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PACKING COLORINGS OF THE CORONA PRODUCT OF THE PATH
P, AND THE CYCLE C,, WITH AN EDGE K,

R. SAMPATHKUMAR!, T. SIVAKARAN?*, R. UNNIKRISHNAN?, §

ABSTRACT. Given a graph GG and a positive integer ¢, an i-packing in G is a subset X
of V(G) such that the distance dg(u,v) between any two distinct vertices u,v € X is
greater than i. The packing chromatic number x,(G) of a graph G is the smallest integer
k such that the vertex set of G can be partitioned into sets V;, i € [k], where each V; is
an i-packing. In this paper, we determine the packing chromatic number of the corona
products of paths and cycles of small order (at most 11 vertices) with an edge and obtain
bounds for the packing chromatic number of corona products of paths and cycles of larger
order with an edge.
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1. INTRODUCTION

The packing chromatic number was first studied, under the name broadcast chromatic
number, by Goddard, S.M. Hedetniemi, S.T. Hedetniemi, Harris, and Rall [5]. The terms
packing coloring and packing chromatic number were coined by Bresar, Klavzar, and
Rall [3]. This coloring was introduced because of potential applications in broadcast
assignment problems. The development on the packing chromatic number up to 2020 has
been summarized in the survey article [2]. Research developments after the survey include
[4, 6, 7].

Let G = (V(G),E(G)) be a finite undirected simple graph with vertex set V(G)
and edge set F(G). The order and the size of G will be denoted with n(G) and m(G),
respectively.
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For vertices u and v of a connected graph G, the distance dg(u,v) is the length of a
shortest path between v and v in G.

The diameter of G, i.e., max{dg(u,v)|u,v € V(G)}, will be denoted by diam(G).

Terms and notations not defined in this paper will follow [1].

Given a graph G and a positive integer i, an i-packing in G is a subset X of V(G) such
that the distance dg(u,v) between any two distinct vertices u,v € X is greater than i.

The i-independence number of G, denoted by «;(G), is the maximum cardinality of
i-packings of G. In particular, a;(G) is the independence number a(G) and o;(G) = 1
for ¢ > diam(G).

The packing chromatic number x,(G) of G is the smallest integer k£ such that V(G) can
be partitioned into sets Vi, Va, ..., Vi, where, for each i € [k], V; is an i-packing of G,
where [k] = {1,2,...,k}. Such a partition corresponds to a mapping ¢ : V(G) — [k] such
that V; = {u € V(G) : ¢(u) = i}. This mapping has the property that c(u) = c¢(v) =i
implies dg(u,v) > i; ¢ is called a packing k-coloring.

If an edge or a vertex is removed from a given graph G, then the distances between the
(remaining) vertices of G cannot decrease. Hence a packing coloring of G restricted to an
arbitrary subgraph H is a packing coloring of H. This implies the following observation.

Observation 1.1. [5] If H is a subgraph of G, then x,(H) < x,(G).

Denote by P,, C, and K, respectively, the path with n vertices, the cycle with n
vertices and the complete graph with n vertices.

2 2
Proposition 1.1. [5] Xp(Pn) _ {3 Z;ni;{l , 3},
if n > 4.

Proposition 1.2. [5] x,(C,) =

3 ifn =3 or n=0 (mod 4),
4 otherwise.

Given two graphs G; and Gy with V(G1) = {vi,v2,...,v,} and n disjoint copies
Gél), GéQ), ey Gén) of G, the corona product of G1 and G4, denoted by G1 ® Go, is the
simple graph obtained from the disjoint union G; U (Ggl) U Gg) U...U ng)) by making
the vertex v; of G1 adjacent to every vertex of Gg), i € [n].

4 ifn e {3,4},

Th 1.1. |8 C,oKy1) =
corem 1.1. [§] x,(Cy, © K1) {5 A

The packing chromatic number x,(P, ® K1) and for p > 2, the packing chromatic
numbers x,(P, ® pK1) and x,(C, ® pK1) are known, see Section 5.3 of the survey article
[2]. In Sections 2 and 3, we consider x,(P, ® K2) and x,(C, ® K3), respectively.

2. CORONA PRODUCT OF P, AND Ko

Let P, = wgvivy...vp_1, Kéi) = XY, ¢ € Zyn, and H, = P, ® K. Then,
\V(H,)| = 3n, a1(H,) = ao(H,) = n and diam(H,) = n+ 1. So, ap+1(H,) = 1.
Since Hy, C Hpy1, Xp(Hn> < Xp(Hn—l-l)'

Theorem 2.1.

(1)
4 ifn € {2,3},
Xp(Pn® K2) =<5 ifn € {4,5},
6 ifn € {6,7,8,9,10,11}.
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(2) For n > 12,
Xp(Pn © Ko) < 7.

Proof. To prove (1), it is enough if we show that x,(H11) < 6, x,(Hs) < 5, x,(H3) < 4,
Xp(HQ) > 4, Xp(H4) > 5 and Xp(HG) > 6.

First, consider Hy1. Let Vi = {vo,y1,v2,¥3, V4,5, V6, Y7, V8, Y9, V1i0}, Vo = {Zo, 71,22,
oox0), V3= {yo,y2, ¥4, Y6, ¥8, Y10}, Va = {vi,vr}, Vs = {v3,ve}, V6 = {us}.
Then, (V1,Va, V3, V4, Vs, Vs) is a packing 6-coloring of Hiy, and hence x,(Hi1) < 6. Next,
consider H5. For 7 € {1,2,3,4,5}, let Xl = ‘/z N V(H5) Then, (Xl,XQ,Xg,X4,X5) is a
packing 5-coloring of Hs, and hence x,(Hs) < 5. Now, consider Hs. For j € {1,2,3,4},
let Y; = V;NV(H3). Then, (Y1,Y2,Y3,Y,) is a packing 4-coloring of Hs3, and hence
Xp(Hs) < 4.

For lower bounds, first consider Hs. Clearly, x,(H2) > 4, since o (Ha)+ aa(Ha)+a3(H2)
=5 < 6 =n(H>). Next, consider Hy. Clearly, x,(H4) > 4, since a3(Hy) = ou(Hy) = 2. Sup-
pose X,(Hy) = 4. Let (V1, Vo, V3, Vy) be a packing 4-coloring of Hy. Then, |Vi| = «;(Hy),
i € [4]. Assume, by symmetry, that Vo = {xg,z1,22,23} and V4 = {yo,y3}. Conse-
quently, Vi = {vo,y1,¥y2,v3}. Now, V3 = {v1,v2}, a contradiction. Hence, x,(Ha) > 5.
Now, consider Hg. It follows, from a3(Hg) = 3 and a4(Hg) = a5(Hg) = 2, that
Xp(Hes) > 5. Suppose x,(Hs) = 5. Let (Vi,Va, V3, V4, Vs) be a packing 5-coloring of He.
Then, |V;| = «a;(Hg) for all i € {1,2,3,4,5} except one ¢ for which |V;| = a;(Hg) — 1.
By symmetry, if necessary, we relabel the vertex x; by y;, where j € {0,1,...,5}. Again,
by symmetry, if needed, we relabel the vertex vy by vs_r, where k € {0,1,2}. We consider
four cases.

Case 1. |Vi| = Hor |[V4| = 1.

Then, Vo = {xg,z1,...,25} and V5 is {yo,va}, {vo,vs}, or {yo,ys} If V5 = {yo,ys5},
then |V3| # 3, a contradiction. Hence, V5 is either {yo,ys} or {yo,vs}. Then, V3 is
{vo,ys3,y5} or {y1,ys3,ys5}, and therefore, |V;| < 4, a contradiction.

Case 2. |V3] = 2.

Then, Vo = {zo,21,...,25} and V5 is {yo,y4}, {v0, v5}, or {yo,ys}. Hence, respectively,
we have {vo,y1,y3,v4,y5} C Vi, {vo,y1,y5} C Vi, {vo,y1,%4,v5} C V1. In any possibility,
|Va| <1, a contradiction.

Case 3. |V5| = 1.
Then, Vo = {zo,z1,...,z5}. Clearly, by symmetry, one of the following holds:
{yo,y5} € V1, {vo,y5} € V1, {vo,v5} C V1.

If {yo,ys} C Vi, then |V3] # 3, a contradiction.

If {vo,ys5} C Vi, then, in order, y1 € Vi, {yo,y2} C V3, |V4| # 2, a contradiction.

If {vo,v5} C V1, then {y1,y4} C Vi. As {v2,v3} is not a subset of V}, at least one of ys,
y3 is in Vj. Assume, by symmetry, yo € V1. Then, V3 = {yo,ys3,y5} and so |V4| # 2, a
contradiction.

