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ON CONTROLLABILITY RESULTS FOR FUZZY

CAPUTO-KATUGAMPOLA FRACTIONAL DIFFERENTIAL

EQUATIONS

R. HARIHARAN1, R. UDHAYAKUMAR1,∗, §

Abstract. This article explores the controllability of fuzzy fractional differential equa-
tions using the Caputo-Katugampola fractional derivative. First, we prove the existence
of a mild solution using fractional calculus, fuzzy set theory, semigroup theory, and the
Caputo-Katugampola fractional derivative. The main results are obtained through a
fixed-point theorem. Finally, we illustrate our findings with an example.
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1. Introduction

Fractional differential equations are an extension of classical differential equations. They
use derivatives of non-integer orders. This allows them to represent memory and hered-
itary effects in systems. The mathematical foundations of fractional calculus, which un-
derpin fractional differential equations, can be traced to works by pioneers such as Leibniz
and Riemann. Modern advancements and applications have been detailed in several no-
table studies and books, such as Podlubny’s [1] “Fractional Differential Equations”, which
provides a comprehensive introduction to the theory and methods of solving fractional
differential equations, and for a deeper exploration of current research, articles by Kilbas
et al. [2] discuss recent developments and applications of fractional differential equations
across scientific disciplines. Iskakova et al. [3] introduced the novel 4D hyperchaotic system
and investigate its dynamics using both integer-order and fractional-order derivatives. The
fractional-order analysis is conducted using Caputo and Hilfer fractional derivatives, allow-
ing for a deeper understanding of the system’s long-term behavior. Fractional differential
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equations have been successfully applied in diverse fields such as physics, engineering, bi-
ology, and finance, demonstrating their effectiveness in describing memory-dependent and
hereditary processes [4, 5, 6].

Fractional calculus began in the late 17th century when Guillaume de l’Hôpital asked
about the meaning of taking a derivative with an order of 1/2. This sparked interest, and
by 1697, Leibniz explored the idea of fractional (or half-order) derivatives. Later, in the
19th century, Lacroix expanded on these ideas in his calculus book, introducing the concept
of derivatives of any fractional order. The first practical application of fractional calculus
came in 1823 when Abel used it to solve problems in mechanics, particularly involving the
tautochrone problem (a problem related to the motion of a particle along a curve). This
marked the beginning of fractional calculus being applied to real-world problems. More
recently, there has been significant progress in fractional differential equations, with major
contributions from Miller and Ross [7], Lakshmikantham et al. [8], Zhou [9], and Podlubny
[1], advancing both theory and applications in science and engineering. Fuzzy numbers,
initially introduced by Chang and Zadeh [10], provide a key approach to representing
uncertainty in mathematical models.

The concept of fuzzy fractional differential equations was first introduced by Agarwal
et al. [11], and since then, it has been widely explored in terms of its foundations, applica-
tions, and solution techniques. Arshad [12] examined the characteristics of fuzzy fractional
differential equations, focusing on their existence and uniqueness through fuzzy integral
equivalent equations. Salahshour [13] and his team took a different approach by apply-
ing the fuzzy Laplace transform of the Riemann-Liouville fractional H-derivative to solve
these equations. Meanwhile, Allahviranloo et al. [14] studied fuzzy fractional differential
equations using the Caputo fractional gH-derivative, with a particular emphasis on their
existence and uniqueness properties.

Katugampola [[15, 16]] introduced fractional operators, referred to as the Katugampola
fractional integral and derivative. These operators are characterized by an additional
parameter ϱ > 0. When ϱ tends toward 0+, the operators become equivalent to the
Hadamard fractional operators, and for ϱ = 1, they match the Riemann-Liouville fractional
operators. This parameter simplifies the theoretical framework, as proving results for the
Katugampola derivative also covers the Riemann-Liouville and Hadamard derivatives.

Katugampola [17] investigated the existence and uniqueness of solutions for fractional
differential equations involving the Caputo-Katugampola derivative, employing Schauder’s
second fixed-point theorem. Almeida et al. [18] studied the existence and uniqueness
theorem for an initial value problem related to Caputo-Katugampola fractional differential
equations and proposed a numerical method to solve it. Zeng et al. [19] introduced a
discrete form of the Caputo-Katugampola derivative and presented a numerical approach
for solving linear fractional differential equations involving this derivative. Finally, Baleanu
et al. [20] explored the chaotic dynamics and stability of fractional differential equations
using the Caputo-Katugampola derivative.

