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PACKING COLORINGS OF THE CORONA PRODUCT OF THE PATH

Pn AND THE CYCLE Cn WITH AN EDGE K2

R. SAMPATHKUMAR1, T. SIVAKARAN2,∗, R. UNNIKRISHNAN3, §

Abstract. Given a graph G and a positive integer i, an i-packing in G is a subset X
of V (G) such that the distance dG(u, v) between any two distinct vertices u, v ∈ X is
greater than i. The packing chromatic number χρ(G) of a graph G is the smallest integer
k such that the vertex set of G can be partitioned into sets Vi, i ∈ [k], where each Vi is
an i-packing. In this paper, we determine the packing chromatic number of the corona
products of paths and cycles of small order (at most 11 vertices) with an edge and obtain
bounds for the packing chromatic number of corona products of paths and cycles of larger
order with an edge.
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1. Introduction

The packing chromatic number was first studied, under the name broadcast chromatic
number, by Goddard, S.M. Hedetniemi, S.T. Hedetniemi, Harris, and Rall [5]. The terms
packing coloring and packing chromatic number were coined by Brešar, Klavžar, and
Rall [3]. This coloring was introduced because of potential applications in broadcast
assignment problems. The development on the packing chromatic number up to 2020 has
been summarized in the survey article [2]. Research developments after the survey include
[4, 6, 7].

Let G = (V (G), E(G)) be a finite undirected simple graph with vertex set V (G)
and edge set E(G). The order and the size of G will be denoted with n(G) and m(G),
respectively.
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For vertices u and v of a connected graph G, the distance dG(u, v) is the length of a
shortest path between u and v in G.

The diameter of G, i.e., max{dG(u, v)|u, v ∈ V (G)}, will be denoted by diam(G).
Terms and notations not defined in this paper will follow [1].
Given a graph G and a positive integer i, an i-packing in G is a subset X of V (G) such

that the distance dG(u, v) between any two distinct vertices u, v ∈ X is greater than i.
The i-independence number of G, denoted by αi(G), is the maximum cardinality of

i-packings of G. In particular, α1(G) is the independence number α(G) and αi(G) = 1
for i ≥ diam(G).

The packing chromatic number χρ(G) of G is the smallest integer k such that V (G) can
be partitioned into sets V1, V2, . . . , Vk, where, for each i ∈ [k], Vi is an i-packing of G,
where [k] = {1, 2, . . . , k}. Such a partition corresponds to a mapping c : V (G) → [k] such
that Vi = {u ∈ V (G) : c(u) = i}. This mapping has the property that c(u) = c(v) = i
implies dG(u, v) > i; c is called a packing k-coloring.

If an edge or a vertex is removed from a given graph G, then the distances between the
(remaining) vertices of G cannot decrease. Hence a packing coloring of G restricted to an
arbitrary subgraph H is a packing coloring of H. This implies the following observation.

Observation 1.1. [5] If H is a subgraph of G, then χρ(H) ≤ χρ(G).

Denote by Pn, Cn and Kn, respectively, the path with n vertices, the cycle with n
vertices and the complete graph with n vertices.

Proposition 1.1. [5] χρ(Pn) =

{
2 if n ∈ {2, 3},
3 if n ≥ 4.

Proposition 1.2. [5] χρ(Cn) =

{
3 if n = 3 or n ≡ 0 (mod 4),

4 otherwise.

Given two graphs G1 and G2 with V (G1) = {v1, v2, . . . , vn} and n disjoint copies

G
(1)
2 , G

(2)
2 , . . . , G

(n)
2 of G2, the corona product of G1 and G2, denoted by G1 ⊙ G2, is the

simple graph obtained from the disjoint union G1 ∪ (G
(1)
2 ∪ G

(2)
2 ∪ . . . ∪ G

(n)
2 ) by making

the vertex vi of G1 adjacent to every vertex of G
(i)
2 , i ∈ [n].

Theorem 1.1. [8] χρ(Cn ⊙K1) =

{
4 if n ∈ {3, 4},
5 if n ≥ 5.

The packing chromatic number χρ(Pn ⊙ K1) and for p ≥ 2, the packing chromatic
numbers χρ(Pn ⊙ pK1) and χρ(Cn ⊙ pK1) are known, see Section 5.3 of the survey article
[2]. In Sections 2 and 3, we consider χρ(Pn ⊙K2) and χρ(Cn ⊙K2), respectively.

2. Corona product of Pn and K2

Let Pn = v0v1v2 . . . vn−1, K
(i)
2 = xiyi, i ∈ Zn, and Hn = Pn ⊙ K2. Then,

|V (Hn)| = 3n, α1(Hn) = α2(Hn) = n and diam(Hn) = n + 1. So, αn+1(Hn) = 1.
Since Hn ⊆ Hn+1, χρ(Hn) ≤ χρ(Hn+1).

Theorem 2.1.
(1)

χρ(Pn ⊙K2) =


4 if n ∈ {2, 3},
5 if n ∈ {4, 5},
6 if n ∈ {6, 7, 8, 9, 10, 11}.
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(2) For n ≥ 12,
χρ(Pn ⊙K2) ≤ 7.

Proof. To prove (1), it is enough if we show that χρ(H11) ≤ 6, χρ(H5) ≤ 5, χρ(H3) ≤ 4,
χρ(H2) ≥ 4, χρ(H4) ≥ 5 and χρ(H6) ≥ 6.

First, consider H11. Let V1 = {v0, y1, v2, y3, v4, y5, v6, y7, v8, y9, v10}, V2 = {x0, x1, x2,
. . . , x10}, V3 = {y0, y2, y4, y6, y8, y10}, V4 = {v1, v7}, V5 = {v3, v9}, V6 = {v5}.
Then, (V1, V2, V3, V4, V5, V6) is a packing 6-coloring of H11, and hence χρ(H11) ≤ 6. Next,
consider H5. For i ∈ {1, 2, 3, 4, 5}, let Xi = Vi ∩ V (H5). Then, (X1, X2, X3, X4, X5) is a
packing 5-coloring of H5, and hence χρ(H5) ≤ 5. Now, consider H3. For j ∈ {1, 2, 3, 4},
let Yj = Vj ∩ V (H3). Then, (Y1, Y2, Y3, Y4) is a packing 4-coloring of H3, and hence
χρ(H3) ≤ 4.

For lower bounds, first considerH2. Clearly, χρ(H2) ≥ 4, since α1(H2)+ α2(H2)+α3(H2)
= 5< 6 = n(H2). Next, considerH4. Clearly, χρ(H4) ≥ 4, since α3(H4) = α4(H4) = 2. Sup-
pose χρ(H4) = 4. Let (V1, V2, V3, V4) be a packing 4-coloring of H4. Then, |Vi| = αi(H4),
i ∈ [4]. Assume, by symmetry, that V2 = {x0, x1, x2, x3} and V4 = {y0, y3}. Conse-
quently, V1 = {v0, y1, y2, v3}. Now, V3 = {v1, v2}, a contradiction. Hence, χρ(H4) ≥ 5.
Now, consider H6. It follows, from α3(H6) = 3 and α4(H6) = α5(H6) = 2, that
χρ(H6) ≥ 5. Suppose χρ(H6) = 5. Let (V1, V2, V3, V4, V5) be a packing 5-coloring of H6.
Then, |Vi| = αi(H6) for all i ∈ {1, 2, 3, 4, 5} except one i for which |Vi| = αi(H6) − 1.
By symmetry, if necessary, we relabel the vertex xj by yj , where j ∈ {0, 1, . . . , 5}. Again,
by symmetry, if needed, we relabel the vertex vk by v5−k, where k ∈ {0, 1, 2}. We consider
four cases.
Case 1. |V1| = 5 or |V4| = 1.

Then, V2 = {x0, x1, . . . , x5} and V5 is {y0, y4}, {y0, v5}, or {y0, y5}. If V5 = {y0, y5},
then |V3| ̸= 3, a contradiction. Hence, V5 is either {y0, y4} or {y0, v5}. Then, V3 is
{v0, y3, y5} or {y1, y3, y5}, and therefore, |V1| ≤ 4, a contradiction.
Case 2. |V3| = 2.

Then, V2 = {x0, x1, . . . , x5} and V5 is {y0, y4}, {y0, v5}, or {y0, y5}. Hence, respectively,
we have {v0, y1, y3, v4, y5} ⊆ V1, {v0, y1, y5} ⊆ V1, {v0, y1, y4, v5} ⊆ V1. In any possibility,
|V4| ≤ 1, a contradiction.
Case 3. |V5| = 1.

Then, V2 = {x0, x1, . . . , x5}. Clearly, by symmetry, one of the following holds:
{y0, y5} ⊆ V1, {v0, y5} ⊆ V1, {v0, v5} ⊆ V1.

If {y0, y5} ⊆ V1, then |V3| ̸= 3, a contradiction.
If {v0, y5} ⊆ V1, then, in order, y1 ∈ V1, {y0, y2} ⊆ V3, |V4| ̸= 2, a contradiction.
If {v0, v5} ⊆ V1, then {y1, y4} ⊆ V1. As {v2, v3} is not a subset of V1, at least one of y2,

y3 is in V1. Assume, by symmetry, y2 ∈ V1. Then, V3 = {y0, y3, y5} and so |V4| ̸= 2, a
contradiction.
Case 4. |V2| = 5.

Then, V5 is {y0, y4}, {y0, v5}, or {y0, y5}.
Subcase 4.1. V5 = {y0, y5}.

If x0 ∈ V4 (resp. v0 ∈ V4), then v0 ∈ V1 (resp. x0 ∈ V1). So, V2 = {x1, x2, x3, x4, x5}.
Consequently, |V3| ≠ 3, a contradiction. By symmetry, if x5 ∈ V4 (resp. v5 ∈ V4), then
we have a contradiction. Hence, V4 ∩ {x0, x5, v0, v5} = ∅, and therefore, V4 = {y1, y4}.