Case 4. |Va| = 5.

Then, V5 is {y0,ya}, {0, vs}, or {yo,¥5}.
Subcase 4.1. Vs = {yo0,y5}-

If xg € Vy (resp. vg € Vy), then vy € V; (resp. xg € V7). So, Vo = {x1, 29, 23,24, 75}.
Consequently, |V3| # 3, a contradiction. By symmetry, if x5 € Vj (resp. vs € Vj), then
we have a contradiction. Hence, Vy N {zg,x5,v0,v5} = 0, and therefore, Vi = {y1,y4}.

As |V3| = 3, exactly one of g, v, 21 is in V3 and exactly one of x5,vs, x4 is in V3.
If {zo, 25}, {xo, 24} or {z1,25} is contained in V3, then |Va| # b5, a contradiction. If
{vo,vs}, {vo, x4}, {x1,v5} or {1, 24} is contained in V3, then |V3| # 3, a contradiction.
If {zg,vs} C V3, then Vo = {1, 22,23, 24,25}, and hence |V;| # 6, a contradiction. If
{vo, z5} C V3, then, by symmetry, we have a contradiction.
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Subcase 4.2. Vs = {yo,vs}.

If 29 € Vy (resp. vg € Vi), then vy € Vi (resp. zp € V1) and so Vo = {x1, 22,3, 24,
x5 }. Consequently, V3 = {y1,ys,ys}. Therefore, |V1| # 6, a contradiction.

If x5 € Vy, then y5 € Vi, and so Vo = {xg, 1, 22,23, 24}. Consequently, |V3| # 3, a
contradiction. Hence, x5 ¢ V4. By symmetry, ys ¢ Vj.

Hence, Vy N {xg, x5,v0,y5} = 0, and therefore, Vi = {y1,y4}.

As |V3| = 3, exactly one of g, v, 21 is in V3 and exactly one of x5,ys, x4 is in V3.
Assume, by symmetry, exactly one of y5, x4 is in V. If {z1,24} C V3, then V3] # 3, a
contradiction. If {zg,z4} C V3, then |V3| # 5, a contradiction. If {vg,z4} C V3, then
xo € Vi N Vo, a contradiction. If {zg,y5} C V3 or {z1,y5} C V3, then z5 € V1 N Vs, a
contradiction. If {vg,y5} C V3, then zg, x5 € V1, and so, |Va| # 5, a contradiction.
Subcase 4.3. Vs = {yo,ya}-

As |V3] = 3, exactly one of xg,vg, 1,y is in V3 and exactly one of x5, ys5, v5, 24 is in V3.
By symmetry, assume that exactly one of xg,vg,z1 is in V3 and exactly one of x5, vs5, x4
is in V3. If {wo,vs}, {vo, x4}, {x1,v5} or {z1,24} is contained in Vi, then |V3| # 3, a
contradiction. If {xg,z4} C V3, then |Va| # 5, a contradiction. If {zg,z5} C V3, then
{z4,y5} C Vi, and hence |Vi| # 6, a contradiction. If {vg,x5} C V3, then, in order,
xg € V1, {x4,y5} C Vo, |[Vi] # 6, a contradiction. If {xg,v5} C V3, then, in order,
Vo = {x1, 22,23, 24,25}, y2 € V3, Vi = {vo,y1,v2,Y3,v4,Y5}, |Va| # 2, a contradiction.
Hence, {x1, 25} C V3. Then, x5 € V3. So, Vo C {0, y1, Y2, Y3, Z4,y5}. As [Va| = 5, either
{zo,y1} C Vo or {x4,y5} C Vo. In any possibility, |V1| # 6, again a contradiction.

In all cases, we have a contradiction. Hence, x,(Hg) > 6.

To prove (2), let

V2 = {330,331,%‘2, ce ,:L'n_l},

Vo = {v; :i=1or7 (mod 12)

Vs = {v; : i=3o0r9 (mod 12)

Vo = {vi : i=5 (mod 12)},

V7 = {Ui 1 =11 (mod 12)}.

For even n, let

i = {U(]a V2,04, ... 7vn72} U {y17y3>y57 s >yn71} and V:? = {y07y27 Yay - -, yn72}~

For odd n, let

i = {'U(],UQ,’U4, s 7vn71} U {y17y3>y57 s 7yn72} and VY?» = {y03y27 Yay - - ynfl}'

In any case, (Vi, Va, V3, Vy, V5, Vi, V7) is a packing 7-coloring of H,,, and
hence x,(H,) < 7. O

2
}

I

3. CORONA PRODUCT OF (), AND K>

Let C,, = wvyviv2...0,_1v0, Kéi) = XY, I € Zny, the set of integers modulo n, and
Gp = C,® K. Then, n(G,) = 3n, diam(G,) = [23], a1(Gn) = a2(G,) = n, and
for i > 3, ai(Gr) = [25].

i—1

Theorem 3.1.

(1)

if n € {3,4},
if n € {5,6},
ifn € {7,8,10},
if n € {9,11}.

Xp(Crn © K3) =

0 3 & Ot
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(2) Forn > 12,

7 ifn =0 (mod 2), or
Xp(Cn ©® Kp) < n=1,3,5 7,9 (mod 12) and n ¢ {13,15,21}

8 otherwise.

Proof.
(i)n = 3.

Since a3(Gz) = 1, we have x,(G3) > 5. To show equality, take Vi = {yo,v1,92},
Vo = {zo, 21,22}, V3 = {yi}, Va = {vo} and V5 = {va}.

(i) n = 4.

Since P, ® Ko C Cy ® Ky and x,(Py ® K3) = 5, we have x,(G4) > 5. To show
equality, take Vi = {yo,v1,¥2,v3}, Vo = {wo, 71,72, 23}, V3 = {y1,u43}, Va = {wo}
and V5 = {uy}.

(iii) n = 5.

Since a3(Gs) = 2 and as4(Gs) = 1, we have x,(Gs) > 6. To show equality, take
Vi = {yo,v1,y2,v3,y4}, Vo = {0, 21,22, 23,24}, V3 = {y1,y3}, Va = {vo}, V5 = {va}
and Vg = {u4}.

(iv)n = 6.

Since Ps © Ko C Cg ® Ky and x,(Ps ® K2) = 6, we have x,(Gs) > 6. To show
equality, take V1 = {vo,y1,v2,¥3,v4,95}, Vo = {0, 21, 72,23, 24,75}, V3 = {%0,%2, ¥4},
V4 == {Ul}, V5 = {’Ug} andVG = {U5}.

(Vv)n =T1.

Since Ps © Ko C C7 © Ky and x,(Ps ® K2) = 6, we have x,(G7) > 6. Sup-
pose X,(G7) = 6. Let (V1,Va,V3,Vy, Vs, V) be any packing 6-coloring of G7. Since
Oég(G7) = 3, a4(G7) = 2 and a5(G7) = 1, we have |V1| = ‘V2| = 7, ’Vg’ = 3,
|[Va] = 2 and |V5| = |Vg| = 1. Then, Vo = {xg,z1,x2, 3,24, 25,26}, and therefore
Vs = {vi, Yit2, Yira} for some i € Z;. Assume, by symmetry, that V3 = {yo,y2,ya}.
Now, Vi = {vo,y1,v2,93,v4,Ys5,ys}. Consequently, Vy, a set of cardinality 2, is con-
tained in {v1,vs,vs,v6}, a contradiction. Hence, x,(G7) > 7. To show equality, take
Vi = {vo,y1,v2,¥3,v4,¥5, Y6}, Vo = {wo,x1,22, 73, 24,75, 76}, V3 = {yo,y2,va},
VZ; = {1)1}, V5 = {Ug}, V@' = {05} and V7 = {UG}.

(vi)n = 8.

Set Vi = {v0,v1,¥2,v3,Y4,5,¥6,v7}, Vo = {x0,21,22,..., 27}, V3 = {y1,¥3,¥5,y7},
‘/;1 = {,UO}v V5 = {UQ}a ‘/6 = {04} and V7 = {’UG}' Then7 (‘/17‘/27‘/37‘/41‘/57‘/67‘/7) is
a packing 7-coloring of Gy, and hence x,(Gg) < 7. Note that aq(Gg) = aa(Gg) = 8,
a3(Gg) = 4, au(Gs) = as5(Gg) = 2 and diam(Gg) = 6. Suppose x,(Gg) < 6. Let
(‘/11 Va, V3, Vi, Vs, ‘/é) be any paCking 6-coloring of Gg and let C' = (|V1|7 “/2|7 |V:°>|7 |‘/4|7 |‘/5‘7
|Vs|). Without loss of generality, assume that |V;| > 1, i € {1,2,3,4,5,6}. Hence, C is
(77 87 4? 2? 27 1)7 (8’ 7’ 4’ 27 27 1)’ (87 87 3? 2? 27 1)7 (8’ 8’ 4’ 27 17 1)’ or (87 87 47 1’ 2’ 1)'

ItC = (77874,2727 1)athen7 in order, Vo = {$07$1>$27$37x4ax5a$6am7}7VE’) = {y()ayZa
Ya,Y6}, Vs 18 {y1,ys} or {ys,yr}. Assume, by symmetry, that V5 = {y1,ys5}. But, then
|Vi| < 6, a contradiction.