Controllability is a fundamental concept in control theory that assesses whether a dy-
namic system can be steered from one state to another using a set of admissible control
inputs within a finite time. It is a critical property for designing effective control strate-
gies and ensuring the desired behavior of systems in various applications, such as robotics,
economics, engineering, and biology. Controllability plays a key role in system design, en-
suring that desired objectives, such as stabilization or trajectory tracking, can be achieved.
This concept is closely related to other properties like observability and stability, forming
the foundation for analyzing and designing dynamic systems.
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Vikram Singh [21] addressed the challenges of establishing controllability for fractional
systems where the domain of the governing operator is non-dense. Ullah et al. [22]
eaddressed such uncertainties; fuzzy fractional differential equations provided a powerful
mathematical framework by incorporating both fractional calculus and fuzzy set theory.
Ahmad et al. [23] focused on finding semi-analytical solutions for third-order fuzzy disper-
sive partial differential equations under fractional operators. Recently, Zhang et al. [24]
studied the controllability of a specific class of systems defined by Sobolev-type structures,
Fuzzy logic, and Hilfer fractional derivatives. Ullah et al. [25] introduced the Fuzzy Yang
Transform as an analytical technique for solving second-order fuzzy differential equations
of both integer and fractional order. The Yang transform, a relatively recent integral trans-
form method, was extended to the fuzzy domain to obtain solutions in a more efficient
and systematic manner.

Van Hoa et al. [26] proposed a novel concept of fuzzy fractional derivatives and examined
the existence and uniqueness of solutions for an initial value problem related to Caputo-
Katugampola fuzzy fractional differential equations.

Based on the discussion above, this paper explores the existence of a mild solution
and controllability results for a fuzzy fractional differential equation incorporating the
Caputo-Katugampola fractional derivative, with the following initial condition:

{
CDα,ϱ

0+
ỹ(t) = Aỹ(t) + Bu(t) + f(t, ỹ(t)), t ∈ [0,P] = U,

ỹ(0) = ỹ0,
(1)

where CDα,ϱ
0+

is a Caputo-Katugampola fractional derivative of order 0 < α < 1. The
state variable ỹ(·) takes on values within the space of all fuzzy numbers F and A fuzzy
number is defined as a fuzzy set ỹ : R → [0, 1]. A : Dom(A) ⊆ B → B(Banach space)
is the infinitesimal generator of a C0-semigroup consisting of uniformly bounded linear
operators J(t)t≥0 on the space B. f : U × F → F is a fuzzy valued function. B : E → B is

a bounded linear operator and u(·) ∈ L2(U,E) is a control fuction.
The key advantage and contribution of this article can be summarized as follows:

(1) In this manuscript, we explore on controllability results for fuzzy fractional differ-
ential equations via Caputo-Katugampola derivative.

(2) A mild solution to system (1) is constructed using the Wright function and Laplace
transform.

(3) Using Krasnoselskii’s fixed point theorem, we proved the existence of a fixed point
for a mild solution.

(4) An illustrative example is presented to highlight the proposed results.

The structure of the manuscript is as follows: In section 2, we discuss the fundamental
concepts of fuzzy fractional calculus pertinent to our study. Section 3 offers the proof
of the controllability. Section 4 presents an example to enhance understanding. Finally,
section 5 concludes the paper.

2. Preliminaries

Let F be a fuzzy number space and C(U,F) is a space of all fuzzy numbers of all
continuous functions form ỹ : U → F with

∥ỹ∥C = sup
t∈U

∥ỹ(t)∥ for ỹ ∈ C(U,F),
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Consider E as a closed subspace within B, and L2(U,E) denote the set of all Lebesgue
square-integrable functions from U to E.

∥e∥L2 =

(∫ u

0
∥e(t)∥2dt

) 1
2

for e ∈ L2(U,E).

It is clear that L2(U,E) is also a Banach Space.

Remark 2.1. Given that ỹ ∈ R, ỹ is regarded as a specific point in F. We define CR
as the collection of all nonempty, compact, and convex subsets of R. For any elements
ỹi, ỹj ∈ CR, the Hausdorff distance between ỹi and ỹj is defined as:

d (ỹi, ỹj) = max

{
sup
f1∈ỹi

inf
f2∈ỹj

∥f1 − f2∥, sup
f2∈ỹj

inf
f1∈ỹi

∥f1 − f2∥

}
.