As |V3| = 3, exactly one of x0, v0, x1 is in V3 and exactly one of x5, v5, x4 is in V3.
If {x0, x5}, {x0, x4} or {x1, x5} is contained in V3, then |V2| ≠ 5, a contradiction. If
{v0, v5}, {v0, x4}, {x1, v5} or {x1, x4} is contained in V3, then |V3| ̸= 3, a contradiction.
If {x0, v5} ⊆ V3, then V2 = {x1, x2, x3, x4, x5}, and hence |V1| ̸= 6, a contradiction. If
{v0, x5} ⊆ V3, then, by symmetry, we have a contradiction.
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Subcase 4.2. V5 = {y0, v5}.
If x0 ∈ V4 (resp. v0 ∈ V4), then v0 ∈ V1 (resp. x0 ∈ V1) and so V2 = {x1, x2, x3, x4,

x5}. Consequently, V3 = {y1, y3, y5}. Therefore, |V1| ̸= 6, a contradiction.
If x5 ∈ V4, then y5 ∈ V1, and so V2 = {x0, x1, x2, x3, x4}. Consequently, |V3| ̸= 3, a

contradiction. Hence, x5 /∈ V4. By symmetry, y5 /∈ V4.
Hence, V4 ∩ {x0, x5, v0, y5} = ∅, and therefore, V4 = {y1, y4}.
As |V3| = 3, exactly one of x0, v0, x1 is in V3 and exactly one of x5, y5, x4 is in V3.

Assume, by symmetry, exactly one of y5, x4 is in V3. If {x1, x4} ⊆ V3, then |V3| ̸= 3, a
contradiction. If {x0, x4} ⊆ V3, then |V2| ̸= 5, a contradiction. If {v0, x4} ⊆ V3, then
x0 ∈ V1 ∩ V2, a contradiction. If {x0, y5} ⊆ V3 or {x1, y5} ⊆ V3, then x5 ∈ V1 ∩ V2, a
contradiction. If {v0, y5} ⊆ V3, then x0, x5 ∈ V1, and so, |V2| ̸= 5, a contradiction.
Subcase 4.3. V5 = {y0, y4}.

As |V3| = 3, exactly one of x0, v0, x1, y1 is in V3 and exactly one of x5, y5, v5, x4 is in V3.
By symmetry, assume that exactly one of x0, v0, x1 is in V3 and exactly one of x5, v5, x4
is in V3. If {v0, v5}, {v0, x4}, {x1, v5} or {x1, x4} is contained in V3, then |V3| ̸= 3, a
contradiction. If {x0, x4} ⊆ V3, then |V2| ̸= 5, a contradiction. If {x0, x5} ⊆ V3, then
{x4, y5} ⊆ V2, and hence |V1| ̸= 6, a contradiction. If {v0, x5} ⊆ V3, then, in order,
x0 ∈ V1, {x4, y5} ⊆ V2, |V1| ̸= 6, a contradiction. If {x0, v5} ⊆ V3, then, in order,
V2 = {x1, x2, x3, x4, x5}, y2 ∈ V3, V1 = {v0, y1, v2, y3, v4, y5}, |V4| ≠ 2, a contradiction.
Hence, {x1, x5} ⊆ V3. Then, x3 ∈ V3. So, V2 ⊆ {x0, y1, y2, y3, x4, y5}. As |V2| = 5, either
{x0, y1} ⊆ V2 or {x4, y5} ⊆ V2. In any possibility, |V1| ̸= 6, again a contradiction.

In all cases, we have a contradiction. Hence, χρ(H6) ≥ 6.
To prove (2), let
V2 = {x0, x1, x2, . . . , xn−1},
V4 = {vi : i ≡ 1 or 7 (mod 12)},
V5 = {vi : i ≡ 3 or 9 (mod 12)},
V6 = {vi : i ≡ 5 (mod 12)},
V7 = {vi : i ≡ 11 (mod 12)}.
For even n, let
V1 = {v0, v2, v4, . . . , vn−2} ∪ {y1, y3, y5, . . . , yn−1} and V3 = {y0, y2, y4, . . . , yn−2}.
For odd n, let
V1 = {v0, v2, v4, . . . , vn−1} ∪ {y1, y3, y5, . . . , yn−2} and V3 = {y0, y2, y4, . . . , yn−1}.

In any case, (V1, V2, V3, V4, V5, V6, V7) is a packing 7-coloring of Hn, and
hence χρ(Hn) ≤ 7. □

3. Corona product of Cn and K2

Let Cn = v0v1v2 . . . vn−1v0, K
(i)
2 = xiyi, i ∈ Zn, the set of integers modulo n, and

Gn = Cn⊙K2. Then, n(Gn) = 3n, diam(Gn) = ⌈n+3
2 ⌉, α1(Gn) = α2(Gn) = n, and

for i ≥ 3, αi(Gn) = ⌊ n
i−1⌋.

Theorem 3.1.
(1)

χρ(Cn ⊙K2) =


5 if n ∈ {3, 4},
6 if n ∈ {5, 6},
7 if n ∈ {7, 8, 10},
8 if n ∈ {9, 11}.
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(2) For n ≥ 12,

χρ(Cn ⊙K2) ≤


7 if n ≡ 0 (mod 2), or

n ≡ 1, 3, 5, 7, 9 (mod 12) and n /∈ {13, 15, 21}
8 otherwise.

Proof.
(i) n = 3.

Since α3(G3) = 1, we have χρ(G3) ≥ 5. To show equality, take V1 = {y0, v1, y2},
V2 = {x0, x1, x2}, V3 = {y1}, V4 = {v0} and V5 = {v2}.
(ii) n = 4.

Since P4 ⊙ K2 ⊆ C4 ⊙ K2 and χρ(P4 ⊙ K2) = 5, we have χρ(G4) ≥ 5. To show
equality, take V1 = {y0, v1, y2, v3}, V2 = {x0, x1, x2, x3}, V3 = {y1, y3}, V4 = {v0}
and V5 = {v2}.
(iii) n = 5.

Since α3(G5) = 2 and α4(G5) = 1, we have χρ(G5) ≥ 6. To show equality, take
V1 = {y0, v1, y2, v3, y4}, V2 = {x0, x1, x2, x3, x4}, V3 = {y1, y3}, V4 = {v0}, V5 = {v2}
and V6 = {v4}.
(iv) n = 6.

Since P6 ⊙ K2 ⊆ C6 ⊙ K2 and χρ(P6 ⊙ K2) = 6, we have χρ(G6) ≥ 6. To show
equality, take V1 = {v0, y1, v2, y3, v4, y5}, V2 = {x0, x1, x2, x3, x4, x5}, V3 = {y0, y2, y4},
V4 = {v1}, V5 = {v3} and V6 = {v5}.
(v) n = 7.

Since P6 ⊙ K2 ⊆ C7 ⊙ K2 and χρ(P6 ⊙ K2) = 6, we have χρ(G7) ≥ 6. Sup-
pose χρ(G7) = 6. Let (V1, V2, V3, V4, V5, V6) be any packing 6-coloring of G7. Since
α3(G7) = 3, α4(G7) = 2 and α5(G7) = 1, we have |V1| = |V2| = 7, |V3| = 3,
|V4| = 2 and |V5| = |V6| = 1. Then, V2 = {x0, x1, x2, x3, x4, x5, x6}, and therefore
V3 = {yi, yi+2, yi+4} for some i ∈ Z7. Assume, by symmetry, that V3 = {y0, y2, y4}.
Now, V1 = {v0, y1, v2, y3, v4, y5, y6}. Consequently, V4, a set of cardinality 2, is con-
tained in {v1, v3, v5, v6}, a contradiction. Hence, χρ(G7) ≥ 7. To show equality, take
V1 = {v0, y1, v2, y3, v4, y5, y6}, V2 = {x0, x1, x2, x3, x4, x5, x6}, V3 = {y0, y2, y4},
V4 = {v1}, V5 = {v3}, V6 = {v5} and V7 = {v6}.
(vi) n = 8.

Set V1 = {y0, v1, y2, v3, y4, v5, y6, v7}, V2 = {x0, x1, x2, . . . , x7}, V3 = {y1, y3, y5, y7},
V4 = {v0}, V5 = {v2}, V6 = {v4} and V7 = {v6}. Then, (V1, V2, V3, V4, V5, V6, V7) is
a packing 7-coloring of G8, and hence χρ(G8) ≤ 7. Note that α1(G8) = α2(G8) = 8,
α3(G8) = 4, α4(G8) = α5(G8) = 2 and diam(G8) = 6. Suppose χρ(G8) ≤ 6. Let
(V1, V2, V3, V4, V5, V6) be any packing 6-coloring of G8 and let C = (|V1|, |V2|, |V3|, |V4|, |V5|,
|V6|). Without loss of generality, assume that |Vi| ≥ 1, i ∈ {1, 2, 3, 4, 5, 6}. Hence, C is
(7, 8, 4, 2, 2, 1), (8, 7, 4, 2, 2, 1), (8, 8, 3, 2, 2, 1), (8, 8, 4, 2, 1, 1), or (8, 8, 4, 1, 2, 1).

If C = (7, 8, 4, 2, 2, 1), then, in order, V2 = {x0, x1, x2, x3, x4, x5, x6, x7}, V3 = {y0, y2,
y4, y6}, V5 is {y1, y5} or {y3, y7}. Assume, by symmetry, that V5 = {y1, y5}. But, then
|V1| ≤ 6, a contradiction.