IfC = (8,7,4,2,2,1), then V3 = {z0, 22, 24,26} and V5 = {y;, yit+4} for some i € Zg.
Assume, by symmetry, that Vs is {yo,ya} or {y1,y5}. If V5 = {y0,v4}, then, as both the
sets {xo,y0} and {z4,ys} are contained in V3 U Vj, we have |V5| < 6, a contradiction.
Hence, V5 = {y1,y5}. Assume, by relabeling the vertices, that V5 = {z1,25}. Now,
Vi is {yi, yiv3}s {¥irYira} or {yi,viga} for some i € Zg. If Vi is {yi, yir3} or {vi,yital},
then {wvg, vy, v2,v3,v4,v5,06,07F C V3 U Vo U Vg; since |Vg| = 1, we have a path P



R. SAMPATHKUMAR et al.: PACKING COLORINGS OF THE CORONA PRODUCT OF THE PATH ... 99

with seven vertices in {wo, v, ve, v3, v4,vs5, v, v7} which is packing 2-colorable, a contra-
diction. Hence, V4 = {y;,vita} for some i € Zsg. Since, both xg,z1,x2 and x4, x5, z6
have color pattern 3,5,3, it is enough if we consider i € {0,1,2,3}. However, the par-
tially colored graphs with colors 3, 4 and 5 for ¢ € {0,2} are isomorphic. Hence, it is
enough if we consider i € {0,1,3}. If V4 = {yo,v4} (respectively, V4 = {yi,v5}), then

Voo = {1, 92, Y3, Y1, Y5, Y6, y7} (respectively, Vo = {yo,¥2,¥3, 1, ¥5, Y6, y7}), and hence
V1| < 7, acontradiction. If Vy = {ys,v7}, then ViUVLUV; is {x3, x7, vo, v1, V2, U3, U4, U5,
V6, Y05 Y1, Y2, Y4, Ys, Y6, Y7} As |[Vs| = 1, there exist 15 vertices in Vj U Vo U Vi such that

the subgraph induced by these 15 vertices is packing 2-colorable. But such a subgraph,
clearly, contains a Py, a path of length 3, a contradiction.

IfC = (8,8,3,2,2,1), then Vo = {x,x1, x2, w3, 24, T5, T, 27} and V5 = {y;, yit4} for
some i € Zg. Assume, by symmetry, that Vs = {yo, y4}. Then, {vo,vs} U{y1,ys3,ys5,y7} C
V1. Consequently, |V3] < 2, a contradiction.

Hence, C is (8,8,4,2,1,1) or (8,8,4,1,2,1). Then, in order, Vo = {xg,z1, 22, 3, T4,
zs5, 26,27}, V3 = {y0,¥2, ¥4, Y6}, Vi = {vo,y1,v2,¥3,v4,Y5, 6, yr}. Since V3 U Vs U Vg =
{v1,v3,v5,v7}, we have |V4| = |V5| = 1, a contradiction.

(vil) n = 9.

Set Vi = {yo, v1, 2,3, Y4, V5, Y6, U7, Ys}, Vo = {xo, T1,22,..., 28}, V3 = {y1,¥3, 95, Y7},
V4 = {’Uo}, V5 = {'UQ}, V6 = {’04}, V7 = {1)6} and Vg = {2)8}. Then, (%,VQ,%7‘/;1,V5,
Ve, Vi, V) is a packing 8-coloring of G, and hence x,(Gy) < 8.

Note that Oél(Gg) = ag(Gg) = 9, Ozg(Gg) = 4, 044(G9> = 3, 045(G9) = 2 and
diam(Gy) = 6. Hence, x,(Gg) > 5. Suppose x,(Gg) < 7. Let (Vi,Va, V3, Vi, V5, Ve, Vi)
be any packing 7-coloring of Gy and let C = (|Vi|, |Val, | V5|, [Val, | V5], |Vs|, |V7]). Without
loss of generality, assume that |V;| > 1,17 € {1, 2,3,4,5,6,7}. Hence, C'is (7,9,4,3,2,1,1),
(8,8,4,3,2,1,1), (8,9,3,3,2,1,1), (8,9,4,2, ,1,1), (8,9,4,3,1,1,1), (9,7,4,3,2,1,1),
1,1,1), (9,9,2,3,2,1,1), (9,9,3,2,2,1,1),

(9.8,3,3,2,1,1), (9,8,4,2,2,1,1), (9,8,4

(97 97 37 37 17 17 1)7 (97 97 471727171)7 or ( 9y ?47 27 7171)

Claim 1. C ¢ {(7,9,4,3,2,1,1), (8,9,3,3,2,1,1), (8,9,4,3,1,1,1), (9,9,2,3,2,1,1),
(9,9,3,3, 1,1, )} Le., (|Val,[Val) # (9,3).

Suppose |Vo| = 9and |V4| = 3, then Vo = {zg,z1,...,28} and Vi = {vi,Yi+3,Yit6}
for some i € Zg. Assume, by symmetry, that V4 = {yo,ys3,ys}. Consequently, |V3| # 4.
Hence, C is neither (7,9,4,3,2,1,1) nor (8,9,4,3,1,1, 1),

In addition, if [V5| = 2, then V5 is {y1,ys}, {ya,ys}, or {y7,y2}. Again, by symmetry,
assume that V5 = {y1,y5}. Consequently, |V;| < 7. Hence, C is neither (8,9,3,3,2,1,1)
nor (9,9,2,3,2,1,1).

Finally, if C = (9,9,3,3,1,1,1), then Vo = {xg,21,...,28} and Vi = {yo,¥3,¥s}-
Consequently, Vi = {v0, 41, 42, U3, 4, Us, U, ¥, ys}, and therefore, |Vs| # 3. Hence,

C #(9,9,3,3,1,1,1).
Claim 2. C ¢ {(8,9,4,2,2,1,1),(9,9,4,1,2,1,1),(9,9,4,2,1,1,1)}.

If [Vo| = 9and |V3| = 4, then Vo = {xg,x1,...,28} and V3 = {yi, Yi+2, Yi+4, Yi+6}
for some i € Zg. Assume, by symmetry, that V3 = {yo, y2, y4, Y6}

In addition, if [Vi| = 9, then Vi = {vo,y1,v2,y3,v4,Y5, V6, Y7, Y3}, and therefore,
neither |V4| = 2 nor |V5] = 2. In other words, C is neither (9,9,4,2,1,1,1) nor
(9,9,4,1,2,1,1).

Finally, if C = (8,9,4,2,2,1,1), then V5 = {zg,z1,...,28}, V3 = {vo,¥y2,v4, Y6} and
Vs = {vj,yj+a}, where j € {1,3,8}. Assume, by symmetry, that j € {1,3}. Hence, V5 is
{y1,y5} or {ys, yr}. But, then |V1| < 7, a contradiction. Hence, C' # (8,9,4,2,2,1,1).
Claim 3. C ¢ {(8,8,4,3,2,1,1),(9,7,4,3,2,1,1),(9,8,4,3,1,1,1)}.



100 TWMS J. APP. ENG. MATH. V.16, N.1, 2026

If|V3] = 4and V4| = 3,then V3 = {z;, Zit2, Tita, Tive} and Vi = {y;,yj+3,Yj+6} for
some i, j € Zg. Assume, by symmetry, that Vi = {vo,y3, ys}. Again, by symmetry, assume
that V3 is {zg, x2, x4, 6 }, {x1, 23, x5, 27}, or {z2, T4, x6, vs}. Note that the partially colored
graphs with (Vy, V3) equals ({yo,y3, 6}, {71, 73, 5, 27}) and ({vo,y3, Y6}, {72, T4, T6, T8 })
are isomorphic. So, assume that V3 is {xg, 2, x4, 26} or {x1, 23, x5, x7}.