The fundamental operations are defined as follows:
The operation (ỹi ⊕ ỹj) (t) is determined by:

(ỹi ⊕ ỹj) (t) = sup
ti+tj=t

min{ỹi(ti), ỹj(tj)}.

The operation [βỹ] (t) is given by:

[βỹ] (t) =


ỹ
(

1
β t
)
, if β ̸= 0;

1, if β = 0 and t = 0;

0, if β = 0 and t ̸= 0.

Here, β denotes an arbitrary value in R.

Definition 2.1. [27] We define the mapping H as follows:

H : F× F → [0,+∞), (ỹ1, ỹ2) → H(ỹ1, ỹ2) = sup
t∈U

d
(
ỹ1, ỹ2

)
,

for ỹ ∈ F. Here, the norm is defined by ∥ · ∥F on F as follows:

∥ỹ∥F = H(ỹ, 0).

The metric space (F,H) is complete (see [27]).

To formulate the Katugampola fractional integral, we need to introduce several special
functions that play a crucial role in their definitions and computations.

Definition 2.2. [28] The katugampola left-sided fractional integral of order α with the
lower limit u of ỹ ∈ C(U,F) for −∞ < 0 < t < ∞ is defined by

Iα,ϱ
0+

ỹ(t) =
ϱ1−α

Γ(α)

∫ t

0

sϱ−1

(tϱ − sϱ)1−α
ỹ(s)ds, t > b; ϱ > 0, α > 0.

The Katugampola fractional integral is defined with respect to an additional parameter
ϱ > 0. These operators have special properties based on the value of ϱ.

Remark 2.2. [28] Specifically, as ϱ → 0+, the Katugampola fractional integral converge
to the Hadamard fractional integral,

lim
ϱ→0

Iα,ϱ
0+

ỹ(t) =

∫ t

0

(
log t

s

)α−1

Γ(α)
ỹ(s)

ds

s
,

when the parameter ϱ = 1, they coincide with the Riemann-Liouville fractional integral,

Iα,1
0+

ỹ(t) =
1

Γ(α)

∫ t

0

ỹ(s)

(t− s)1−α
ds.
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Definition 2.3. [26] Let order 0 < α < 1, the Caputo-Katugampola fractional derivative
is given by

CDα,ϱ
0+

ỹ(t) =
ϱα

Γ(1− α)

∫ t

0
(tϱ − sϱ)−αỹ

′
(s)ds.

Where ϱ > 0 is a constant real number, and ỹ
′
represents the generalized Hukuhara deriv-

ative of the fuzzy function ỹ.
Note:-

When ϱ = 1, the Caputo-Katugampola fuzzy fractional derivative reduces to the well-
known Caputo fuzzy fractional generalized Hukuhara derivative, and if ϱ = 0+, it becomes
the Caputo-Hadamard fuzzy fractional generalized Hukuhara derivative.

Lemma 2.1. [29] Assume that the linear operator A acts as the infinitesimal generator
of a C0-semigroup if and only if

• The set A has the property of being closed and D(A) = B,
• The resolvent set p(A) of A includes positive real numbers, ∀ α > 0,

∥R(β,A)∥ ≤ 1

β
,

where R(β,A) = (βqI −A)−1s =
∫∞
0 e−βqtJ(t)sdt.

Definition 2.4. [29] Defined as a Wright-type function

Mα(δ) =
∞∑
u=0

(−x)u

u!Γ(−αu+ 1− α)
, x ∈ C

Proposition 2.1. [29] The Wright-type function Mα is an entire function with satisfy
the succeeding conditions:

❖ Mα(δ) ≥ 0 for θ ≥ 0,
∫∞
0 Mα(δ)dδ = 1;

❖
∫∞
0 Mα(δ)δ

udδ = Γ(1+u)
Γ(1+αu) , for u > −1;

❖
∫∞
0 Mα(δ)e

xδdδ = Eα(−x), x ∈ C.