If C = (8, 7, 4, 2, 2, 1), then V3 = {x0, x2, x4, x6} and V5 = {yi, yi+4} for some i ∈ Z8.
Assume, by symmetry, that V5 is {y0, y4} or {y1, y5}. If V5 = {y0, y4}, then, as both the
sets {x0, y0} and {x4, y4} are contained in V3 ∪ V5, we have |V2| ≤ 6, a contradiction.
Hence, V5 = {y1, y5}. Assume, by relabeling the vertices, that V5 = {x1, x5}. Now,
V4 is {yi, yi+3}, {yi, yi+4} or {yi, vi+4} for some i ∈ Z8. If V4 is {yi, yi+3} or {yi, yi+4},
then {v0, v1, v2, v3, v4, v5, v6, v7} ⊆ V1 ∪ V2 ∪ V6; since |V6| = 1, we have a path P7
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with seven vertices in {v0, v1, v2, v3, v4, v5, v6, v7} which is packing 2-colorable, a contra-
diction. Hence, V4 = {yi, vi+4} for some i ∈ Z8. Since, both x0, x1, x2 and x4, x5, x6
have color pattern 3, 5, 3, it is enough if we consider i ∈ {0, 1, 2, 3}. However, the par-
tially colored graphs with colors 3, 4 and 5 for i ∈ {0, 2} are isomorphic. Hence, it is
enough if we consider i ∈ {0, 1, 3}. If V4 = {y0, v4} (respectively, V4 = {y1, v5}), then
V2 = {y1, y2, y3, y4, y5, y6, y7} (respectively, V2 = {y0, y2, y3, y4, y5, y6, y7}), and hence
|V1| ≤ 7, a contradiction. If V4 = {y3, v7}, then V1∪V2∪V6 is {x3, x7, v0, v1, v2, v3, v4, v5,
v6, y0, y1, y2, y4, y5, y6, y7}. As |V6| = 1, there exist 15 vertices in V1 ∪ V2 ∪ V6 such that
the subgraph induced by these 15 vertices is packing 2-colorable. But such a subgraph,
clearly, contains a P4, a path of length 3, a contradiction.

If C = (8, 8, 3, 2, 2, 1), then V2 = {x0, x1, x2, x3, x4, x5, x6, x7} and V5 = {yi, yi+4} for
some i ∈ Z8. Assume, by symmetry, that V5 = {y0, y4}. Then, {v0, v4} ∪ {y1, y3, y5, y7} ⊆
V1. Consequently, |V3| ≤ 2, a contradiction.

Hence, C is (8, 8, 4, 2, 1, 1) or (8, 8, 4, 1, 2, 1). Then, in order, V2 = {x0, x1, x2, x3, x4,
x5, x6, x7}, V3 = {y0, y2, y4, y6}, V1 = {v0, y1, v2, y3, v4, y5, v6, y7}. Since V4 ∪ V5 ∪ V6 =
{v1, v3, v5, v7}, we have |V4| = |V5| = 1, a contradiction.
(vii) n = 9.

Set V1 = {y0, v1, y2, v3, y4, v5, y6, v7, y8}, V2 = {x0, x1, x2, . . . , x8}, V3 = {y1, y3, y5, y7},
V4 = {v0}, V5 = {v2}, V6 = {v4}, V7 = {v6} and V8 = {v8}. Then, (V1, V2, V3, V4, V5,
V6, V7, V8) is a packing 8-coloring of G9, and hence χρ(G9) ≤ 8.

Note that α1(G9) = α2(G9) = 9, α3(G9) = 4, α4(G9) = 3, α5(G9) = 2 and
diam(G9) = 6. Hence, χρ(G9) ≥ 5. Suppose χρ(G9) ≤ 7. Let (V1, V2, V3, V4, V5, V6, V7)
be any packing 7-coloring of G9 and let C = (|V1|, |V2|, |V3|, |V4|, |V5|, |V6|, |V7|). Without
loss of generality, assume that |Vi| ≥ 1, i ∈ {1, 2, 3, 4, 5, 6, 7}. Hence, C is (7, 9, 4, 3, 2, 1, 1),
(8, 8, 4, 3, 2, 1, 1), (8, 9, 3, 3, 2, 1, 1), (8, 9, 4, 2, 2, 1, 1), (8, 9, 4, 3, 1, 1, 1), (9, 7, 4, 3, 2, 1, 1),
(9, 8, 3, 3, 2, 1, 1), (9, 8, 4, 2, 2, 1, 1), (9, 8, 4, 3, 1, 1, 1), (9, 9, 2, 3, 2, 1, 1), (9, 9, 3, 2, 2, 1, 1),
(9, 9, 3, 3, 1, 1, 1), (9, 9, 4, 1, 2, 1, 1), or (9, 9, 4, 2, 1, 1, 1).
Claim 1. C /∈ {(7, 9, 4, 3, 2, 1, 1), (8, 9, 3, 3, 2, 1, 1), (8, 9, 4, 3, 1, 1, 1), (9, 9, 2, 3, 2, 1, 1),
(9, 9, 3, 3, 1, 1, 1)}. I.e., (|V2|, |V4|) ̸= (9, 3).

Suppose |V2| = 9 and |V4| = 3, then V2 = {x0, x1, . . . , x8} and V4 = {yi, yi+3, yi+6}
for some i ∈ Z9. Assume, by symmetry, that V4 = {y0, y3, y6}. Consequently, |V3| ≠ 4.
Hence, C is neither (7, 9, 4, 3, 2, 1, 1) nor (8, 9, 4, 3, 1, 1, 1),

In addition, if |V5| = 2, then V5 is {y1, y5}, {y4, y8}, or {y7, y2}. Again, by symmetry,
assume that V5 = {y1, y5}. Consequently, |V1| ≤ 7. Hence, C is neither (8, 9, 3, 3, 2, 1, 1)
nor (9, 9, 2, 3, 2, 1, 1).

Finally, if C = (9, 9, 3, 3, 1, 1, 1), then V2 = {x0, x1, . . . , x8} and V4 = {y0, y3, y6}.
Consequently, V1 = {v0, y1, y2, v3, y4, y5, v6, y7, y8}, and therefore, |V3| ̸= 3. Hence,
C ̸= (9, 9, 3, 3, 1, 1, 1).
Claim 2. C /∈ {(8, 9, 4, 2, 2, 1, 1), (9, 9, 4, 1, 2, 1, 1), (9, 9, 4, 2, 1, 1, 1)}.

If |V2| = 9 and |V3| = 4, then V2 = {x0, x1, . . . , x8} and V3 = {yi, yi+2, yi+4, yi+6}
for some i ∈ Z9. Assume, by symmetry, that V3 = {y0, y2, y4, y6}.

In addition, if |V1| = 9, then V1 = {v0, y1, v2, y3, v4, y5, v6, y7, y8}, and therefore,
neither |V4| = 2 nor |V5| = 2. In other words, C is neither (9, 9, 4, 2, 1, 1, 1) nor
(9, 9, 4, 1, 2, 1, 1).

Finally, if C = (8, 9, 4, 2, 2, 1, 1), then V2 = {x0, x1, . . . , x8}, V3 = {y0, y2, y4, y6} and
V5 = {yj , yj+4}, where j ∈ {1, 3, 8}. Assume, by symmetry, that j ∈ {1, 3}. Hence, V5 is
{y1, y5} or {y3, y7}. But, then |V1| ≤ 7, a contradiction. Hence, C ̸= (8, 9, 4, 2, 2, 1, 1).
Claim 3. C /∈ {(8, 8, 4, 3, 2, 1, 1), (9, 7, 4, 3, 2, 1, 1), (9, 8, 4, 3, 1, 1, 1)}.
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If |V3| = 4 and |V4| = 3, then V3 = {xi, xi+2, xi+4, xi+6} and V4 = {yj , yj+3, yj+6} for
some i, j ∈ Z9. Assume, by symmetry, that V4 = {y0, y3, y6}. Again, by symmetry, assume
that V3 is {x0, x2, x4, x6}, {x1, x3, x5, x7}, or {x2, x4, x6, x8}. Note that the partially colored
graphs with (V4, V3) equals ({y0, y3, y6}, {x1, x3, x5, x7}) and ({y0, y3, y6}, {x2, x4, x6, x8})
are isomorphic. So, assume that V3 is {x0, x2, x4, x6} or {x1, x3, x5, x7}.

Let C be (8, 8, 4, 3, 2, 1, 1) or (9, 8, 4, 3, 1, 1, 1). If V3 = {x0, x2, x4, x6}, then, since both
{x0, y0} and {x6, y6} are contained in V3 ∪ V4, we have |V2| ≤ 7, a contradiction. If
V3 = {x1, x3, x5, x7}, then V2 = {x0, y1, x2, x4, y5, x6, y7, x8}, and hence |V1| ≤ 7, a
contradiction.

Let C be (9, 7, 4, 3, 2, 1, 1). If V3 = {x0, x2, x4, x6}, then, in order, V2 = {x1, y2, x3, y4,
x5, x7, x8}, V5 = {y1, y5}, |V1| ≤ 6, a contradiction. So, let V3 = {x1, x3, x5, x7}.
Then, {y2, v3, y4} ⊆ V1 and therefore, V5 is {x0, x4}, {y1, y5}, {x2, x6}, {x4, x8}, {y5, x0},
{x6, y1}, or {y7, x2}. If V5 is {x0, x4}, {y1, y5}, {x2, x6}, {y5, x0}, {x6, y1}, or {y7, x2}, then,
respectively, {y8, v0, y1} ⊆ V1, {x0, v1, v5, x6} ⊆ V1, {y5, v6, y7} ⊆ V1, {v0, y1, v5, x6} ⊆ V1,
{x0, v1, y5, v6, y7} ⊆ V1, or {x6, v7, x8} ⊆ V1, and hence |V2| < 7, a contradiction. If
V5 = {x4, x8}, then {x0, y1, x2, x6, y7, y8} ⊆ V2, and hence |V1| ̸= 9, a contradiction.