Let C be (8,8,4,3,2,1,1) or (9,8,4,3,1,1,1). If V3 = {0, x2, x4, x¢}, then, since both
{zo,y0} and {x¢,ys} are contained in Vi U Vjy, we have |Vo| < 7, a contradiction. If

VE’) = {$1,$3,$5,CL‘7}, then ‘/2 = {fL‘O,y1,$2,$4,y5,$6,y7,$8}, and hence |V1| < 73 a
contradiction.

Let C be (9,7,4,3,2,1,1). If V3 = {xg, x2, x4, 26}, then, in order, Vo = {1, 42, x3, Y4,
xs,x7, 8}, Vs = {y1,ys}, [Vi| < 6, a contradiction. So, let V3 = {x1,x3, x5, 27}

Then, {y2,v3,y4} C Vi and therefore, Vs is {xo, x4}, {v1,y5}, {z2, 26}, {z4, 28}, {y5, 20},
{z6,y1}, or {yr, x2}. If Vs is {wo, 4}, {y1,y5}, {z2, 26}, {5, 0}, {26, Y1}, or {y7, z2}, then,
respectively, {ys,vo,y1} C Vi, {zo,v1,v5, 76} C V1, {ys5,v6,y7} € Vi, {v0,y1,v5, 26} C V1,
{z0,v1,y5,v6,y7} C V1, or {xg,v7,28} C Vi, and hence |Va| < 7, a contradiction. If
Vs = {x4,28}, then {xg,y1,x2, z6,y7,ys} C Vo, and hence |Vi| # 9, a contradiction.

By Claims 1, 2 and 3, C' € {(9,8,3,3,2,1,1),(9,8,4,2,2,1,1),(9,9,3,2,2,1,1)}.

IfC = (9,9,3,2,2,1,1), then Vo = {xg,x1,...,28} and V5 = {y;,yi+a} for some i €
Zg. Assume, by symmetry, that Vs = {yo,ys}. Consequently, {vo,y1,vs,v4,s5,ys} C Vi,
and therefore, |V3| # 3. Hence, C' # (9,9,3,2,2,1,1).

IfC = (9,8,3,3,2,1,1), then Vi = {zj, 243,246} and V5 = {y;,y;4a} for some
i,j € Zy. Assume, by symmetry, that Vj = {zo,z3,26}. Again, by symmetry, assume
that Vs is {vo, vy}, {y1,95}, or {y2,ys}. Since {yo,ysa} and {y2,ys} are similar, we assume
that V5 is {yo,ya} or {y1,ys}. U Vs = {yo,ya}, then Vo = {x1,29,ys3, 24,5, Y6, x7, T8},
and hence V1| # 9, a contradiction. If V5 = {y1,ys5}, then, in order, V5 is an 8-element

subset of {yo, z1, 2, y3, T4, x5, Y, T7, 23}, and for any 8-element subset, we have [V;| # 9,
a contradiction.

IfC = (9,8,4,2,2,1,1), then V3 = {xj, i12, Tiya, Tit6} and V5 = {y;, yj4a} for some
i,j € Zg. Assume, by symmetry, that Vs = {yo, y4}. Hence, V3 is Vg(o) = {xo, 22, 24,26},
)

‘/:?)(1) = {x17x37x57$7}7 ‘%(2) = {m27x47x67x8}7‘/é(3) = {x37x57x77x0}7 ‘/:3(4 = {x47x67
g, T1}, V3(5) = {x5, 27,20, T2}, V3(6) = {x¢, x5, 71,73}, ‘/3(7) = {ar,20,22,24}, or
Va(g) = {ws,x1, 23, 25}. Since V3(7)7 Vs(ﬁ)’ ‘/3(5) and V3(4) are, respectively, similar to V3(0)7

Vg(l), 1/3(2), V3(3), we consider only five possibilities (one in clockwise direction and the other
in anticlockwise direction on the cycle). If V3 = Vg(o), then |V3| < 7, a contradiction. If
V3 = V3(2), then Vo = {x0,x1,¥2, 23,25, Y6, 7, ys }, and hence |V;| < 8, a contradiction.
If V3 = VS(?’), then Vo = {x1,x2,ys,%4,Y5, Ts,y7, xg}, and hence |V;| < 8, a contradic-
tion. If V3 = Vg(l), then V5 is an 8-element subset of {xo, y1, x2, Y3, x4, Y5, Ts, Y7, xg }, and
hence, for any 8-element subset, we have |Vj| < 8, a contradiction. If V3 = V:,,(S), then
Vs is an 8-element subset of {xg, y1, %2, Y3, T4, Y5, T6, Y7, Ys }, and hence, for any

8-element subset, we have |[V;| < 8, a contradiction.

(viii) n = 10.

Set Vi = {yo,v1,Y2,v3,Y4, V5, Y6, V7, Y8, Vo }, Vo = {0, 21,72,..., 29}, V3 = {y1,¥3,ve,
Yo}, Va = {va,y7}, Vs = {vo,ys}, V6 = {va} and V7 = {ws}. Then, (Vi, Vo, V3, Vy, Vs, Vs,
V7) is a packing 7-coloring of Gg, and hence x,(G1o) < 7.

Note that al(Gm) = Ozg(Gm) = 10, ag(Glo) = b, 044(G1()) = 3, a5(G10) =
a(G1o) = 2 and diam(G19) = 7. Hence, x,(Gi0) > 5. Suppose x,(Gio) < 6. Let
(Vi, Va, V3, V4, V5, V) be any packing 6-coloring of Gyg and let C' = (|V4, |Val, | V3], |Val,
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V5|, |Vs]). Without loss of generality, assume that |V;| > 1, ¢ € {1,2,3,4,5,6}. Hence, C'is
(8,10, 5 3,2,2), (9,9,5,3,2,2), (9,10,4,3,2,2), (9,10,5,2,2,2), (9,10,5,3,1,2), (9,10,5,
3,2, 1), (10,8,5,3,2,2), (10,9,4,3,2,2). (10,9,5,2.2,2). (10,9,5,3.1,2). (10,9,5,3,2, 1),
(10.10.3,3,2,2), (10,10,4,2,2,2). (10,10,4,3,1,2), (10,10,4,3,2,1), (10,10,5,1,2,2),
(10,10,5,2,1,2), (10,10,5,2,2,1), or (10,10,5,3,1,1).

Claim 1. (Val, [Val) # (10,5).

Otherwise, (|Val, [V3]) = (10,5). Then, Vo = {zo,z1,...,29} and V3 = {yo, Y2, ys,
ye, ys - Clearly, |Vs| # 2. (If |[V5| = 2, then V5 = {y;,yi+5} for some i € Z1p.) Hence,
C ¢1{(8,10,5,3,2,2), (9,10,5,2,2,2), (10,10,5,1,2,2), (9,10,5,3,1,2), (10, 10,5,2,1,2)}.
Thus, [Vg| = L If [Vs| = 2, ie., if C € {(9,10,5,3,2,1), (10,10,5,2,2,1)}, then Vs is
{Wi, vivalt, {yiviys}, or {yi,yirs} for some i € Zyo. As Vs # {vi,virs}, Vs is {¥i, Yiyat
or {y;, vit5}. By symmetry, V5 is {y1,y5} or {y1,vs}. Then, |V1|] < 8, a contradiction.
Hence, C' is neither (9,10,5,3,2,1) nor (10,10,5,2,2,1) and V5] = 1, and therefore
C = (10,10,5,3,1,1). Now, Vi = {wo,y1,v2,¥3, V4, Y5, Vs, Y7, Vs, Y9 }, and therefore V3 C
{v1,v3,v5,v7,v9}, a contradiction to |V3| = 3. Thus, C' # (10,10,5,3,1,1).

Claim 2. ([Val, [Vel) # (10,2)

Otherwise, (|Va|,|Vs|) = (10,2). Then, Vo = {xo,21,...,29} and V5 = {yo0,ys5}-

If V5| = 2, ie.,if C e {(9,10,4,3,2,2), (10,10,3,3,2,2), (10,10,4,2,2,2)}, then Vs
is {yi, Yira}t, {yj, vjxs}, or {yk, yks+s} for some i, 5,k € Zyg. Clearly, i € {2,3,4,7,8,9},
j € {1,2,3,4,6,7,8,9} and k € {1,2,3,4,6,7,8,9}. Assume, by symmetry, i € {2,3}
(since any two i’s in {2,4,7,9} are similar cases and two i’s in {3,8} are similar cases),
j € {1,2} (since any two j’s in {1,4,6,9} are similar cases and any two j’s in {2, 3,7, 8}
are similar cases) and k € {1,2} (since two k’s in {1,6}, {2,7}, {3,8} and {4,9}, are,
respectively, equal cases, two k’s in {1,4} are similar cases and two k’s in {2,3} are
similar cases). Hence, V5 is {y2,v6}, {ys.y7}, {y1,v6}, {y2,v7}, {v1,v6}, or {y2,yr}. If
Vs = {y1,y6}, then [Vi| < 8, a contradiction. If Vi is {y2,ys} or {yi,v6}, then
Vi < 9, and hence C = (9,10,4,3,2,2). If V5 = {y2,ys} (respectively, V5 = {y1,v6}),
then {U0>y1:U2;y3ay9} c W (respectively, {1/47U5;y6} - V1)7 and hence |V4| < 2, a
contradiction. Thus, Vs is {ys, y7}, {y2,v7}, or {y2,y7}.