Lemma 2.2. [26] The system (1) is written as the following integral equation:

ỹ(t) = ỹ0 +
1

Γ(α)

∫ t

0

(
tϱ − sϱ

ϱ

)α−1

sϱ−1
[
Aỹ(s) + Bu(t) + f(s, ỹ(s))

]
ds (2)

Proof. □

For any ỹ ∈ F, we define the operators Rα

(
tϱ

ϱ

)
and Hα

(
tϱ

ϱ

)
by

Rα

(
tϱ

ϱ

)
=

∫ ∞

0
Mα(δ)J

((
tϱ

ϱ

)α

δ

)
dδ

Hα

(
tϱ

ϱ

)
= α

∫ ∞

0
δMα(δ)J

((
tϱ

ϱ

)α

δ

)
dδ

Where Mα(δ) is a probability density function and is given as follows

Mα(δ) =
1

α
δ−1− 1

α ỹα(δ
− 1

α ) ≤ 0, for 0 < α < 1, δ ∈ [0,+∞),

where

ỹα(δ) =
1

π

∞∑
m=1

(−1)m−1δ−mα−1Γ(1 +mα)

m!
sin(mπα).
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Definition 2.5. [30] A function ỹ ∈ C(U,F) is called mild solution of equation (1) if
satisfies

ỹ(t) = Rα

(
tϱ

ϱ

)
ỹ0 +

∫ t

0

(
tϱ − sϱ

ϱ

)α−1

sϱ−1Hα

(
tϱ − sϱ

ϱ

)
Bu(s)ds

+

∫ t

0

(
tϱ − sϱ

ϱ

)α−1

sϱ−1Hα

(
tϱ − sϱ

ϱ

)
f(s, ỹ(s))ds (3)

Definition 2.6. [30] The operator Rα(
tϱ

ϱ ) and Hα(
tϱ

ϱ ) have the following properties:

•
{
Rα(

tϱ

ϱ )
}
t>0

and
{
Hα(

tϱ

ϱ )
}
t>0

are compact operators, bounded, and linear, there-

fore we have:∥∥∥∥Rα

(
tϱ

ϱ

)
ỹ

∥∥∥∥ ≤ L∥ỹ∥ and

∥∥∥∥Hα

(
tϱ

ϱ

)
ỹ

∥∥∥∥ ≤ L

Γ(α)
∥ỹ∥, with L > 0 and ỹ ∈ C(U,F).

•
{
Rα(

tϱ

ϱ )
}
t>0

and
{
Hα(

tϱ

ϱ )
}
t>0

are strongly continuous operators, ∀ t1, t2 ∈ U, we

have∥∥∥∥Rα

(
tϱ2
ϱ

)
ỹ −Rα

(
tϱ1
ϱ

)
ỹ

∥∥∥∥ → 0,

∥∥∥∥Hα

(
tϱ2
ϱ

)
ỹ −Hα

(
tϱ1
ϱ

)
ỹ

∥∥∥∥ → 0, as tϱ2 → tϱ1.

Definition 2.7. [24] The system (1) is said to be controllable on U , if ∀ ỹ0, ỹ1 ∈ C(U,F),
then there exist a control function y(·) ∈ L2(U,E) such that ỹ(P) = ỹ1, where ỹ(·) is a
mild solution of (1).

Theorem 2.1. Let Mn(t) be a sequence of functions from [a,b] to R which is uniformly
bounded and equicontinuous. Then, Mn(t) has a uniformly convergent subsequence.

Theorem 2.2. [31] Consider the Banach space G. If M,N : D → G, then D is a closed,
bounded, and convex subset of a Banach space G such that

(i) Mh+Ng ∈ B ∀ pair of h,g ∈ D,
(ii) M is contraction mapping,
(iii) N is compact and continuous,

then M(h) +N(h) = h has a solution in D.

3. Controllability

The next results will be based on the following assumptions:

(K1) {J(t)}ϱ≥0 is the C0-semigroup, such that

sup
ϱ∈[0,∞)

∥J(t)∥ = LE .

(K2) The function f : F → F is almost continuous ∀ ỹ ∈ C(U,F), and the function
f : U → F is strongly measurable ∀ t ∈ U .

(K3) There exist Qf ∈ L∞(U,R+) and a function Ω : R+ → R+ continuous nondecreas-
ing, such that:∥∥f(t, ỹ(t))∥∥ ≤ Qf (t)Ω

∥∥ỹ(t)∥∥, for a.e. t ∈ U and ∀ ỹ ∈ C(U,F).

(K4) B : E → B is bounded and u(·) ∈ L2(U,E) is a control function. The linear
operator W : L2(U,E) → B is given as

Wu =

∫ P

0

(
Pϱ − sϱ

ϱ

)α−1

sϱ−1Hα

(
Pϱ − sϱ

ϱ

)
Bu(s)ds.
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The inverse operator W−1 of W assumes values in L2(U,E)/ kerW and there exist
LB, LW > 0 such that:

∥B∥ ≤ LB, ∥W−1∥ ≤ LW .