By Claims 1, 2 and 3, C ∈ {(9, 8, 3, 3, 2, 1, 1), (9, 8, 4, 2, 2, 1, 1), (9, 9, 3, 2, 2, 1, 1)}.
If C = (9, 9, 3, 2, 2, 1, 1), then V2 = {x0, x1, . . . , x8} and V5 = {yi, yi+4} for some i ∈

Z9. Assume, by symmetry, that V5 = {y0, y4}. Consequently, {v0, y1, y3, v4, y5, y8} ⊆ V1,
and therefore, |V3| ≠ 3. Hence, C ̸= (9, 9, 3, 2, 2, 1, 1).

If C = (9, 8, 3, 3, 2, 1, 1), then V4 = {xi, xi+3, xi+6} and V5 = {yj , yj+4} for some
i, j ∈ Z9. Assume, by symmetry, that V4 = {x0, x3, x6}. Again, by symmetry, assume
that V5 is {y0, y4}, {y1, y5}, or {y2, y6}. Since {y0, y4} and {y2, y6} are similar, we assume
that V5 is {y0, y4} or {y1, y5}. If V5 = {y0, y4}, then V2 = {x1, x2, y3, x4, x5, y6, x7, x8},
and hence |V1| ≠ 9, a contradiction. If V5 = {y1, y5}, then, in order, V2 is an 8-element
subset of {y0, x1, x2, y3, x4, x5, y6, x7, x8}, and for any 8-element subset, we have |V1| ̸= 9,
a contradiction.

If C = (9, 8, 4, 2, 2, 1, 1), then V3 = {xi, xi+2, xi+4, xi+6} and V5 = {yj , yj+4} for some

i, j ∈ Z9. Assume, by symmetry, that V5 = {y0, y4}. Hence, V3 is V
(0)
3 = {x0, x2, x4, x6},

V
(1)
3 = {x1, x3, x5, x7}, V (2)

3 = {x2, x4, x6, x8}, V (3)
3 = {x3, x5, x7, x0}, V (4)

3 = {x4, x6,
x8, x1}, V (5)

3 = {x5, x7, x0, x2}, V (6)
3 = {x6, x8, x1, x3}, V (7)

3 = {x7, x0, x2, x4}, or
V

(8)
3 = {x8, x1, x3, x5}. Since V

(7)
3 , V

(6)
3 , V

(5)
3 and V

(4)
3 are, respectively, similar to V

(0)
3 ,

V
(1)
3 , V

(2)
3 , V

(3)
3 , we consider only five possibilities (one in clockwise direction and the other

in anticlockwise direction on the cycle). If V3 = V
(0)
3 , then |V2| ≤ 7, a contradiction. If

V3 = V
(2)
3 , then V2 = {x0, x1, y2, x3, x5, y6, x7, y8}, and hence |V1| ≤ 8, a contradiction.

If V3 = V
(3)
3 , then V2 = {x1, x2, y3, x4, y5, x6, y7, x8}, and hence |V1| ≤ 8, a contradic-

tion. If V3 = V
(1)
3 , then V2 is an 8-element subset of {x0, y1, x2, y3, x4, y5, x6, y7, x8}, and

hence, for any 8-element subset, we have |V1| ≤ 8, a contradiction. If V3 = V
(8)
3 , then

V2 is an 8-element subset of {x0, y1, x2, y3, x4, y5, x6, y7, y8}, and hence, for any
8-element subset, we have |V1| ≤ 8, a contradiction.
(viii) n = 10.

Set V1 = {y0, v1, y2, v3, y4, v5, y6, v7, y8, v9}, V2 = {x0, x1, x2, . . . , x9}, V3 = {y1, y3, v6,
y9}, V4 = {v2, y7}, V5 = {v0, y5}, V6 = {v4} and V7 = {v8}. Then, (V1, V2, V3, V4, V5, V6,
V7) is a packing 7-coloring of G10, and hence χρ(G10) ≤ 7.

Note that α1(G10) = α2(G10) = 10, α3(G10) = 5, α4(G10) = 3, α5(G10) =
α6(G10) = 2 and diam(G10) = 7. Hence, χρ(G10) ≥ 5. Suppose χρ(G10) ≤ 6. Let
(V1, V2, V3, V4, V5, V6) be any packing 6-coloring of G10 and let C = (|V1|, |V2|, |V3|, |V4|,
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|V5|, |V6|). Without loss of generality, assume that |Vi| ≥ 1, i ∈ {1, 2, 3, 4, 5, 6}. Hence, C is
(8, 10, 5, 3, 2, 2), (9, 9, 5, 3, 2, 2), (9, 10, 4, 3, 2, 2), (9, 10, 5, 2, 2, 2), (9, 10, 5, 3, 1, 2), (9, 10, 5,
3, 2, 1), (10, 8, 5, 3, 2, 2), (10, 9, 4, 3, 2, 2), (10, 9, 5, 2, 2, 2), (10, 9, 5, 3, 1, 2), (10, 9, 5, 3, 2, 1),
(10, 10, 3, 3, 2, 2), (10, 10, 4, 2, 2, 2), (10, 10, 4, 3, 1, 2), (10, 10, 4, 3, 2, 1), (10, 10, 5, 1, 2, 2),
(10, 10, 5, 2, 1, 2), (10, 10, 5, 2, 2, 1), or (10, 10, 5, 3, 1, 1).
Claim 1. (|V2|, |V3|) ̸= (10, 5).

Otherwise, (|V2|, |V3|) = (10, 5). Then, V2 = {x0, x1, . . . , x9} and V3 = {y0, y2, y4,
y6, y8}. Clearly, |V6| ≠ 2. (If |V6| = 2, then V6 = {yi, yi+5} for some i ∈ Z10.) Hence,
C /∈ {(8, 10, 5, 3, 2, 2), (9, 10, 5, 2, 2, 2), (10, 10, 5, 1, 2, 2), (9, 10, 5, 3, 1, 2), (10, 10, 5, 2, 1, 2)}.
Thus, |V6| = 1. If |V5| = 2, i.e., if C ∈ {(9, 10, 5, 3, 2, 1), (10, 10, 5, 2, 2, 1)}, then V5 is
{yi, yi+4}, {yi, vi+5}, or {yi, yi+5} for some i ∈ Z10. As V5 ̸= {yi, yi+5}, V5 is {yi, yi+4}
or {yi, vi+5}. By symmetry, V5 is {y1, y5} or {y1, v6}. Then, |V1| ≤ 8, a contradiction.
Hence, C is neither (9, 10, 5, 3, 2, 1) nor (10, 10, 5, 2, 2, 1) and |V5| = 1, and therefore
C = (10, 10, 5, 3, 1, 1). Now, V1 = {v0, y1, v2, y3, v4, y5, v6, y7, v8, y9}, and therefore V3 ⊆
{v1, v3, v5, v7, v9}, a contradiction to |V3| = 3. Thus, C ̸= (10, 10, 5, 3, 1, 1).
Claim 2. (|V2|, |V6|) ̸= (10, 2).

Otherwise, (|V2|, |V6|) = (10, 2). Then, V2 = {x0, x1, . . . , x9} and V6 = {y0, y5}.
If |V5| = 2, i.e., if C ∈ {(9, 10, 4, 3, 2, 2), (10, 10, 3, 3, 2, 2), (10, 10, 4, 2, 2, 2)}, then V5

is {yi, yi+4}, {yj , vj+5}, or {yk, yk+5} for some i, j, k ∈ Z10. Clearly, i ∈ {2, 3, 4, 7, 8, 9},
j ∈ {1, 2, 3, 4, 6, 7, 8, 9} and k ∈ {1, 2, 3, 4, 6, 7, 8, 9}. Assume, by symmetry, i ∈ {2, 3}
(since any two i’s in {2, 4, 7, 9} are similar cases and two i’s in {3, 8} are similar cases),
j ∈ {1, 2} (since any two j’s in {1, 4, 6, 9} are similar cases and any two j’s in {2, 3, 7, 8}
are similar cases) and k ∈ {1, 2} (since two k’s in {1, 6}, {2, 7}, {3, 8} and {4, 9}, are,
respectively, equal cases, two k’s in {1, 4} are similar cases and two k’s in {2, 3} are
similar cases). Hence, V5 is {y2, y6}, {y3, y7}, {y1, v6}, {y2, v7}, {y1, y6}, or {y2, y7}. If
V5 = {y1, y6}, then |V1| ≤ 8, a contradiction. If V5 is {y2, y6} or {y1, v6}, then
|V1| ≤ 9, and hence C = (9, 10, 4, 3, 2, 2). If V5 = {y2, y6} (respectively, V5 = {y1, v6}),
then {v0, y1, v2, y3, y9} ⊆ V1 (respectively, {y4, v5, y6} ⊆ V1), and hence |V4| ≤ 2, a
contradiction. Thus, V5 is {y3, y7}, {y2, v7}, or {y2, y7}.

First, assume that C is (10, 10, 3, 3, 2, 2) or (10, 10, 4, 2, 2, 2). If V5 is {y3, y7}, {y2, v7},
or {y2, y7}, then, respectively, V1 = {v0, y1, y2, v3, y4, v5, y6, v7, y8, y9}, {v0, y1, v2, y3, y4,
v5, y6, y7, y9} ⊆ V1, V1 = {v0, y1, v2, y3, y4, v5, y6, v7, y8, y9}. Consequently, |V3| ≤ 2, a
contradiction.

Next, assume that C = (9, 10, 4, 3, 2, 2). Since |V4| = 3, V4 = {yℓ, yℓ+3, yℓ+6} for
some ℓ ∈ Z10. As V6 = {y0, y5}, ℓ ∈ {1, 3, 6, 8}. Hence, for V5 equals {y3, y7}, {y2, v7},
{y2, y7}, respectively, we have ℓ ∈ {6, 8}, ℓ ∈ {1, 3, 8}, ℓ ∈ {3, 8}. In all the cases, |V1| ≤ 8,
a contradiction.