First, assume that C is (10,10, 3,3,2,2) or (10,10,4,2,2,2). If V5 is {ys3,y7}, {y2, v7},
or {y27y7}7 then, respectively, V1 = {U()vy17y27v37y4av5>y63’u77y87y9}7 {U07y17U27y3,y4,
U5ay67y77y9} cwh, = {U07ylav27y3ay4vv57y67U77y8ay9}' Consequently7 |V€3| < 2,a
contradiction.

Next, assume that C' = (9,10,4,3,2,2). Since |V4| = 3, Vi = {ys,yrr3,yesr6} for
some ¢ € Zjo. As Vs = {yo,y5}, £ € {1,3,6,8}. Hence, for Vs equals {ys3,y7}, {y2,v7},
{y2,y7}, respectively, we have ¢ € {6,8}, £ € {1,3,8}, £ € {3,8}. In all the cases, |V;]| <8,
a contradiction.

Hence, |V5| = 1, and therefore C = (10,10,4,3,1,2). Since Vs = {vo,y5},
{vo,y1,94,v5, 96,99y € V1. As [Va| = 3, Vi = {ye,Yes3,yer6} for some £ € Zyg, a
contradiction, since there is no /.

Claim 3. (Val,|Vs]) # (5,2).

Otherwise, (|V3],|Vs|]) = (5,2). Then, V3 = {zo,x2, x4, 76,28}, Vo = {yo,x5} and
C e {(9,9,5,3,2,2),(10,8,5,3,2,2), (10,9,5,2,2,2), (10,9,5,3, 1,2)}.

First, assume that [Vo| = 9. Then, Vo = {y1,92, Y3, Y4, Y5, Y6, Y7, Ys, Yo }, and hence
’Vl‘ < 9. SO, Cc = (9,9,5,3,2,2) and Vi = {vo,yl,vg,yg,v4,v6,y7,vg,yg}. Then,
|Vs| # 2, a contradiction.

Next, assume that [Vao| = 8. So, C = (10,8,5,3,2,2). Then, {vo,y1,y9} C V1 and
Vi = {ye, yers, yere} for some £ € Zyg. Since yg € Vg and y1,y9 € Vi, we have £ = 2,
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i'e'7 V;l = {3/27 Ys, y8} Consequently, Vl = {’007 Y1,v2,Y3,Y4, V5, Y6, Y7, Us, Z/9} But> then
|[Va| < 4, a contradiction.

By Claims 1, 2 and 3, C € {(10,10,4,3,2,1),(10,9,5,3,2,1),(10,9,4,3,2,2)}. Since
|VY5‘ = 27 ‘/5 is {yi7yi+4}a {ijvj+5}’ or {ykvyk+5} for some ivjv ke Z10-

IfC = (10,10,4,3,2,1), then Vo = {zg,z1,...,29} and V5 is {yo,v4}, {vo,vs}, or
{yo,y5}. We have, respectively, {vo,y1,¥3,v4,¥5, %9} € V1. {vo,y1,¥s5, 49} € V1.
{Uanlay4aU5ay67y9} - ‘/1 Since |V21| = 37 VY4 = {yﬁayf-‘rfﬂayf-‘rﬁ} for some ¢ € ZlOa a
contradiction, since there is no /.

rce = (1079757372, 1)5 then VY3 = {.170,1'2,(1:4,176,338} and ‘/5 is {y07y4}7 {?/1,95}7
{yo,vs}, {y1,v6}, {v0,y5}, or {y1,y6}. The cases {yo,ys} and {y1,ys} are similar. If V5 =
{y05y4}athen“/2| < 8,ac0ntradiction. If‘/5 = {Z/O,y5}7then V2 = {ylay27y3)y47x57y67
Y7, Ys, Yo I, and therefore |Vi| < 9, a contradiction. If V5 = {yo,vs}, then Vo = {yi,
y2)y37y47y57y6ay7)y87y9}7 and therefore Vl - {’UO,LL’l,U2,1‘3,’[)4,175,1)6,587,’1)8,.’179}, a con-
tradiction to |Vy| = 3. If V5 = {yi1,v6}, then interchange x; and y;. So, V5 = {z1,vs},
and therefore, yg € V1. Consequently, Vo = {vo,¥1,%2,¥3, Y4, Y5, Y7, Vs, Yo}, a contra-
diction to |V4] = 10. If V5 = {yi1,ys}, then, for i € {1,5}, interchange z; and
yi- So, Vs = {x1,x5}. Since Vi = 3, Vi = {ys,yes3,y016} for some ¢ € Zjy.
Since Vo] = 9, ]{0,1,2,4,5,6,8} N {¢,¢ + 3,£ + 6} < 1, and hence ¢ € {3,7}. If
‘/;1 is {y3ay67y9} or {y77y07y3}7 then? respeCtiVGIY7 ‘/2 is {y07y17y27x37y47y57y77y87x9}7
{y1, Y2, 3,94, Y5, Y6, 7, Ys, Yo }, and therefore |V;| # 10, a contradiction.

IfC = (10,9,4,3,2,2), then Vo = {z1,29,...,29} and V5 = {y;,yi+5} for some
i € Z1p. Assume, by symmetry, that Vg is {zo,y5}, {v1,y6}, or {y2,y7}. Since |V4| = 3,
‘/4 = {yfuyf+3ay€+6} fOI' some E S ZIU- ClanIY7 if ‘/6 = {$073/5}7 then e ¢ {27579} (lf

= {y17y6}7 then /¢ ¢ {0,1,3,5,6,8}) (if Ve = {y27y7}7 then / ¢ {1,2,4,6,7, 9})
As |[Vi| = 10,if V5 = {xo0,ys5}, then ¢ ¢ {0,1,3,4,6,8} (if Vs = {y1,ys}, then
¢ ¢ {2,4,7,9}) if Vo = {y2,y7}, then ¢ ¢ {0,3,5,8}). Hence, V5 = {zo,y5} and
V;l - {y7ay07y3}-Then7‘/1 = {’U(]aylvy27U3ay47v57y67v77y87y9}7and therefore|V5| # 2.
(ix) n = 11.

Set ‘/1 = {@/0>U1>y27’0372/47U5ay6aU7ayS7U9a910}a ‘/'2 = {.’Bo,iﬁl,l’z,...,l’lo}, Vé =
{vi,y3,u5,y7, 90}, Va = {vo,ve}, Vs = {v2}, Vo = {wa}, Vo = {wg} and V3 = {vi10}.
Then, (V1, Vo, Va3, Vi, V5, Vs, V7, V) is a packing 8-coloring of G11, and hence x,(G11) < 8.

Note that Oq(GH) = OéQ(GH) = 11, Oég(GH) = 5, 044(011) = 3, 045(G11)
= a6(G11) = 2 and diam(G11) = 7. Hence, x,(G11) > 6. Suppose x,(G11) < 7. Let
(Vh, Vo, V3, Vy, Vs, Vs, V) be any packing 7-coloring of G11 and let C' = (|V4], |Va|, | V5], | V4],
€ {1,2,3,4,5,6,7}.

(

Vsl [Vsl,|Vz]). Without loss of generality, assume that |V;| > 1, ¢

Hence, C is (9,11,5,3,2,2,1), (10,10,5,3,2,2,1), (10,11,4,3,2,2,1), (10,11,5,2,2,2,1),
(10,11,5,3,1,2,1, (10,11,5.3,2, 1,1), (11,9,5,3.2,2, 1), (11,10,4,3,2,2,1),
(11,10,5,2,2,2,1), (11,10,5,3,1,2,1), (11,10,5,3,2,1,1), (11,11,3,3,2,2, 1),
(11,11,4,2,2,2,1), (11,11,4,3,1,2,1), (11,11,4,3,2,1,1), (11,11,5,1,2,2,1),
(11,11,5,2,1,2,1), (11,11,5,2,2,1,1), or (11,11,5,3,1,1,1).

Claim 1. ([Val, [Vs)) # (11,5).