For calculative convenience, we consider the following:

∆ =
tαϱB(1, α)

Γ(α)ϱα
, ℑ = sup

t∈U
∥ỹ0∥ and Q∗

f = sup
t∈U

Qf (t).

Theorem 3.1. Let the hypotheses (K1)− (K4) are Satisfied. If ∆Q∗
f < 1, then the fuzzy

fractional differential equation (1) has mild solution and it is controllable on U .

Proof. we define BJ = {ỹ ∈ C(U,F) : ∥ỹ∥ ≤ J }, it is clear that BJ is closed, bounded
and convex subset of C(U,F) with ∀ J > 0, such that:

L

[
∆LB ỹ1 +

(
1−∆LB

)(
ℑ+∆Q∗

fΩ(J )

)]
≤ J .

From definition 2.7 and (K4), We determine the control operator u(t) as follows:

u(t) = W−1

[
ỹ1 −Rα

(
tϱ

ϱ

)
ỹ0 −

∫ t

0

(
tϱ − sϱ

ϱ

)α−1

sϱ−1Hα

(
tϱ − sϱ

ϱ

)
f(s, ỹ(s))ds

]

Now, we consider Ξ : C(U,F) → C(U,F) defined by:

Ξỹ(t) =Rα

(
tϱ

ϱ

)
ỹ0 +

∫ t

0

(
tϱ − sϱ

ϱ

)α−1

sϱ−1Hα

(
tϱ − sϱ

ϱ

)
Bu(s)ds

+

∫ t

0

(
tϱ − sϱ

ϱ

)α−1

sϱ−1Hα

(
tϱ − sϱ

ϱ

)
f(s, ỹ(s))ds.

Next, we verify that Ξ contains a fixed point. The operator Ξ can be separated into
two parts. (i.e)., Ξ = Ξ1 + Ξ2.

Where,

Ξ1ỹ(t) =Rα

(
tϱ

ϱ

)
ỹ0

Ξ2ỹ(t) =

∫ t

0

(
tϱ − sϱ

ϱ

)α−1

sϱ−1Hα

(
tϱ − sϱ

ϱ

)
Bu(s)ds

+

∫ t

0

(
tϱ − sϱ

ϱ

)α−1

sϱ−1Hα

(
tϱ − sϱ

ϱ

)
f(s, ỹ(s))ds.

Step-1 The operator Ξ maps the set BJ into itself. Let ỹ(t) ∈ BJ , ∀t ∈ U we have:
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we know that

∥Ξỹ(t)∥C =

∥∥∥∥Rα

(
tϱ

ϱ

)
ỹ0 +

∫ t

0

(
tϱ − sϱ

ϱ

)α−1

sϱ−1Hα

(
tϱ − sϱ

ϱ

)
Bu(s)ds

+

∫ t

0

(
tϱ − sϱ

ϱ

)α−1

sϱ−1Hα

(
tϱ − sϱ

ϱ

)
f(s, ỹ(s))ds

∥∥∥∥
≤
∥∥∥∥Rα

(
tϱ

ϱ

)
ỹ0

∥∥∥∥+

∥∥∥∥∫ t

0

(
tϱ − sϱ

ϱ

)α−1

sϱ−1Hα

(
tϱ − sϱ

ϱ

)
Bu(s)ds

∥∥∥∥
+

∥∥∥∥∫ t

0

(
tϱ − sϱ

ϱ

)α−1

sϱ−1Hα

(
tϱ − sϱ

ϱ

)
f(s, ỹ(s))ds

∥∥∥∥
≤L

[
∥ỹ0∥+

∫ t

0

(tϱ − sϱ)α−1

Γ(α)ϱα−1
sϱ−1∥Bu(s)∥ds

+

∫ t

0

(tϱ − sϱ)α−1

Γ(α)ϱα−1
sϱ−1∥f(s, ỹ(s))∥ds

]
≤L∥ỹ0∥+ L∆LB∥u(s)∥+ L∆∥f(s, ỹ(s))∥

≤L

[
∥ỹ0∥+∆LB

(
ỹ1 − L∥ỹ0∥ − L∆∥f(s, ỹ(s))∥

)
+∆∥f(s, ỹ(s))∥

]
by using (K3) ∀t ∈ U , we have∥∥f(t, ỹ(t))∥∥ ≤ Qf (t)Ω

∥∥ỹ(t)∥∥.
Hence,

∥Ξỹ(t)∥C ≤ L

[
∆LB ỹ1 +

(
1−∆LB

)(
ℑ+∆Q∗

fΩ(J )

)]
≤ J .