Hence, |V5| = 1, and therefore C = (10, 10, 4, 3, 1, 2). Since V6 = {y0, y5},
{v0, y1, y4, v5, y6, y9} ⊆ V1. As |V4| = 3, V4 = {yℓ, yℓ+3, yℓ+6} for some ℓ ∈ Z10, a
contradiction, since there is no ℓ.
Claim 3. (|V3|, |V6|) ̸= (5, 2).

Otherwise, (|V3|, |V6|) = (5, 2). Then, V3 = {x0, x2, x4, x6, x8}, V6 = {y0, x5} and
C ∈ {(9, 9, 5, 3, 2, 2), (10, 8, 5, 3, 2, 2), (10, 9, 5, 2, 2, 2), (10, 9, 5, 3, 1, 2)}.

First, assume that |V2| = 9. Then, V2 = {y1, y2, y3, y4, y5, y6, y7, y8, y9}, and hence
|V1| ≤ 9. So, C = (9, 9, 5, 3, 2, 2) and V1 = {v0, y1, v2, y3, v4, v6, y7, v8, y9}. Then,
|V5| ̸= 2, a contradiction.

Next, assume that |V2| = 8. So, C = (10, 8, 5, 3, 2, 2). Then, {v0, y1, y9} ⊆ V1 and
V4 = {yℓ, yℓ+3, yℓ+6} for some ℓ ∈ Z10. Since y0 ∈ V6 and y1, y9 ∈ V1, we have ℓ = 2,
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i.e., V4 = {y2, y5, y8}. Consequently, V1 = {v0, y1, v2, y3, y4, v5, y6, y7, v8, y9}. But, then
|V2| ≤ 4, a contradiction.

By Claims 1, 2 and 3, C ∈ {(10, 10, 4, 3, 2, 1), (10, 9, 5, 3, 2, 1), (10, 9, 4, 3, 2, 2)}. Since
|V5| = 2, V5 is {yi, yi+4}, {yj , vj+5}, or {yk, yk+5} for some i, j, k ∈ Z10.

If C = (10, 10, 4, 3, 2, 1), then V2 = {x0, x1, . . . , x9} and V5 is {y0, y4}, {y0, v5}, or
{y0, y5}. We have, respectively, {v0, y1, y3, v4, y5, y9} ⊆ V1. {v0, y1, y5, y9} ⊆ V1.
{v0, y1, y4, v5, y6, y9} ⊆ V1. Since |V4| = 3, V4 = {yℓ, yℓ+3, yℓ+6} for some ℓ ∈ Z10, a
contradiction, since there is no ℓ.

If C = (10, 9, 5, 3, 2, 1), then V3 = {x0, x2, x4, x6, x8} and V5 is {y0, y4}, {y1, y5},
{y0, v5}, {y1, v6}, {y0, y5}, or {y1, y6}. The cases {y0, y5} and {y1, y6} are similar. If V5 =
{y0, y4}, then |V2| ≤ 8, a contradiction. If V5 = {y0, y5}, then V2 = {y1, y2, y3, y4, x5, y6,
y7, y8, y9}, and therefore |V1| ≤ 9, a contradiction. If V5 = {y0, v5}, then V2 = {y1,
y2, y3, y4, y5, y6, y7, y8, y9}, and therefore V1 = {v0, x1, v2, x3, v4, x5, v6, x7, v8, x9}, a con-
tradiction to |V4| = 3. If V5 = {y1, v6}, then interchange x1 and y1. So, V5 = {x1, v6},
and therefore, y6 ∈ V1. Consequently, V2 = {y0, y1, y2, y3, y4, y5, y7, y8, y9}, a contra-
diction to |V1| = 10. If V5 = {y1, y5}, then, for i ∈ {1, 5}, interchange xi and
yi. So, V5 = {x1, x5}. Since |V4| = 3, V4 = {yℓ, yℓ+3, yℓ+6} for some ℓ ∈ Z10.
Since |V2| = 9, |{0, 1, 2, 4, 5, 6, 8} ∩ {ℓ, ℓ + 3, ℓ + 6}| ≤ 1, and hence ℓ ∈ {3, 7}. If
V4 is {y3, y6, y9} or {y7, y0, y3}, then, respectively, V2 is {y0, y1, y2, x3, y4, y5, y7, y8, x9},
{y1, y2, x3, y4, y5, y6, x7, y8, y9}, and therefore |V1| ̸= 10, a contradiction.

If C = (10, 9, 4, 3, 2, 2), then V2 = {x1, x2, . . . , x9} and V6 = {yi, yi+5} for some
i ∈ Z10. Assume, by symmetry, that V6 is {x0, y5}, {y1, y6}, or {y2, y7}. Since |V4| = 3,
V4 = {yℓ, yℓ+3, yℓ+6} for some ℓ ∈ Z10. Clearly, if V6 = {x0, y5}, then ℓ /∈ {2, 5, 9} (if
V6 = {y1, y6}, then ℓ /∈ {0, 1, 3, 5, 6, 8}) (if V6 = {y2, y7}, then ℓ /∈ {1, 2, 4, 6, 7, 9}).
As |V1| = 10, if V6 = {x0, y5}, then ℓ /∈ {0, 1, 3, 4, 6, 8} (if V6 = {y1, y6}, then
ℓ /∈ {2, 4, 7, 9}) (if V6 = {y2, y7}, then ℓ /∈ {0, 3, 5, 8}). Hence, V6 = {x0, y5} and
V4 = {y7, y0, y3}. Then, V1 = {v0, y1, y2, v3, y4, v5, y6, v7, y8, y9}, and therefore |V5| ≠ 2.
(ix) n = 11.

Set V1 = {y0, v1, y2, v3, y4, v5, y6, v7, y8, v9, y10}, V2 = {x0, x1, x2, . . . , x10}, V3 =
{y1, y3, y5, y7, y9}, V4 = {v0, v6}, V5 = {v2}, V6 = {v4}, V7 = {v8} and V8 = {v10}.
Then, (V1, V2, V3, V4, V5, V6, V7, V8) is a packing 8-coloring of G11, and hence χρ(G11) ≤ 8.

Note that α1(G11) = α2(G11) = 11, α3(G11) = 5, α4(G11) = 3, α5(G11)
= α6(G11) = 2 and diam(G11) = 7. Hence, χρ(G11) ≥ 6. Suppose χρ(G11) ≤ 7. Let
(V1, V2, V3, V4, V5, V6, V7) be any packing 7-coloring of G11 and let C = (|V1|, |V2|, |V3|, |V4|,
|V5|, |V6|, |V7|). Without loss of generality, assume that |Vi| ≥ 1, i ∈ {1, 2, 3, 4, 5, 6, 7}.
Hence, C is (9, 11, 5, 3, 2, 2, 1), (10, 10, 5, 3, 2, 2, 1), (10, 11, 4, 3, 2, 2, 1), (10, 11, 5, 2, 2, 2, 1),
(10, 11, 5, 3, 1, 2, 1), (10, 11, 5, 3, 2, 1, 1), (11, 9, 5, 3, 2, 2, 1), (11, 10, 4, 3, 2, 2, 1),
(11, 10, 5, 2, 2, 2, 1), (11, 10, 5, 3, 1, 2, 1), (11, 10, 5, 3, 2, 1, 1), (11, 11, 3, 3, 2, 2, 1),
(11, 11, 4, 2, 2, 2, 1), (11, 11, 4, 3, 1, 2, 1), (11, 11, 4, 3, 2, 1, 1), (11, 11, 5, 1, 2, 2, 1),
(11, 11, 5, 2, 1, 2, 1), (11, 11, 5, 2, 2, 1, 1), or (11, 11, 5, 3, 1, 1, 1).
Claim 1. (|V2|, |V3|) ̸= (11, 5).

Otherwise, (|V2|, |V3|) = (11, 5). Then, V2 = {x0, x1, . . . , x10} and V3 = {y0, y2, y4,
y6, y8}. Clearly, |V6| ≠ 2. Suppose |V6| = 2, then V6 = {yi, yi+5} for some i ∈ Z11, and
therefore i ∈ {5, 7, 9}. It follows that |V1| ≤ 9, and therefore C /∈ {(10, 11, 5, 2, 2, 2, 1),
(10, 11, 5, 3, 1, 2, 1), (11, 11, 5, 1, 2, 2, 1), (11, 11, 5, 2, 1, 2, 1)} and C = (9, 11, 5, 3, 2, 2, 1).
(a) If V6 = {y5, y10}, then {y1, v2, y3, v4, v6, y7, v8, y9} ⊆ V1. (b) If V6 = {y7, y1}, then
V1 = {v0, v2, y3, v4, y5, v6, v8, y9, y10}. (c) If V6 = {y9, y3}, then {v0, y1, v2, v4, y5, v6, y7,
y10} ⊆ V1. In any possibility of V6, |V4| ≠ 3, a contradiction. Thus, |V6| = 1, and
C ∈ {(10, 11, 5, 3, 2, 1, 1), (11, 11, 5, 2, 2, 1, 1), (11, 11, 5, 3, 1, 1, 1)}. If |V1| = 11, then
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V1 = {v0, y1, v2, y3, v4, y5, v6, y7, v8, y9, y10}, and therefore |V4| ≤ 2 and |V5| = 1,
a contradiction. Hence, C = (10, 11, 5, 3, 2, 1, 1). As |V4| = 3, V4 is {yj , yj+3, yj+6},
{yj , yj+3, yj+7} or {yj , yj+3, vj+7} for some j ∈ Z11. It follows that V4 is {y7, y10, y3},
{y9, y1, y5}, {y7, y10, v3}, or {y9, y1, v5}. In any possibility of V4, |V1| ̸= 10, a contradiction.
Claim 2. (|V2|, |V4|, |V6|) ̸= (11, 3, 2).

