = 1 n
λ 1 2 3 4 5

0.5 0.198 0.251 0.273 0.285 0.289
2 0.335 0.435 0.463 0.476 0.481
5 0.478 0.564 0.591 0.601 0.606

a = 2, b = 3, α = 2 n
λ 1 2 3 4 5

0.5 0.286 0.362 0.392 0.406 0.412
2 0.499 0.604 0.639 0.652 0.661
5 0.647 0.748 0.778 0.789 0.794

A recurrence relation for the mean of the product of nth and mth upper k-record values
coming from the BLD is derived in the sequel.

Theorem 6.2. If Y (k)
m and Y

(k)
n are two upper k-records extracted from a random sequence

of CB(a, b) distribution, then for 1 ≤ m < n, k ≥ 1, we have,

E
[
(Y (k)

m )(Y (k)
n )

]
=

Qk,m,n

aB(a, b)

p∑
t=0

∞∑
l=0

(
p

t

)
(−1)pdl(n−t−2)

[
Γ(t+ k)E(Ut+k)B(n+ a− t+ l − 1, b)

× 3F2

(
a+ b, 1, n+ a− t+ l − 1
a+ 1, n+ a− t+ l + b− 1

; 1

)
−

∞∑
s=0

∞∑
r=0

B(r − b+ 1, a+ b)B(s+ k + 2a+ n+ l + r − 2, b)(a)ras(t+k−1)(−1)(t+k−1)

Γ(r + 1)Γ(b)Γ(1− b)(a+ s+ t+ k)

× 4F3

(
a, 1− b, a+ s+ t+ k, s+ k + 2a+ n+ l + r − 2

a, 1− b, a+ s+ t+ k + 1, s+ k + 2a+ n+ l + r + b− 2
; 1

)]
,

where Qk,m,n = kn

Γ(m)Γ(n−m) , p = n−m− 1, ap(j) and dp(j) are introduced in (28), µi:n and
E[Un] are computed according to (25) and (29), respectively.



86 TWMS J. APP. ENG. MATH. V.16, N.1, 2026

The recent expectation can be shortened for two consecutive upper k-records.

Remark 6.2. Using Theorem 6.2, the product moments of Y (k)
m and Y

(k)
m+1 for k,m ≥ 1 is

obtained as follows

E
[
(Y (k)

m )(Y
(k)
m+1)

]
=

km+1

aΓ(m)B(a, b)

∞∑
l=0

dl(m−t−1)

[
Γ(k)E(Uk)B(m+ a+ l, b)3F2

(
a+ b, 1,m+ a+ l
a+ 1,m+ a+ l + b

; 1

)

−
∞∑
s=0

∞∑
r=0

B(r − b+ 1, a+ b)B(s+ k + 2a+m+ l + r − 1, b)(a)ras(k−1)(−1)(k−1)

Γ(r + 1)Γ(b)Γ(1− b)(a+ s+ k)

× 4F3

(
a, 1− b, a+ s+ k, s+ k + 2a+m+ l + r − 1

a, 1− b, a+ s+ k + 1, s+ k + 2a+m+ l + r + b− 1
; 1

)]
.

In the rest of the section, the lower record values of the BLD are considered.

To this end, let Xi, i ≥ 1 be a sequence of iid random variables with the F and the
density f , and Lm be the associated mth lower record statistic. Then the density of Lm is
[7],

fLm(x) =

[
− lnF (x)

]m−1

Γ(m)
f(x). (30)

Finally, from (30) and after some algebraic calculations, the mean of Lm arising BL(a, b, λ, α)
distribution with density (23) is derived as

E[Lm]s =
λs+1

B(a, b)Γ(m)

∞∑
p=0

s∑
j=0

(−1)j+s

(
s

j

)

×B

(
b−

(
2 + j

α

)
, a

)
ap(m−1)

×M(m+p−1)

(b−( 2+j
α

):a+b−( 2+j
α

)−1)
(U).

(31)

Where U ∼ CB(b, a), M (j)
(i:n)(u) and as(n−1) are given by (23) and (28), respectively.

Table (8) shows some instances of E[Lm] for m = 1, · · · , 5 and some selected values of a
and b up to three decimals, calculated using (31).

7. Numerical Experiments and Discussions

We perform simulation studies to compare the performance of Un and Lm for different
sample sizes. we generate 10,000 samples each of size n from the BLD and repeat this
procedure for several values of Un and Lm. Figures (4) and (5) show the performance of
MSE of Un and Lm in BLD. From these figures we note that the MSE is always greate
when n is large.
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Table 8. The values of E[Lm] in (31) for some selected values of parameters.

a = 3, b = 5, α = 5 m
λ 1 2 3 4 5

0.5 0.415 0.301 0.216 0.157 0.113
1 0.525 0.390 0.282 0.204 0.148
2 0.641 0.490 0.362 0.266 0.193

a = 3, b = 5, α = 0.5 m
λ 1 2 3 4 5

0.5 0.162 0.121 0.088 0.066 0.048
1 0.205 0.153 0.114 0.084 0.063
2 0.255 0.193 0.143 0.107 0.078

a = 3, b = 5, α = 2 m
λ 1 2 3 4 5

0.5 0.285 0.207 0.152 0.109 0.079
1 0.362 0.268 0.196 0.143 0.104
2 0.452 0.335 0.251 0.183 0.134

Figure 4. The performance of MSE of Un in BLD.