Otherwise, (|Va2l,|V3]) = (11,5). Then, Vo = {zo,z1,...,210} and V3 = {yo,y2, ya,
ye, ys }- Clearly, |Vs| # 2. Suppose |Vs| = 2, then V5 = {y;, yit5} for some i € Z1;, and
therefore i € {5,7,9}. It follows that |Vi| < 9, and therefore C' ¢ {(10,11,5,2,2,2,1),
(10,11,5,3,1,2,1), (11,11,5,1,2,2,1), (11,11,5,2,1,2,1)} and C = (9,11,5,3,2,2,1).
(a) f Vs = {ys,910}, then {y1,v2,ys,v4,v6,y7,v8,59} C V1. (b) If V5 = {y7,y1}, then
Vi = {vo,v2,¥3,v4, Y5, 06,8, Y9, y10}- (¢) If V5 = {yo,ys3}, then {vo,y1,va,v4,¥ys,ve, yr,
yi0} € Vi. In any possibility of Vg, [Va| # 3, a contradiction. Thus, |V5| = 1, and
C e {(10,11,5,3,2,1,1), (11,11,5,2,2,1,1), (11,11,5,3,1,1,1)}. If [V4| = 11, then
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Vi = {vo,y1,v2,¥3,v4, Y5, V6, Y7, V8, Y9, Y10}, and therefore [V4| < 2 and [V5] = 1,
a contradiction. Hence, C' = (10,11,5,3,2,1,1). As |V4| = 3, Vi is {yj,¥j+3,Yj+6}
{vj,yj+3,yj47} or {y;,yj43,vj47} for some j € Zyi. It follows that Vi is {y7, 910,93},
{y9,y1.ys}, {y7, Y10, v3}, or {y9,y1,vs}. In any possibility of V4, [V1| # 10, a contradiction.
Claim 2. (|Val, |[Val, [Vs|) # (11,3,2).

Otherwise, (|Val, [Va|, [Vs|) = (11,3,2). S0, C' € {(10,11,4,3,2,2,1), (11,11,3,3,2,2, 1),
(11,11,4,3,1,2,1)}. Then, Vo = {xg,x1,...,210} and V5 = {yo,ys}. Since |V4| = 3,
Vi is {Yi, Vi3, Yir6}s {Yis Yits, Yirr} O {Yi, Yit+s, vitr} for some i € Zqp. It follows that
Vy is {yiayi+3ayi+6} with @ € {173a4a6a7’ 9}7 or {yj’yj+37yj+7} Wlth] € {1a3a6a7’ 10}7
or {Yk, Yk+s, vp+7} with k € {1,3,4,6,7,9,10}. As |V4] is 10 or 11, we have i € {3,7},
j € {6,7} and k € {3,6,7,10}. But, then, in any possibility, |[Vi|] = 10 and C =
(10,11,4,3,2,2,1).
(a) If Vi = {y3,96,%0}, then {vo,y1,v2,v3, 4, ¥s,v9,y10} € V1.
(b) If V4 = {y7,v10,y2}, then {y1,v2, 3,4, v5, ¥6, v7, Y8} C V1.
(c) If Vi = {ye,v9, 2}, then {vo, y1,v2,y3, 98, v9,y10} € V1.
(d) If Vi = {7,910, y3}, then {y2,v3,y4,vs, 6, v7, ys} € V1.
(e) If Vi = {w3,v6,v10}, then {vo,y1,y2,v3, ¥4, y10} € V1.
(f) If Vi = {ye, yo, v2}, then {vo, y1, 2, s, ve, Y10} C V1.
(g) If Vi = {y7,y10,v3}, then {y3,v4, 05,96, v7, Y8} C V1.

(h) If Vi = {y10,%2,v6}, then {y1,v2,¥y3,y4,v5,56} € V1.
In any possibility, |V3| # 4, a contradiction.
Claim 3. |Va| # 11.

IfC = (11,11,4,2,2,2,1), then Vo = {xo,21,...,210} and V5 = {yo,ys}. As
Vil = 11, {vo,y1,¥4,v5,96,y10} € V1. Consequently, {v1,va,v3,v4,v6,v7, V8, V9, V10, Y2,
Y3, y7,ys, Yo} C V3. As [V = 4, [{y2,y3,y7,ys8,¥9} N V3| > 2, and so [{v1,va,v3,v4,vs, v7,
vg,vg,v10} N V3| < 2.If {ya,ys} C V3 or {ys,ys} C V3, then |V3| = 2, a contradiction. If
{yo,y7} € V3, {y2, 0} € V3, {y3,y7} C V3, {3,990} C V3, or {y7, 90} C V3, then |V3] < 3,
again a contradiction.

rc = (117 1174>3>2’ 17 1)7 then Vo = {.%'(],.Tl, s a'rl()} and Vy is {y01y37y6}7
{y07y3vy7} or {y07y3av7}' It fOHOWSv respectively, that {U07y17y2vv37y47y5av6ay77y10} -

Vla {U07 Y1,Y2,V3,Y4, Y6, U7, Y8, yl(]} C ‘/17 {UOa Y1,Y2,V3,Y4, Y7, le} - VYl In any pOSSlblhty7
|Va3| # 4, a contradiction.

Claim 4. (|Val, |Val],|Va|) # (10,5,3) and (|Va|, |Vs], |Vs]) # (10,5,2). In other words, C
¢ {(10,10,5,3,2,2,1), (11,10,5,3,1,2,1), (11, 10,5,2,2,2,1), (11,10,5,3,2,1,1)}.
Otherwise, we have Vo = {x1,%2,...,210} and V3 = {vi,Yit+2,Yi+a, Yite, Yits} for

some 1 € Zi11. Casest = 0 and i = 3 are similar. Same fori = landi = 2;i = 4
andi = 10;4 = 5andi = 9;¢ = 6and ¢ = 8. Hence, assume that i € {0,1,4,5,6,7}.
Assume, by symmetry, that Va is {zo,y2, 94, 96,98} = Vo', {y1, 3, 05,9790} = V&7,
3 4 5
(a9, 910,01} = Vi, {ys,ymvozo, oy = Vi, {ve,vs, ooy, usy = Vi, or

{yr,y0, 20, 92,94} = V3"
Case 1. |Vs| = 2.
6)

Then, Vi = {y;,y;45} for some j € Zyy. If Vs is VY, V{2, v v v or V9,
then, respectively, j € {0,5,7,9}, j ¢ {6,8,10}, j € {0,2,9}, j € {1,3,6,10}, j € {0,2, 4},
j € {0,1,3,5}. As |Vi| > 10, we have, respectively, j € {0,5}, j = 6,57 = 0,
j = 6,7 = 0,7 = 0.In any possibility, |[V3| = 10. So, C = (10,10,5,3,2,2,1).
(a) If V3 = Vg(l) and Vs = {yo,ys}, then Vi = {vo,y1,v2,93,v4,v6,y7,v8,Y9, Y10} (b)
Iftvy = V},(l) and Vs = {ys,%10}, then Vi = {yo,y1,v2,¥3,v4, V6, Y7, V8, Y9, v10}- (C)
Itvs = ‘/})(2) and Vo = {y6,v0}, then Vi = {zo,v1,¥2,v3,Y4, V5,07, Ys, V9, Y10} (d)
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If V3 = V3(3) and Vs = {v0,ys}, then Vi = {xo0,v1,y2,y3,v4, V6, Y7, 8, Y9,V10}- (€)
If V3 = V3(4) and Vs = {y6,yo}, then Vi = {vo,y1,v2, 93, s, U5, 07, Ys, v9, Y10} () If
V3 = V3(5) and Vs = {0, ys}, then {xo,v1, y2,v3,y4,y7,v8,y0,v10} C V1. (g) If V3 = Vg,(6)
and Vs = {yo,ys}, then {vo,y1,v2,¥3,y6, v7, Y8, v9, y10} C V1. In any possibility, [V5| # 2,
a contradiction.
Case 2. |V4| = 3.