Otherwise, (|V2|, |V4|, |V6|) = (11, 3, 2). So, C ∈ {(10, 11, 4, 3, 2, 2, 1), (11, 11, 3, 3, 2, 2, 1),
(11, 11, 4, 3, 1, 2, 1)}. Then, V2 = {x0, x1, . . . , x10} and V6 = {y0, y5}. Since |V4| = 3,
V4 is {yi, yi+3, yi+6}, {yi, yi+3, yi+7} or {yi, yi+3, vi+7} for some i ∈ Z11. It follows that
V4 is {yi, yi+3, yi+6} with i ∈ {1, 3, 4, 6, 7, 9}, or {yj , yj+3, yj+7} with j ∈ {1, 3, 6, 7, 10},
or {yk, yk+3, vk+7} with k ∈ {1, 3, 4, 6, 7, 9, 10}. As |V1| is 10 or 11, we have i ∈ {3, 7},
j ∈ {6, 7} and k ∈ {3, 6, 7, 10}. But, then, in any possibility, |V1| = 10 and C =
(10, 11, 4, 3, 2, 2, 1).

(a) If V4 = {y3, y6, y9}, then {v0, y1, y2, v3, y4, y8, v9, y10} ⊆ V1.
(b) If V4 = {y7, y10, y2}, then {y1, v2, y3, y4, v5, y6, v7, y8} ⊆ V1.
(c) If V4 = {y6, y9, y2}, then {v0, y1, v2, y3, y8, v9, y10} ⊆ V1.
(d) If V4 = {y7, y10, y3}, then {y2, v3, y4, v5, y6, v7, y8} ⊆ V1.
(e) If V4 = {y3, y6, v10}, then {v0, y1, y2, v3, y4, y10} ⊆ V1.
(f) If V4 = {y6, y9, v2}, then {v0, y1, y2, y8, v9, y10} ⊆ V1.
(g) If V4 = {y7, y10, v3}, then {y3, y4, v5, y6, v7, y8} ⊆ V1.
(h) If V4 = {y10, y2, v6}, then {y1, v2, y3, y4, v5, y6} ⊆ V1.

In any possibility, |V3| ̸= 4, a contradiction.
Claim 3. |V2| ̸= 11.

If C = (11, 11, 4, 2, 2, 2, 1), then V2 = {x0, x1, . . . , x10} and V6 = {y0, y5}. As
|V1| = 11, {v0, y1, y4, v5, y6, y10} ⊆ V1. Consequently, {v1, v2, v3, v4, v6, v7, v8, v9, v10, y2,
y3, y7, y8, y9} ⊆ V3. As |V3| = 4, |{y2, y3, y7, y8, y9}∩V3| ≥ 2, and so |{v1, v2, v3, v4, v6, v7,
v8, v9, v10}∩V3| ≤ 2. If {y2, y8} ⊆ V3 or {y3, y8} ⊆ V3, then |V3| = 2, a contradiction. If
{y2, y7} ⊆ V3, {y2, y9} ⊆ V3, {y3, y7} ⊆ V3, {y3, y9} ⊆ V3, or {y7, y9} ⊆ V3, then |V3| ≤ 3,
again a contradiction.

If C = (11, 11, 4, 3, 2, 1, 1), then V2 = {x0, x1, . . . , x10} and V4 is {y0, y3, y6},
{y0, y3, y7} or {y0, y3, v7}. It follows, respectively, that {v0, y1, y2, v3, y4, y5, v6, y7, y10} ⊆
V1, {v0, y1, y2, v3, y4, y6, v7, y8, y10} ⊆ V1, {v0, y1, y2, v3, y4, y7, y10} ⊂ V1. In any possibility,
|V3| ̸= 4, a contradiction.
Claim 4. (|V2|, |V3|, |V4|) ̸= (10, 5, 3) and (|V2|, |V3|, |V6|) ̸= (10, 5, 2). In other words, C
/∈ {(10, 10, 5, 3, 2, 2, 1), (11, 10, 5, 3, 1, 2, 1), (11, 10, 5, 2, 2, 2, 1), (11, 10, 5, 3, 2, 1, 1)}.
Otherwise, we have V2 = {x1, x2, . . . , x10} and V3 = {yi, yi+2, yi+4, yi+6, yi+8} for

some i ∈ Z11. Cases i = 0 and i = 3 are similar. Same for i = 1 and i = 2; i = 4
and i = 10; i = 5 and i = 9; i = 6 and i = 8. Hence, assume that i ∈ {0, 1, 4, 5, 6, 7}.
Assume, by symmetry, that V3 is {x0, y2, y4, y6, y8} = V

(1)
3 , {y1, y3, y5, y7, y9} = V

(2)
3 ,

{y4, y6, y8, y10, y1} = V
(3)
3 , {y5, y7, y9, x0, y2} = V

(4)
3 , {y6, y8, y10, y1, y3} = V

(5)
3 , or

{y7, y9, x0, y2, y4} = V
(6)
3 .

Case 1. |V6| = 2.

Then, V6 = {yj , yj+5} for some j ∈ Z11. If V3 is V
(1)
3 , V

(2)
3 , V

(3)
3 , V

(4)
3 , V

(5)
3 , or V

(6)
3 ,

then, respectively, j ∈ {0, 5, 7, 9}, j ∈ {6, 8, 10}, j ∈ {0, 2, 9}, j ∈ {1, 3, 6, 10}, j ∈ {0, 2, 4},
j ∈ {0, 1, 3, 5}. As |V1| ≥ 10, we have, respectively, j ∈ {0, 5}, j = 6, j = 0,
j = 6, j = 0, j = 0. In any possibility, |V1| = 10. So, C = (10, 10, 5, 3, 2, 2, 1).

(a) If V3 = V
(1)
3 and V6 = {y0, y5}, then V1 = {v0, y1, v2, y3, v4, v6, y7, v8, y9, y10}. (b)

If V3 = V
(1)
3 and V6 = {y5, y10}, then V1 = {y0, y1, v2, y3, v4, v6, y7, v8, y9, v10}. (c)

If V3 = V
(2)
3 and V6 = {y6, y0}, then V1 = {x0, v1, y2, v3, y4, v5, v7, y8, v9, y10}. (d)
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If V3 = V
(3)
3 and V6 = {y0, y5}, then V1 = {x0, v1, y2, y3, v4, v6, y7, v8, y9, v10}. (e)

If V3 = V
(4)
3 and V6 = {y6, y0}, then V1 = {v0, y1, v2, y3, y4, v5, v7, y8, v9, y10}. (f) If

V3 = V
(5)
3 and V6 = {y0, y5}, then {x0, v1, y2, v3, y4, y7, v8, y9, v10} ⊆ V1. (g) If V3 = V

(6)
3

and V6 = {y0, y5}, then {v0, y1, v2, y3, y6, v7, y8, v9, y10} ⊆ V1. In any possibility, |V5| ≠ 2,
a contradiction.
Case 2. |V4| = 3.

It follows from Case 1, C = (11, 10, 5, 3, 2, 1, 1). Then, V4 is {yk, yk+3, yk+6}, {yk, yk+3,

yk+7} or {yk, yk+3, vk+7} for some k ∈ Z11. (a) If V3 = V
(1)
3 , then V4 is {y0, y3, y7},

{y7, y10, y3}, {y9, y1, y5}, {y0, y3, v7}, {y7, y10, v3}, or {y9, y1, v5}. (b) If V3 = V
(2)
3 , then

V4 is {y8, y0, y4}, {y10, y2, y6}, {y8, y0, v4}, or {y10, y2, v6}. (c) If V3 = V
(3)
3 , then V4 is

{y0, y3, y7}, {y2, y5, y9}, {y0, y3, v7}, or {y2, y5, v9}. (d) If V3 = V
(4)
3 , then V4 is {y0, y3, y6},

{y8, y0, y3}, {y1, y4, y8}, {y3, y6, y10}, {y8, y0, y4}, {y0, y3, v7}, {y1, y4, v8}, {y3, y6, v10}, or
{y8, y0, v4}. (e) If V3 = V

(5)
3 , then V4 is {y2, y5, y9}, {y4, y7, y0}, {y2, y5, v9}, or {y4, y7, v0}.

(f) If V3 = V
(6)
3 , then V4 is {y0, y3, y6}, {y5, y8, y0}, {y8, y0, y3}, {y3, y6, y10}, {y5, y8, y1},

{y0, y3, v7}, {y3, y6, v10}, {y5, y8, v1}, or {y8, y0, v4}. In any possibility, |V1| ̸= 11, a con-
tradiction.

Finally, we show that C /∈ {(11, 10, 4, 3, 2, 2, 1), (11, 9, 5, 3, 2, 2, 1)}.
If C = (11, 10, 4, 3, 2, 2, 1), then V2 = {x1, x2, . . . , x10} and V6 = {yi, yi+5} for some

i ∈ Z11, By symmetry, assume that i ∈ {0, 1, 2, 3, 7, 8}. Hence, V6 is {x0, y5} = V
(1)
6 ,

{y1, y6} = V
(2)
6 , {y2, y7} = V

(3)
6 , {y3, y8} = V

(4)
6 , {y7, y1} = V

(5)
6 , or {y8, y2} = V

(6)
6 .

As |V4| = 3, V4 is {yj , yj+3, yj+6}, {yk, yk+3, yk+7} or {yℓ, yℓ+3, vℓ+7}, where j, k, ℓ ∈ Z11.