In Table (9), the estimation of Un and Lm is compared for different sample sizes n, when
X ∼ BL(3, 2, 3, 4) and Y ∼ BL(1, 2, 2, 1.5) are independent random variables from BLD.

Considering the extremely low Mean Squared Error (MSE) values presented in the
graphs and tables, we can conclude that the relationships derived in the preceding sections
for Un and Lm provide an excellent prediction of the observed values. This indicates a
high level of efficiency in the predictive models utilized.

8. Real data analysis

This section deals with an example of real data to illustrate the proposed estimation
methods. Here, a real life data on 13 and 13 (Data set(I) and Data set(II)) observation
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Figure 5. The performance of MSE of Lm in BLD.

Table 9. Estimation of Un and Lm.

Beta Lomax Results n = 1 n = 2 n = 3 n = 4 n = 5
Simulated data 0.667 0.741 0.773 0.783 0.791

Upper Record Predicted values 0.632 0.729 0.765 0.772 0.778
Bias(U) 0.035 0.012 0.008 0.011 0.013
MSE(U) 0.00122 0.00014 0.00006 0.00012 0.00016

Simulated data 0.653 0.537 0.426 0.338 0.261
Lower Record Predicted values 0.641 0.513 0.414 0.318 0.247

Bias(L) 0.012 0.024 0.012 0.020 0.014
MSE(L) 0.00014 0.00057 0.00014 0.0004 0.00019

are considered associated with the failure time of Kevlar 49/epoxy stands with pressure
at 90%. The data comes from the studies in [12] based on the recorded failure times in
hours. Data for these sample are provided in Tables (10) and (12). The data are fitted by
using the BLD. The Kolmogorov–Smirnov (K–S) goodness-of-fit statistic is used for the
comparison of the fits. The parameters are estimated by the maximum likelihood technique.
The maximum likelihood estimates and the p-values based on the (K–S) goodness-of-
fit statistics are given and presented in Table (11). Let us assign the random variable
X ∼ fX(x) to Data set(I) and random variable Y ∼ fY (y) to Data set(II) that have been
reproduced in the following tables. According to the figures (6) and (7), and Tables (11)
and (13), it is clear that our distributions have a good fit on these data.

Table 10. Data set (I)

0.01 0.24 0.80 1.45 0.01 0.24 0.80 1.50 0.02 0.35 0.90 1.53 0.03

In Table (14) and, (15) the observed Un values for data set(I) and data set(II), and their
predicted values are calculated based on the parameters estimated in Table (11) and (13)
for different n. Also, the values of bias and MSE have been calculated and included.
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Table 11. The parameters estimates and goodness of fit criteria for data set(I).

Distribution MLE(SRS) (K − S) statistics p-value
â = 2.25

Beta− Lomax b̂ = 2.38 0. 9754 0.0694
λ̂ = 0.156
α̂ = 5.49

Figure 6. Plot of the PDF for BLD based on data set(I).

Table 12. Data set (II).

0.02 0.29 0.83 1.51 0.02 0.03 0.85 1.52 0.03 0.38 0.95 1.54 0.04

Table 13. The parameters estimates and goodness of fit criteria for data
set (II).

Distribution MLE(SRS) (K − S) statistics p-value
â = 1.61

Beta− Lomax b̂ = 1.97 1.1434 0.0714
λ̂ = 0.14
α̂ = 5.49

Figures (8) and (9) show the MSE and Bias of Predicted Un for data set(I) and data
set(II).

Figures (10) shows the MSE and Bias of Predicted Un for data set(I) and data set(II).
Based on Figures (10), it is evident that the predicted values for Un closely align with the
observed values for the real data. This demonstrates a significant level of efficiency in the
predictive models and relationships established in this research.
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Figure 7. Plot of the PDF for BLD based on data set(II).

Table 14. Observed Un and their predicted values for data set(I).

Results n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
Observed Un 0.01 0.24 0.80 1.45 1.50 1.53
Predicted Un 0.013 0.234 0.792 1.397 1.517 1.529

Bias 0.004 0.025 0.053 0.078 0.039 0.024
MSE 0.0000 0.0000 0.0002 0.0006 0.0001 0.0005

Table 15. Observed Un and their predicted values for data set(II).

Results n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
Observed Un 0.02 0.29 0.83 1.51 1.52 1.54
Predicted Un 0.023 0.287 0.826 1.509 1.513 1.542

Bias 0.003 0.003 0.004 0.001 0.007 0.002
MSE 0.000009 0.000009 0.000016 0.000001 0.000049 0.000004
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Figure 8. The performance of MSE and Bias of Un for data set(I).

Figure 9. The performance of MSE and Bias of Un for data set (II).

Figure 10. Plot of Predicted Un versus the Observed Un given by Tables
(14) and (15).
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