This implies that:

∥Ξỹ(t)∥C ≤ J .

This demonstrates that Ξ maps the ball BJ onto itself, implying that Ξ is bounded.
Step-2 In this case we prove that Ξ1 satisfied a contraction on BJ . We assume ỹ∗,

ỹ∗∗ ∈ BJ .
If t ∈ U , we get

∥Ξ1ỹ
∗(t)− Ξ1ỹ

∗∗(t)∥C =

∥∥∥∥Rα

(
tϱ

ϱ

)
ỹ∗0 −Rα

(
tϱ

ϱ

)
ỹ∗∗0

∥∥∥∥
≤ L

∥∥∥∥ 1

Γ(α)
ỹ∗0 −

1

Γ(α)
ỹ∗∗0

∥∥∥∥
≤ L

Γ(α)
∥ỹ∗0 − ỹ∗∗0 ∥

≤ Φ̂∥ỹ∗0 − ỹ∗∗0 ∥, where Φ̂ =
L

Γ(α)
.

We see that Φ̂ < 1. Thus, Ξ1 is a contraction.
Step-3 Next, we demonstrate that Ξ2 is continuous. We assume that ỹn ∈ BJ , such that

ỹn → ỹ as n → ∞. We need to prove that ∥Ξ2ỹn −Ξ2ỹ∥ → 0 as n → ∞. By using
(K2), It is clear that

f(s, ỹn(s)) → f(s, ỹ(s)) as n → ∞. (4)
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If the equation (4) is satisfied, the control term automatically becomes zero as
n → ∞ . (i.e).,

un(s) → u(s) as n → ∞. (5)

On the other hand, taking (K3) into consideration, we get the following inequality:

∥f(s, ỹn(s))− f(s, ỹ(s))∥ ≤ 2QfΩ(J ).

By the Lebesgue dominated convergence theorem implies that:

∥Ξ2ỹn − Ξ2ỹ∥C =

∥∥∥∥∫ t

0

(
tϱ − sϱ

ϱ

)α−1

sϱ−1Hα

(
tϱ − sϱ

ϱ

)
Bun(s)ds

+

∫ t

0

(
tϱ − sϱ

ϱ

)α−1

sϱ−1Hα

(
tϱ − sϱ

ϱ

)
fn(s, ỹ(s))ds

−
∫ t

0

(
tϱ − sϱ

ϱ

)α−1

sϱ−1Hα

(
tϱ − sϱ

ϱ

)
Bu(s)ds

−
∫ t

0

(
tϱ − sϱ

ϱ

)α−1

sϱ−1Hα

(
tϱ − sϱ

ϱ

)
f(s, ỹ(s))ds

∥∥∥∥
≤
∫ t

0

(
tϱ − sϱ

ϱ

)α−1

sϱ−1Hα

(
tϱ − sϱ

ϱ

)
LB∥un(s)− u(s)∥ds

+

∫ t

0

(
tϱ − sϱ

ϱ

)α−1

sϱ−1Hα

(
tϱ − sϱ

ϱ

)
∥fn(s, ỹ(s))− f(s, ỹ(s))∥ds

≤LLB

Γ(α)

∫ t

0

(
tϱ − sϱ

ϱ

)α−1

sϱ−1∥un(s)− u(s)∥ds

+
L

Γ(α)

∫ t

0

(
tϱ − sϱ

ϱ

)α−1

sϱ−1∥fn(s, ỹ(s))− f(s, ỹ(s))∥ds

≤L∆LB∥un(s)− u(s)∥+ L∆∥fn(s, ỹ(s))− f(s, ỹ(s))∥.

Applying the equations (4) and (5) to the above inequality, we get ∥Ξ2ỹn−Ξ2ỹ∥ →
0 as n → 0. Thus the operator Ξ2 is continuous.

Step-4 We now proceed to demonstrate that Ξ2 is equicontinuous for each t ∈ U .
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For any ỹ ∈ BJ and 0 ≤ t1 ≤ t2 ≤ P,

∥Ξ2ỹ(t2)− Ξ2ỹ(t1)∥C ≤LLB

Γ(α)

∥∥∥∥∫ t2

0

(tϱ2 − sϱ)α−1

ϱα−1
sϱ−1u(s)ds−

∫ t1

0

(tϱ1 − sϱ)α−1

ϱα−1
sϱ−1u(s)ds

∥∥∥∥
+

L

Γ(α)