Clearly, for V
(1)
6 , j /∈ {2, 5, 10}, k /∈ {2, 5, 9} and ℓ /∈ {2, 5}; for V (2)

6 , j /∈ {0, 1, 3, 6, 9}, k /∈
{1, 3, 5, 6, 9, 10} and ℓ /∈ {1, 3, 6, 9}; for V

(3)
6 , j /∈ {1, 2, 4, 7, 10}, k /∈ {0, 2, 4, 6, 7, 10} and

ℓ /∈ {2, 4, 7, 10}; for V (4)
6 , j /∈ {0, 2, 3, 5, 8}, k /∈ {0, 1, 3, 5, 7, 8} and ℓ /∈ {0, 3, 5, 8}; for V (5)

6 ,

j /∈ {1, 4, 6, 7, 9}, k /∈ {0, 1, 4, 5, 7, 9} and ℓ /∈ {1, 4, 7, 9}; for V
(6)
6 , j /∈ {2, 5, 7, 8, 10}, k /∈

{1, 2, 5, 6, 8, 10} and ℓ /∈ {2, 5, 8, 10}. As |V1| = 11, we have: for V
(1)
6 , j /∈ {0, 1, 3, 4, 6, 9},

k /∈ {1, 3, 4, 6, 8, 10} and ℓ /∈ {1, 3, 4, 6, 9}; for V
(2)
6 , j /∈ {2, 4, 5, 7, 10}, k /∈ {0, 2, 4, 7} and

ℓ /∈ {2, 4, 5, 7, 10}; for V (3)
6 , j /∈ {0, 3, 5, 6, 8, 9}, k /∈ {1, 3, 5, 8, 9} and ℓ /∈ {0, 1, 3, 5, 6, 8, 9};

for V
(4)
6 , j /∈ {1, 4, 6, 7, 9, 10}, k /∈ {2, 4, 6, 9, 10} and ℓ /∈ {1, 2, 4, 6, 7, 9, 10}; for V

(5)
6 , j /∈

{0, 2, 3, 5, 8, 10}, k /∈ {2, 3, 6, 8, 10} and ℓ /∈ {0, 2, 3, 5, 6, 8, 10}; for V (6)
6 , j /∈ {0, 1, 3, 4, 6, 9},

k /∈ {0, 3, 4, 7, 9} and ℓ /∈ {0, 1, 3, 4, 6, 7, 9}. Hence, V6 is V
(1)
6 or V

(2)
6 .

First, consider V
(1)
6 .

(a) If V4 = {y7, y10, y2}, then V1 = {y0, y1, v2, y3, y4, v5, y6, v7, y8, y9, v10}.
(b) If V4 = {y8, y0, y3}, then V1 = {v0, y1, y2, v3, y4, v5, y6, y7, v8, y9, y10}.
(c) If V4 = {y0, y3, y7}, then {v0, y1, y2, v3, y4, v5, y6, v7, y8, y10} ⊆ V1.
(d) If V4 = {y7, y10, y3}, then {y0, y2, v3, y4, v5, y6, v7, y8, y9, v10} ⊆ V1.
(e) If V4 = {y0, y3, v7}, then {v0, y1, y2, v3, y4, v5, y6, y7, y10} ⊆ V1.
(f) If V4 = {y7, y10, v3}, then {y0, y3, y4, v5, y6, v7, y8, y9, v10} ⊆ V1.
(g) If V4 = {y8, y0, v4}, then {v0, y1, y4, v5, y6, y7, v8, y9, y10} ⊆ V1.
(h) If V4 = {y10, y2, v6}, then {y0, y1, v2, y3, y4, v5, y6, y9, v10} ⊆ V1.

Next, consider V
(2)
6 .

(i) If V4 = {y8, y0, y3}, then {x0, v1, y2, v3, y4, y5, v6, y7, v8, y9} ⊆ V1.
(j) If V4 = {y8, y0, y4}, then {x0, v1, y2, y3, v4, y5, v6, y7, v8, y9} ⊆ V1.
(k) If V4 = {y0, y3, v7}, then {x0, v1, y2, v3, y4, y5, v6, y7} ⊆ V1.



R. SAMPATHKUMAR et al.: PACKING COLORINGS OF THE CORONA PRODUCT OF THE PATH ... 105

(l) If V4 = {y8, y0, v4}, then {x0, v1, y2, y4, y5, v6, y7, v8, y9} ⊆ V1.
In any possibility, |V3| ̸= 4, a contradiction.

If C = (11, 9, 5, 3, 2, 2, 1), then, since |V2| = 9, we consider six cases. As |V3| = 5,
V3 = {yi, yi+2, yi+4, yi+6, yi+8} for some i ∈ Z11. As |V4| = 3, V4 is {yj , yj+3, yj+6},
{yk, yk+3, yk+7} or {yℓ, yℓ+3, vℓ+7}, where j, k, ℓ ∈ Z11.
Case A. V2 = {v0, x2, x3, x4, x5, x6, x7, x8, x9}.

Cases i = 0 and i = 3 are similar. Same for i = 1 and i = 2; i = 4
and i = 10; i = 5 and i = 9; i = 6 and i = 8. Hence, by symmetry, V3

is {x0, y2, y4, y6, y8} = V
(0)
3 , {x1, y3, y5, y7, y9} = V

(1)
3 , {y4, y6, y8, x10, x1} = V

(4)
3 ,

{y5, y7, y9, x0, y2} = V
(5)
3 , {y6, y8, x10, x1, y3} = V

(6)
3 , or {y7, y9, x0, y2, y4} = V

(7)
3 .

Clearly, for V
(0)
3 , there is no j and k, ℓ ∈ {0, 7, 9}; for V (1)

3 , there is no j and k, ℓ ∈ {1, 8, 10};
for V

(4)
3 , j ∈ {7, 10}, k ∈ {0, 2, 7, 9} and ℓ ∈ {0, 2, 7, 9, 10}; for V (5)

3 , j ∈ {0, 8}, k ∈ {1, 3, 8}
and ℓ ∈ {0, 1, 3, 8}; for V

(6)
3 , j ∈ {1, 4, 7, 9, 10}, k ∈ {2, 4, 9} and ℓ ∈ {1, 2, 4, 7, 9, 10}; for

V
(7)
3 , j ∈ {0, 5, 8}, k ∈ {3, 5} and ℓ ∈ {0, 3, 5, 8}. In any possibility, |V1| ̸= 11, a

contradiction.
Case B. V2 = {x0, x1, x2, x3, x4, x5, x6, x7, x8}.

For each i ∈ {1, 2, 3, 4, 5}, cases i and 11 − i are similar. Hence, by symmetry, V3

is {y0, y2, y4, y6, y8} = V
(0)
3 , {y1, y3, y5, y7, x9} = V

(1)
3 , {y2, y4, y6, y8, x10} = V

(2)
3 ,

{y3, y5, y7, x9, y0} = V
(3)
3 , {y4, y6, y8, x10, y1} = V

(4)
3 , or {y5, y7, x9, y0, y2} = V

(5)
3 .

Clearly, for V
(0)
3 , there is no j and k, ℓ ∈ {7, 9}; for V (1)

3 , there is no j and k, ℓ ∈ {6, 8, 10};
for V

(2)
3 , there is no j and k, ℓ ∈ {0, 7, 9}; for V

(3)
3 , j ∈ {6, 9}, k ∈ {1, 6, 8, 10} and

ℓ ∈ {1, 6, 8, 9, 10}; for V
(4)
3 , j ∈ {7, 10}, k ∈ {0, 2, 7} and ℓ ∈ {0, 2, 7, 10}; for V

(5)
3 ,

j ∈ {3, 6, 9}, k ∈ {1, 3} and ℓ ∈ {1, 3, 6, 9}. In any possibility, |V1| ̸= 11, a contradiction.
Case C. V2 = {x0, x1, x2, x3, x4, x5, x6, x7, x9}.

For each i ∈ {0, 1, 2, 3, 4}, cases i and 10 − i are similar. Hence, by symmetry, V3

is {y0, y2, y4, y6, x8} = V
(0)
3 , {y1, y3, y5, y7, y9} = V

(1)
3 , {y2, y4, y6, x8, x10} = V

(2)
3 ,

{y3, y5, y7, y9, y0} = V
(3)
3 , {y4, y6, x8, x10, y1} = V

(4)
3 , or {y5, y7, y9, y0, y2} = V

(5)
3 .

Clearly, for V
(0)
3 , there is no j and k, ℓ ∈ {5, 7, 9}; for V (1)

3 , there is no j and k, ℓ ∈ {8, 10};
for V

(2)
3 , j ∈ {5, 8}, k ∈ {0, 5, 7, 9} and ℓ ∈ {0, 5, 7, 8, 9}; for V

(3)
3 , there is no j and

k, ℓ ∈ {1, 10}; for V
(4)
3 , j ∈ {2, 5, 7, 8, 10}, k ∈ {0, 2, 7} and ℓ ∈ {0, 2, 5, 7, 8, 10}; for V

(5)
3 ,

there is no j and k, ℓ ∈ {1, 3}; In any possibility, |V1| ̸= 11, a contradiction.
Case D. V2 = {x0, x1, x2, x3, x4, x5, x6, x8, x9}.

For each i ∈ {0, 1, 2, 3, 4}, cases i and 9 − i are similar. Hence, by symmetry, V3

is {y0, y2, y4, y6, y8} = V
(0)
3 , {y1, y3, y5, x7, y9} = V

(1)
3 , {y2, y4, y6, y8, x10} = V

(2)
3 ,

{y3, y5, x7, y9, y0} = V
(3)
3 , {y4, y6, y8, x10, y1} = V

(4)
3 , or {x10, y1, y3, y5, x7} = V

(10)
3 .

Clearly, for V
(0)
3 , there is no j and k, ℓ ∈ {7, 9}; for V

(1)
3 , j ∈ {4, 7}, k ∈ {4, 8, 10}

and ℓ ∈ {4, 7, 8, 10}; for V
(2)
3 , there is no j and k, ℓ ∈ {0, 7, 9}; for V

(3)
3 , j ∈ {1, 4, 7},

k ∈ {1, 10} and ℓ ∈ {1, 4, 7, 10}; for V
(4)
3 , j ∈ {7, 10}, k ∈ {0, 2, 7} and ℓ ∈ {0, 2, 7, 10};

for V
(10)
3 , j ∈ {4, 7}, k ∈ {4, 6, 8, 10} and ℓ ∈ {4, 6, 7, 8, 10}. Except the following two

possibilities, |V1| ̸= 11, a contradiction.