It follows from Case 1, C' = (11,10,5,3,2,1,1). Then, Vj is {yk, Yk+3, Yk+6}» {Yk, Yk+3,

Yk+7} OF {Yks Y13, Vky7} for some k € Zyp. (a) If V3 = V3(1)7 then Vy is {yo,y3,y7},
{y7ay107y3}7 {y95y17y5}a {y07y37v7}7 {y77y10,U3}5 or {y97y15U5}~ (b) If ‘/3 = ‘/2),(2)5 then
Vzl is {ygyy(]ayél}a {leayQayG}a {y83y05U4}7 or {y107y2av6}' (C) It VTS = ‘/23(3)a then ‘/4 is

4 )
{yo,y3,u7}, {v2, y5,y9}s {vo,y3, vr}, or {y2,ys,v9}. (d) If V3 = Vg( ), then Vy is {y0,v3, ¥6 },
{ys,vo,y3}, {y1,yays}, {y3,y6:v10}, {vs,yo,ya}, {vo,y3,v7}, {y1,v4,v8}, {y3,¥6,v10}, Or

{ys, yo,va}. (€) 1 V3 = Vi), then Vi is {y2,y5, 4o}, {44 7. 90}, {y2: 5, v0}, or {ya, yr, v0}.
() I Vs = V3, then Vi is {yo,y3, ¥s}, (U5 ¥s b0}y (s b0y}, {3, 96, 10}, {ys, us, y1 ),
{v0,y3,v7}, {ys,ve,v10}, {ys,ys,v1}, or {ys,yo,v4}. In any possibility, |[Vi| # 11, a con-
tradiction.

Finally, we show that C' ¢ {(11,10,4,3,2,2,1),(11,9,5,3,2,2,1)}.

IfC = (11,10,4,3,2,2,1), then Vo = {x1,x9,...,z10} and V5 = {yi, yiy5} for some
i € Z11, By symmetry, assume that i € {0,1,2,3,7,8}. Hence, Vg is {zo,y5} = Vﬁ(l),
{v1, 6} = V6(2)7 {y2, 97} = Ves(g)a {ys,y8} = V6(4)7 {yr,;} = Va(s)a or {ys, 2} = Ve(ﬁ)‘
As |Vi| = 3, Viis {yj, yj+3,¥jr6}s {Uk» Ykt3s Ukt7} OF {Ye, Yers, veyr}, where j, k, € € Zyy.
Clearly, for V"), j ¢ {2,5,10}, k ¢ {2,5,9} and £ ¢ {2,5}; for V{*, j ¢ {0,1,3,6,9}, k ¢
{1,3,5,6,9,10} and ¢ ¢ {1,3,6,9}; for Vi¥, j ¢ {1,2,4,7,10}, k ¢ {0,2,4,6,7,10} and
0 ¢ {2,4,7,10}; for ViV, j ¢ {0,2,3,5,8}, k ¢ {0,1,3,5,7,8} and £ ¢ {0,3,5,8}; for V),
j¢{1,4,6,7,9}, k ¢ {0,1,4,5,7,9} and £ ¢ {1,4,7,9}; for V%, j ¢ {2,5,7,8,10}, k ¢
{1,2,5,6,8,10} and £ ¢ {2,5,8,10}. As [V4| = 11, we have: for V"), j ¢ {0,1,3,4,6,9},
k¢ {1,3,4,6,8,10} and £ ¢ {1,3,4,6,9}; for V.2, j ¢ {2,4,5,7,10}, k ¢ {0,2,4,7} and
0 ¢ {2,4,5,7,10}; for V., j ¢ {0,3,5,6,8,9}, k ¢ {1,3,5,8,9} and £ ¢ {0,1,3,5,6,8,9};
for ViV, j ¢ {1,4,6,7,9,10}, k ¢ {2,4,6,9,10} and £ ¢ {1,2,4,6,7,9,10}; for V*), j ¢
{0,2,3,5,8,10}, k ¢ {2,3,6,8,10} and ¢ ¢ {0,2,3,5,6,8,10}; for V%, j ¢ {0,1,3,4,6,9},
k¢ {0,3,4,7,9} and ¢ ¢ {0,1,3,4,6,7,9}. Hence, Vg is V") or V2.
First, consider V6(1).

(a) If Vi = {y7,v10,92}, then Vi = {yo,y1,v2,¥3, Y4, V5, Y6, V7, Y8, Y9, V10 }-

(b) tv, = {ySay07y3}7 then V} = {U07y1)y2av3ay4vv57y67y?aUSay97y10}'
(C) v, = {yan37y7}7 then {an3/1792>U3,y4711571/6av7a3187ylo} cW.

(d) tvy, = {3/7,910,3/3}7 then {yOay27v3ay47U57y6>U7>y87y97’010} cW.

(e) vy, = {yan37U7}’ then {Uanlay27U3ay47U57y6>y77y10} cW.

(f) tv, = {y77y10av3}? then {yoay?w3/47@5»@/6,@7,%7?49’010} cW.

(2) If Vi = {ys, 0,04}, then {vo,y1,ya,v5, Y6, y7, Vs, Y9, Y10} € V1.

(h) If Vi = {y10,92,v6}, then {yo,y1,v2,y3, Y4, V5, Y6, Yo, v10} € V1.
Next, consider V6(2).
(i) It Vi = {y8vy0>y3}> then {xo,v1,y2,v3,y4,y5,vg,y7,vg,yg} cW.
(1) Vi = {ys,yo0,ya}, then {zo,v1,y2,y3, va, Y5, V6, y7, Vs, Yo } € V1.
(k) If Vi = {wo,y3,v7}, then {xo,v1,¥y2,v3,v4,¥5,v6,y7} C V1.
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(1) If ‘/4 = {y8>ZJOa’U4}’ then {x01011y27y4>y57v67y77U87y9} - Vl-
In any possibility, |V3| # 4, a contradiction.
IftC = (11,9,5,3,2,2,1), then, since |Vo| = 9, we consider six cases. As |V3| = 5,

V3 = {¥i,Yiv2, Yivra, Yive, Yirs} for some i € Zy1. As |Vy| = 3, Vi is {y;,yj43,¥j+6}
{ykayk+3>yk+7} or {yéayl+3avf+7}ﬂ where ja k7€ € le-
Case A. Vo = {wy, x2,x3,24,T5, 26, L7, T8, T9}.

Cases ¢ = 0 and ¢ = 3 are similar. Same for ¢ = landi = 2;¢ = 4
and ¢ = 10;¢ = bHand¢ = 9;¢ = 6 and ¢ = 8. Hence, by symmetry, V3
. 0 1 4
1S {1’0»?/27294796::98} = ‘/3( )7 {331793795:%,?/9} = ‘/3( )7 {y4ay6)y87$105$1} = V?}( ))

5 6 7
{y5,y77?/9,930,?/2} — V:g,( )a {yGaySaxlwalvy?)} — ‘/3( )) or {3/77?/9,330,?%27294} - Vzg( )

Clearly, for V3(0), thereisno j and k, ¢ € {0,7,9}; for V3(1), thereisno j and k, ¢ € {1,8,10};
for Vi¥, j € {7,10}, k € {0,2,7,9} and £ € {0,2,7,9,10}; for Vi), j € {0,8}, k € {1,3,8}
and £ € {0,1,3,8}; for V¥, j € {1,4,7,9,10}, k € {2,4,9} and ¢ € {1,2,4,7,9,10}; for

‘/})(7), j € {0,5,8}, k € {3,5} and ¢ € {0,3,5,8}. In any possibility, |Vi| # 11, a
contradiction.

Case B. ‘/2 = {iEO,iEl,$2,ZE3,$4,CE5,1‘6,$7,$8}.
For each ¢ € {1,2,3,4,5}, cases i and 11 — ¢ are similar. Hence, by symmetry, V3
. 0 1 2
1S {y07y21y47y6>y8} = ‘/3( )7 {y17y37y57y77$9} = VE))( )7 {y2:y47y67y87x10} = Vg( )7
3 4 5
{y3ay57y77$97y0} = ‘/E),( )a {y4ay67y87$107y1} = VE))( )7 or {y573/77$9,2/07y2} = Vg( )

Clearly, for VS(O), there is no j and k, ¢ € {7,9}; for V3(1>, there is no j and k, ¢ € {6,8,10};
for Vi?), there is no j and k,¢ € {0,7,9}; for Vi¥, j € {6,9}, k € {1,6,8,10} and
¢ € {1,6,8,9,10}; for ViV, j € {7,10}, k € {0,2,7} and ¢ € {0,2,7,10}; for Vi,
Jj€43,6,9}, k€ {1,3} and ¢ € {1, 3,6,9}. In any possibility, |V1| # 11, a contradiction.

Case C. Vo = {xo,x1,x2,23, 24,25, T6, T7, L9}
For each i € {0,1,2,3,4}, cases ¢ and 10 — ¢ are similar. Hence, by symmetry, V3
) 0 1 2
is {yo,y2,y4, Y6, T8} = Vg( )7 {vi,u3,u5.y7. 99} = Vg( )7 {y2,y4, 96,28, 10} = V3( ),
) _ _ o
{y37y57y77y97y0} = 3 {y47y6,$87$10,?/1} - 3, Or {y57y77y9)y07y2} - 3 -

Clearly, for ‘/3(0)7 there is no j and k, ¢ € {5,7,9}; for V3(1), there is no j and k, ¢ € {8,10};
for Vi%, j € {5,8}, k € {0,5,7,9} and ¢ € {0,5,7,8,9}; for V¥, there is no j and
k.0 € {1,10}; for Vi¥, j € {2,5,7,8,10}, k € {0,2,7} and ¢ € {0,2,5,7,8,10}; for V{*,
there is no j and k, ¢ € {1,3}; In any possibility, |[V;| # 11, a contradiction.