∥∥∥∥∫ t2

0

(tϱ2 − sϱ)α−1

ϱα−1
sϱ−1f(s, ỹ(s))ds

−
∫ t1

0

(tϱ1 − sϱ)α−1

ϱα−1
sϱ−1f(s, ỹ(s))ds

∥∥∥∥
≤LLB

Γ(α)

∫ t1

0

[(tϱ2 − sϱ)α−1 − (tϱ1 − sϱ)α−1]

ϱα−1
sϱ−1∥u(s)∥ds

+
LLB

Γ(α)

∫ t2

t1

(tϱ2 − sϱ)α−1

ϱα−1
sϱ−1∥u(s)∥ds

+
L

Γ(α)

∫ t1

0

[(tϱ2 − sϱ)α−1 − (tϱ1 − sϱ)α−1]

ϱα−1
sϱ−1∥f(s, ỹ(s))∥ds

+
L

Γ(α)

∫ t2

t1

(tϱ2 − sϱ)α−1

ϱα−1
sϱ−1∥f(s, ỹ(s))∥ds

≤
L
[
Q∗

fΩ(J ) + LB∥u(s)∥
]

Γ(α)

[
tαϱ2
ϱα−1

∫ t1
t2

0
(1− yϱ)α−1yϱ−1ds

− tαϱ1
ϱα−1

∫ 1

0
(1− yϱ)α−1yϱ−1ds+

tαϱ2
ϱα−1

∫ 1

t1
t2

(1− yϱ)α−1yϱ−1ds

]

≤
L
[
Q∗

fΩ(J ) + LB∥u(s)∥
]

Γ(α)

∫ 1

0
(1− yϱ)α−1yϱ−1ds

[
tαϱ2
ϱα−1

− tαϱ1
ϱα−1

]
≤

L
[
LBQLW +Q∗

fΩ(J )
]
B(1, α)

Γ(α)ϱα
[tϱ2

α − tϱ1
α
].

Where,

Q =

(
∥ỹ1∥ − L∥ỹ0∥ −

LQ∗
fΩ(J )B(1, α)

Γ(α)ϱα
[tϱ2

α − tϱ1
α
]

)
.

Therefore, ∥Ξ2ỹ(t2) − Ξ2ỹ(t1)∥C → 0 as tϱ2 → tϱ1. Hence, we conclude that
Ξ2(BJ ) ⊆ C(U,F) is bounded and equicontinuous.

Step-5 We have to show that, for any t ∈ U , V(t) = {(Ξ2ỹ)(t) : ỹ ∈ BJ } is relatively
compact in F, take t ∈ U , then ∀ θ > 0 and ε > 0, let ỹ ∈ BJ and introduce the

operator Ξθ,ε
2 on BJ by

(Ξθ,ε
2 ỹ)(t) =

∫ t−θ

0

∫ ∞

ε

(
tϱ − sϱ

ϱ

)α−1

sϱ−1αδMα(δ)J

[(
tϱ − sϱ

ϱ

)ω

δ

]
× [Bu(s) + f(s, ỹ(s))]dδds

=αJ

[(
θϱ

ϱ

)α

ε

] ∫ t−θ

0

∫ ∞

ε

(
tϱ − sϱ

ϱ

)α−1

sϱ−1δMα(δ)J

[(
tϱ − sϱ

ϱ

)ω

δ −
(
θϱ

ϱ

)α

ε

]
× [Bu(s) + f(s, ỹ(s))]dδds.
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Since J

[(
θϱ

ϱ

)α

ε

]
is compact for

(
θϱ

ϱ

)α

ε > 0, then the set (Vθ,εỹ)(t) = {(Ξθ,ε
2 ỹ)(t) :

ỹ ∈ BJ } is relatively compact in F for every θ ∈ (0, t), ε > 0, and we get that

∥(Ξ2ỹ)(t)− (Ξθ,ε
2 ỹ)(t)∥ =

∥∥∥∥α ∫ t

0

∫ ∞

0

(
tϱ − sϱ

ϱ

)α−1

sϱ−1δMα(δ)J

[(
tϱ − sϱ

ϱ

)ω

δ

]
× [Bu(s) + f(s, ỹ(s))]dδds

− αJ

[(
θϱ

ϱ

)α

ε

] ∫ t−θ

0

∫ ∞

ε

(
tϱ − sϱ

ϱ

)α−1

sϱ−1δMα(δ)