(a) V3 = {y0, y2, y4, y6, y8} = V
(0)
3 and V4 = {y7, y10, v3}.

Then, V1 = {v0, y1, v2, y3, v4, y5, v6, x7, v8, y9, x10}.
(b) V3 = {y4, y6, y8, x10, y1} = V

(4)
3 and V4 = {y7, y10, v3}.
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Then, V1 = {y0, v1, y2, y3, v4, y5, v6, x7, v8, y9, v10}.
In the above two possibilities, |V6| ̸= 2, a contradiction.
Case E. V2 = {x0, x1, x2, x3, x4, x5, x7, x8, x9}.

For each i ∈ {0, 1, 2, 3}, cases i and 8− i are similar. Also, cases i = 9 and i = 10 are

similar. Hence, by symmetry, V3 is {y0, y2, y4, x6, y8} = V
(0)
3 , {y1, y3, y5, y7, y9} = V

(1)
3 ,

{y2, y4, x6, y8, x10} = V
(2)
3 , {y3, y5, y7, y9, y0} = V

(3)
3 , {y4, x6, y8, x10, y1} = V

(4)
3 , or

{y9, y0, y2, y4, x6} = V
(9)
3 . Clearly, for V

(0)
3 , j ∈ {3, 6}, k ∈ {3, 7, 9} and ℓ ∈ {3, 6, 7, 9};

for V
(1)
3 , there is no j and k, ℓ ∈ {8, 10}; for V

(2)
3 , j ∈ {0, 3, 6}, k ∈ {0, 3, 7, 9} and

ℓ ∈ {0, 3, 6, 7, 9}; for V
(3)
3 , there is no j and k, ℓ ∈ {1, 10}; for V

(4)
3 , j ∈ {0, 3, 7, 10} and

k, ℓ ∈ {0, 2, 3, 6, 7, 10}; for V
(9)
3 , there is no j and k, ℓ ∈ {3, 5, 7}. Except the following

possibility, |V1| ̸= 11, a contradiction.

V3 = {y9, y0, y2, y4, x6} = V
(9)
3 and V4 = {y7, y10, v3}.

Then, V1 = {v0, y1, v2, y3, v4, y5, y6, v7, y8, v9, x10}.
It follows, in this possibility, that |V6| ̸= 2, a contradiction.
Case F. V2 = {x0, x1, x2, x3, x4, x6, x7, x8, x9}.

For each i ∈ {0, 1, 2, 3}, cases i and 7− i are similar. Also, cases i = 8 and i = 10 are

similar. Hence, by symmetry, V3 is {y0, y2, y4, y6, y8} = V
(0)
3 , {y1, y3, x5, y7, y9} = V

(1)
3 ,

{y2, y4, y6, y8, x10} = V
(2)
3 , {y3, x5, y7, y9, y0} = V

(3)
3 , {y8, x10, y1, y3, x5} = V

(8)
3 ,

or {y9, y0, y2, y4, y6} = V
(9)
3 . Clearly, for V

(0)
3 , there is no j and k, ℓ ∈ {7, 9}; for V

(1)
3 ,

j ∈ {2, 5, 10}, k ∈ {8, 10} and ℓ ∈ {2, 5, 8, 10}; for V (2)
3 , there is no j and k, ℓ ∈ {0, 7, 9}; for

V
(3)
3 , j ∈ {2, 10}, k ∈ {1, 5, 10} and ℓ ∈ {1, 2, 5, 10}; for V (8)

3 , j ∈ {4, 7, 10}, k ∈ {2, 4, 6, 10}
and ℓ ∈ {2, 4, 6, 7, 10}; for V (9)

3 , there is no j and k, ℓ ∈ {5, 7}. In any possibility, |V1| ̸= 11,
a contradiction.
(ix) n ≥ 12.

First, we find a packing 7-coloring for Gn. Let

V1 =

{
{y0, v1, y2, v3, y4, v5, . . . , vn−2, yn−1} if n is odd,

{y0, v1, y2, v3, y4, v5, . . . , yn−2, vn−1} if n is even,

V2 = {x0, x1, x2, . . . , xn−1}
and

V3 =

{
{y1, y3, y5, . . . , yn−2} if n is odd,

{y1, y3, y5, . . . , yn−1} if n is even.

Now, we have to color the vertices v0, v2, v4, . . . , vn−1 if n is odd and v0, v2, v4, . . . , vn−2 if
n is even. Color these vertices with the following sequence of colors:
4, 5, 6, 7, 4, 5, 6, 7, . . . , 4, 5, 6, 7, if n ≡ 0 (mod 8);
4, 5, 6, 4, 5, 7, 4, 5, 6, 7, 4, 5, 6, 7, . . . , 4, 5, 6, 7, if n ≡ 4 (mod 8);
5, 4, 6, 5, 7, 4, 5, 6, 7, 4, 5, 6, 7, . . . , 4, 5, 6, 7, if n ≡ 2 (mod 8);
4, 5, 6, 4, 5, 7, 4, 5, 6, 4, 5, 7, . . . , 4, 5, 6, 4, 5, 7, 4, 5, 6, 7, if n ≡ 7 (mod 12),
4, 5, 6, 4, 5, 7, 4, 5, 6, 4, 5, 7, . . . , 4, 5, 6, 4, 5, 7, 4, 5, 6, 7, 4, 5, 6, 7,
if n ≡ 3 (mod 12) and n ̸= 15.
For n ≡ 6 (mod 8), reset V3 as V3 = {y1, y3, y5, . . . , yn−5}. Let yn−3 ∈ V6, yn−1 ∈ V7

and color the vertices
v0, v2, v4, v6, v8, v10, v12, v14, . . . , vn−14, vn−12, vn−10, vn−8, vn−6, vn−4, vn−2

with the sequence 4, 5, 6, 7, 4, 5, 6, 7, . . . , 4, 5, 6, 7, 4, 5, 3.
For n ≡ 1 (mod 8), color the vertices
v0, v2, v4, v6, v8, v10, v12, v14, . . . , vn−17, vn−15, vn−13, vn−11, vn−9
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with the sequence 7, 5, 4, 6, 7, 5, 4, 6, . . . , 7, 5, 4, 6, 7;
vn−8, vn−7, vn−6, vn−5, vn−4, vn−3, vn−2, vn−1 with 4, 1, 5, 1, 6, 1, 4, 1;
reset V1 as {y0, v1, y2, v3, y4, v5, . . . , yn−11, vn−10, yn−9} ∪ {yn−8, yn−6, yn−4, yn−2} and
V3 as {y1, y3, y5, . . . , yn−10} ∪ {yn−7, yn−5, yn−3, yn−1}.
For n ≡ 5 (mod 8) and n ≥ 29, color the vertices
v0, v2, v4, v6, v8, v10, v12, v14, . . . , vn−29, vn−27, vn−25, vn−23,
vn−21, vn−19, vn−17, vn−15, vn−13, vn−11, vn−9, vn−7, vn−5, vn−3, vn−1

with the sequence 7, 5, 4, 6, 7, 5, 4, 6, . . . , 7, 5, 4, 6, 7, 4, 5, 6, 4, 5, 7, 4, 5, 6, 4.
Next, in the remaining cases (n ∈ {13, 15, 21}, n ≡ 11 (mod 12)), we find a packing

8-coloring for Gn. Take V1, V2, V3 as above and color the vertices v0, v2, v4, . . . , vn−1 with
the following sequence of colors:
4, 5, 6, 4, 5, 7, 8, if n = 13;
4, 5, 6, 7, 4, 5, 6, 8, if n = 15;
4, 5, 6, 4, 5, 7, 4, 5, 6, 7, 8, if n = 21;
4, 5, 6, 4, 5, 7, 4, 5, 6, 4, 5, 7, . . . , 4, 5, 6, 4, 5, 7, 4, 5, 6, 4, 7, 8, if n ≡ 11 (mod 12). □

4. Conclusion

We propose the following:
Conjecture. χρ(P12 ⊙K2) ≥ 7.

The validity of this conjecture shows that χρ(Pn ⊙K2) = 7 for n ≥ 12.
Problem. Compute χρ(Cn ⊙K2) for n ≥ 12.
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[6] Gregor, P., Kranjc, J., Lužar, B. and Štorgel, K., (2024), Packing coloring of hypercubes with extended
Hamming codes, Discrete Appl. Math., 359, pp. 269–277.

[7] Grochowski, H. and Junosza-Szaniawski, K., (2025), Partial packing coloring and quasi-packing coloring
of the triangular grid, Discrete Math., 348, pp. 114308, 21.

[8] Laıche, D., Bouchemakh, I. and Sopena, E., (2017), Packing coloring of some undirected and oriented
coronae graphs, Discussiones Mathematicae Graph Theory, 37, pp. 665–690.



108 TWMS J. APP. ENG. MATH. V.16, N.1, 2026

R. Sampathkumar is a Professor in the Department of Mathematics at Annamalai
University, Annamalainagar, Tamil Nadu, India. His areas of interest include design
theory, hypergraph and graph theory. In particular in graph theory, the area of interest
are graph labellings, graph colorings, orientations of graphs, and graph decompositions.

T. Sivakaran is an Assistant Professor in the Department of Mathematics at Sri Sai
Ram Engineering College, Chennai, Tamil Nadu, India. His areas of interest include
graph colorings, graph decompositions, hypergraph decompositions, and design theory.

R. Unnikrishnan is a Research Scholar in the Department of Mathematics at Anna-
malai University, Annamalainagar, Tamil Nadu, India. His research focuses on graph
labellings and graph colorings.