Case D. Vo = {x0, 1, 72,23, 4,25, 26, T3, T}

For each i € {0,1,2,3,4}, cases i and 9 — i are similar. Hence, by symmetry, V3
. 0 1 2
1S {y07y2ay47y67y8} = ‘/'3( )7 {y17y3ay57$77y9} = ‘/3( )7 {y27y47y6ay87x10} = V3( )7

1Y, Y5, 27,90, Yo} = V},(S), {va,v6,y8, 10,41} = ‘/})(4), or {T10,¥1,¥3, Y5, T7} = V3(10).
Clearly, for Vi”, there is no j and k,¢ € {7,9}; for ViV, j € {4,7}, k € {4,8,10}
and ¢ € {4,7,8,10}; for V3(2), there is no j and k,¢ € {0,7,9}; for V3(3), Jj € {1,4,7},
k€ {1,10} and ¢ € {1,4,7,10}; for ViV, j € {7,10}, k € {0,2,7} and ¢ € {0,2,7,10};
for V', j € {4,7}, k € {4,6,8,10} and £ € {4,6,7,8,10}. Except the following two
possibilities, |[Vi| # 11, a contradiction.
(@) Vs = {0,y2, 95,6, ys} = Vi¥ and Vi = {y7,v10,v3}.
Then, Vi = {vo,y1,v2,¥3,v4, Y5, V6, T7, V8, Y9, T10}-

(b) V3 = {ya,y6,98, 10,11} = Vg(4) and Vi = {yr7,y10,v3}.
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Then7 Vl = {y()aUlvaay37U47y5’1}67x77v87y9’v10}'
In the above two possibilities, |Vs| # 2, a contradiction.
Case E. V2 - {x0,$1,$2,$3,$4,$5, -’L'7,CL’8,1'9}-
For each i € {0,1,2,3}, cases i and 8 — i are similar. Also Cases i = 9and i = 10 are
similar. Hence, by Symmetry, Vs is {yo,y2,y4,:c6,ys} = V3 {93y, 0m. 90} = V3",
{Y2, Y4, 76, ys; 110} = 3 7 {ys,y5, Y7, 99, Y0} = 3 7 {ya, w6, ys, 710,91} = 3( )7 or

{Y9, Y0, Y2, Y4, T} = Vg(g). Clearly, for V3(0),j € {3,6}, k € {3,7,9} and ¢ € {3,6,7,9};
for ViV, there is no j and k,¢ € {8,10}; for Vi¥, j € {0,3,6}, k € {0,3,7,9} and
¢ € {0,3,6,7,9}; for Vg(g), there is no j and k,¢ € {1,10}; for ‘/3(4), j € {0,3,7,10} and
k.t € {0,2,3,6,7,10}; for 1/3(9), there is no j and k,¢ € {3,5,7}. Except the following
possibility, |Vi| # 11, a contradiction.

Vs = {yo,0, 92, yn 6} = Vol and Vi = {yr,y10,03}.

Then, Vi = {vo,y1,v2,¥3, 4, Y5, Y6, U7, Ys, V9, T10} -
It follows, in this possibility, that |Vs| # 2, a contradiction.
Case F. V2 = {J30,$1,$2,$37l’4, $6,$7,$8,$9}.

For each i € {0,1,2,3}, cases i and 7 — i are similar. Also, casesi = 8 and ¢ = 10 are
- . 0 1
similar. Hence, by symmetry, V3 is {30, y2,y4, %6, ys} = Va”, {y1.y3, 25,97, 59} = V3",

2 3 8
{y27y4 y67y8y$10} = {2/3,33573/779972/0} = ‘/E),( )a {987531073/1,93,555} = Vg( )7
or {y9,%0,Y2,Y4,Y6} = ( ) . Clearly, for V3( ). there is no j and k,¢ € {7,9}; for Vg(l),

Jj €42,5,10}, k € {8,10} and ¢ e€{2,5,8,10}; for %(2), there isno j and k, ¢ € {0,7,9}; for
VY, je{2,10}, k € {1,5,10} and £ € {1,2,5,10}; for V¥, j € {4,7,10}, k € {2,4,6,10}
and ¢ € {2,4,6,7,10}; for \/})(9), there is no j and k, ¢ € {5, 7}. In any possibility, |[Vi| # 11,
a contradiction.

(ix) n >12.
First, we find a packing 7-coloring for G,,. Let
V= {Y0, V1, Y2, V3, Y4, V5, ..., Un—2,Yn—1} if n is odd,
{Y0, V1, Y2, V3, Y4, V5, . ., Yn—2,Vn—1} if m is even,
Vo = {xo,z1,29,..., 21}
and

{y17y37y55‘-'7yn—2} lfnls Odd7

{y1,Y3,Y5, - - -y Yn—1} if nis even.
Now, we have to color the vertices vy, v2,v4, ..., v,—1 if n is odd and v, v2, vy, ..., vy_o if
n is even. Color these vertices with the following sequence of colors:

Vs =

4,5,6,7, 4,5,6,7, . ,4,567ifn50(m0d8);

45.6,4.5.7, 4.5.6,7, 4.5,6,7, ..., 4,5 6,7, ifn = 4 (mod 8):
5,4,6,5,7, 4,5,6,7, 4,5,6,7, ..., 4,5,6,7,if n = 2 (mod 8);
456,457, 4.5.6,4,5.7, ... 4.5.6,4.57, 4,5,6,7,ifn = 7 (mod 12),
4,5,6,4,5,7, 4,5,6,4,5,.7, ..., 4,5,6,4,5,7, 4,5,6,7, 4,5.6,7,

if n = 3 (mod 12) and n 75 15

For n = 6 (mod 8), reset V3 as V3 = {y1,93,95,.--,Yn—5}. Let yp_3 € Vg, yp—1 € V&
and color the vertices

Vo, V2, V4, Vg, U8, V10,V12, V14, ---, Un—14;Vn—12, Un—10,VUn—8, Un—6,Un—4, Un—2
with the sequence 4,5,6,7, 4,5,6,7, ..., 4,5,6,7, 4,5,3.

For n = 1 (mod 8), color the vertices

Vo, V2, V4, V6, U8,V10,V12,V14; ---, Un—17;Un—15,Un—13,Un—11, Un—9
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with the sequence 7,5,4,6, 7,5,4,6, ..., 7,5,4,6, 7,
Un—8, Un—7,Un—6,Vn—5, Un—4, Un—3, Un—2, Vp—1 With 4,1,5,1,6,1,4,1;
reset Vl as {yOa U1,Y2,V3,Y4, VU5, - - -, Yn—11, Un—10, yn79} U {ynf& Yn—6, Yn—4a, yan} and

V3 as {yh Y3,Ys, - - - 7yn710} U {yn777 Yn—5,Yn—3; yn71}~
For n = 5 (mod 8) and n > 29, color the vertices

Vo, V2, V4, V6, U8,V10,V12,V14, .-, Un—29,Un—27, Un—25;, Un—23,
Un—21,VUn—-19, Un—17, Un—15, Un—13, Un—11, Un—9, Un—7, Un—5, Un—3, Un—1
with the sequence 7,5,4,6, 7,5,4,6, ..., 7,5,4,6, 7,4,5,6,4,5,7,4,5,6,4.
Next, in the remaining cases (n € {13,15,21}, n = 11 (mod 12)), we find a packing
8-coloring for G,,. Take V7, Va, V3 as above and color the vertices vy, v2, vy, . . ., Vp—1 With

the following sequence of colors:

4,5,6,4,5,7,8,if n = 13;

4,5,6,7,4,5,6,8,if n = 15;

4,5,6,4,5,7,4,5,6,7,8, if n = 21;

4,5,6,4,5,7, 4,5,6,4,5,7, ..., 4,5,6,4,5,7, 4,5,6,4,7,8,if n = 11 (mod 12). g

4. CONCLUSION

We propose the following;:
Conjecture. x,(Pi2 © K2) > 7.

The validity of this conjecture shows that x,(P, ® K2) = 7 for n > 12.
Problem. Compute x,(C,, ® K») for n > 12.
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