× J

[(
tϱ − sϱ

ϱ

)ω

δ −
(
θϱ

ϱ

)α

ε

]
[Bu(s) + f(s, ỹ(s))]dδds

∥∥∥∥
≤αLE

[ ∫ t−θ

0

∫ ε

0

(
tϱ − sϱ

ϱ

)α−1

sϱ−1δMα(δ)dδds

]
× ∥Bu(s) + f(s, ỹ(s))∥

+ αLE

[ ∫ t

t−θ

∫ ∞

0

(
tϱ − sϱ

ϱ

)α−1

sϱ−1δMα(δ)dδds

]
× ∥Bu(s) + f(s, ỹ(s))∥

≤αLEt
ϱα

ϱα
B(ϑ−ϵ

ϑ )
ϱ(1, ω)

[
1

Γ(1 + α)
+

∫ ε

0
δMα(δ)dδ

]
Q∗

fΩ(J )

+
αLELBt

ϱα

ϱα
B(ϑ−ϵ

ϑ )
ϱ(1, ω)

[
1

Γ(1 + α)
+

∫ ε

0
δMα(δ)dδ

]
∥u∥.

Where
∫∞
0 δMα(δ)dδ = 1

α+1 . From the absolute continuity of the Lebesgue inte-
gral, we obtain

∥(Ξ2ỹ)(t)− (Ξθ,ε
2 ỹ)(t)∥ → 0 as θ, ε → 0.

Therefore, we demonstrate that Vθ,ε(t) is relatively compact in F, ∀ t ∈ U . There-
fore, the using Ascoli-Arzela theorem, we can get that Ξ2 is relatively compact.

Hence, the Krasnoselskii fixed point theorem (2.2) Ξ has a fixed point in BJ , the system
(1) has a mild solution. Thus equation (1) is controllable on U . The proof of the theorem
is now concluded. □

4. Example

We consider the equation problem as follows:
ϱD

1
2
0+
ỹ(t, µ) = ∆ỹ(t, µ) + Bu(t, µ) + 1

5e
−tỹ(t, µ), t ∈ (0, 1] = U1,

ỹ(t, 0) = ỹ(t, π) = 0, t ∈ U1,

ỹ(0, µ) = ỹ0(µ), µ ∈ [0, π],

(6)

where ϱD
1
2
0+

is the Caputo-Katugampola fuzzy fractional derivative of order α = 1
2 and

ϱ is additional parameter, which is greaterthan zero. Assume that B = E = L2([0, π]), the
function ỹ(t)(µ) = ỹ(t, µ). f : U1×B → F is a fuzzy mapping and the continuous function
f(t, ỹ(t)) is given by

∥f(t, ỹ(t))∥ ≤ e−t

5
∥ỹ∥ and u(t, µ) = u(t)(µ) ∈ L2((0, 1],E).
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The linear operators ∆ : D(∆) ⊂ B → B is given by

D(A) = {ỹ ∈ C2(0, 1)|ỹ,∆ are absolutely continuous ỹ(0) = ỹ(π) = 0}.

First we consider ỹ =
∑∞

n=1⟨ỹ, hn⟩hn for ỹ ∈ F, where hn(µ) =
√

2
π sin(nµ), n = 1, 2, ...,

C2(0, 1) is the set of all continuous partial derivatives with respect to the norm

∥ỹ∥C2 =

( ∞∑
n=1

⟨ỹ, hn⟩2
) 1

2

.

Then A can be given as

Aỹ =
∞∑
n=1

(−n2)⟨ỹ, hn⟩hn, for ỹ ∈ D(A).

Therefore, for any 0 ≤ t ≤ 1, we have

∥f(t, ỹ)− f(t, ỹ
′
)∥ ≤ ∥ỹ − ỹ

′∥, for ỹ, ỹ
′ ∈ B(0,J ).

Consequently, system (6) can be rewritten as system (1). The function f clearly sat-
isfies the assumptions (K1) − (K4). This implies that Theorem 3.1, the equation (6) is
controllable on U1.

5. Conclution

This paper focused on proving the existence and controllability results of mild solution
for a fuzzy fractional differential equation by employing the Caputo-Katugampola frac-
tional derivative, which generalizes the Caputo and Caputo-Hadamard derivatives. The
necessary conditions for these solutions were derived using fixed point theorem. Further-
more, a particular example was included to demonstrate the practical implementation of
the theoretical findings. In future research, we plan to focus on order 1 to 2 of these
solutions under various conditions.

Acknowledgments. The authors would like to thank the editor and reviewer for their
valuable feedback and suggestions on enhancing the quality of the article.
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