

A NUMERICAL SOLUTION TO NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS BASED ON BELL POLYNOMIALS

KÜBRA ERDEM BİÇER¹, GÖKÇE YILDIZ NOHUTCU^{2,*}, §

ABSTRACT. This article examines the solutions of high-order nonlinear ordinary differential equations with cubic terms under initial conditions using Bell polynomials, their derivatives, and collocation points. The nonlinear differential equation and the corresponding conditions are transformed into matrix form by means of Bell polynomials and reduced to an algebraic system. From the solution of this system, the unknown Bell coefficients are determined. By substituting these coefficients, the approximate solution of the problem is expressed in terms of Bell polynomials. To illustrate the method, some numerical examples are presented. For these examples, the Bell solutions and the absolute error functions are calculated, and the results are shown in tables and figures for comparison with the exact solutions.

Keywords: Nonlinear differential equation, Bell polynomial, Collocation Method, Absolute Error.

AMS Subject Classification: 34A34,11B73,11B83,65F45.

1. INTRODUCTION

Differential equations can be classified as linear or nonlinear. Differential equations that are nonlinear play a significant role in different areas like finance, systems identification, control theory, signal processing, fluid flow, biology, engineering, physics, chemistry, viscoelasticity and fluid mechanics [5],[8],[12],[15],[16],[20],[25],[26],[27]. In science and engineering, nonlinear differential equations are commonly used to simulate a wide range of scientific phenomena. Finding analytical solutions to these equations can be difficult, hence the use of numerical methods is required. In recent years, there has been a focus on nonlinear problems and a variety of numerical methods has been developed. Examples include quasilinearization method for Blasius, Duffing, Lane-Emden and Thomas-Fermi equations [29], Adomian decomposition method [13], [43], Legendre wavelets [36], wavelet analysis method [21], B-spline method [9], He's variational iteration for the Bratu-type equations

¹ Manisa Celal Bayar University- Faculty of Sciences- Department of Mathematics, Manisa, Türkiye
e-mail: kubra.erdem@cbu.edu.tr; ORCID no. <https://orcid.org/0000-0002-4998-6531>.

² Manisa Celal Bayar University- Faculty of Sciences- Department of Mathematics, Manisa, Türkiye
e-mail: gokceyldz3@gmail.com; ORCID no. <https://orcid.org/0000-0001-9896-6580>.

* Corresponding author

§ Manuscript received: July 12, 2024; accepted: August 23, 2025.

TWMS Journal of Applied and Engineering Mathematics, Vol.16, No.1; © İşık University, Department of Mathematics, 2026; all rights reserved.

[21], [30], solving Riccati differential equation in He's VIM [2], homotopy perturbation method (HPM)[1], [3], piecewise variational iteration method [17], using cubic B-spline scaling functions and Chebyshev cardinal functions [24], Quasilinearization Methods [29], [34], solving Duffing–Van der Pol's equation in analytical perturbation method [11], [23], differential transform method [33], Taylor collocation method [18], [28], [37], Chebyshev series method [4], Legendre, Bernstein and Bessel [38],[39], Bernoulli collocation method [14] and Lucas polynomial approach for solving nonlinear differential equations [19].

In this paper, we study a numerical method that involves Bell polynomials, their derivatives and collocation points to solve nonlinear ordinary differential equations of the m th-order in the form

$$\sum_{k=0}^m P_k(x)y^{(k)}(x) + \sum_{p=0}^2 \sum_{q=0}^p \sum_{r=0}^q Q_{p,q,r}(x)y^{(p)}y^{(q)}y^{(r)} = g(x) \quad (1)$$

with initial conditions

$$\sum_{k=0}^{m-1} [a_{kj}y^{(k)}(a)] = \lambda_j, j = 0, 1, 2, \dots, m-1. \quad (2)$$

where $y(x)$ are unknown functions. The functions $P_k(x)$, $Q_{(p,q,r)}(x)$ and $g(x)$ are continuous functions in the interval $[a, b]$ and a_{kj}, λ_j are real constants.

1.1. Bell Polynomial Properties and Matrix Relation.

Let n, k be natural numbers and $S(n, k)$ be the Stirling number of second kind [10]

$$S(n, k) = \sum_{j=0}^k \frac{(-1)^j}{k!} \binom{k}{j} (k-j)^n$$

and exponential Bell polynomials are defined by [6],[7],[42]

$$B_n(x) = \sum_{k=0}^n S(n, k)x^k.$$

Generating function of the above defined type of Bell polynomials is [22]

$$\sum_{k=0}^{\infty} \frac{B_k(x)}{k!} t^k = e^{(e^t-1)x}.$$

An alternative definition of $B_n(x)$ is given by [32],[35]

$$B_n(x) = e^{-x} \sum_{k=0}^{\infty} \frac{k^n x^k}{k!}$$

where $B_0(x) = 1$ and $\binom{n}{k}$ are binomial coefficients.

We consider a nonlinear system of ordinary differential equations defined on the interval $[a, b]$. Let $N \in \mathbf{N}$ denote the truncation level used in the collocation approach. That is, the approximate solution is represented as a truncated series up to degree N . We seek the approximate solution of the nonlinear ordinary differential system (1), (2) in the form of the truncated Bell series

$$y(x) \cong y_N(x) = \sum_{n=0}^N a_n B_n(x) \quad (3)$$

where $a_n, n = 0, 1, 2, \dots, N$ are coefficients and $B_n(x)$ are Bell polynomials.

The Bell polynomials given by Equation (3) can be expressed in the matrix form

$$\mathbf{B}(x) = [B_0(x) \ B_1(x) \ \dots \ B_N(x)] = \mathbf{X}(x) \mathbf{S}^T$$

where

$$\mathbf{X}(x) = [1 \ x \ x^2 \ \dots \ x^N]_{1 \times (N+1)}$$

and

$$\mathbf{S} = \begin{bmatrix} S(0,0) & 0 & 0 & \dots & 0 \\ S(1,0) & S(1,1) & 0 & \dots & 0 \\ S(2,0) & S(2,1) & S(2,2) & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ S(N,0) & S(N,1) & S(N,2) & \dots & S(N,N) \end{bmatrix}_{(N+1) \times (N+1)} \quad (4)$$

The matrix relation of approximate solution in Equation (3) is in the form

$$y(x) \cong y_N(x) = \mathbf{B}(x) \mathbf{A} = \mathbf{X}(x) \mathbf{S}^T \mathbf{A} \quad (5)$$

and the k th derivative can be written

$$y^{(k)}(x) \cong y_N^{(k)}(x) = \mathbf{B}^{(k)}(x) \mathbf{A} = \mathbf{X}^{(k)}(x) \mathbf{S}^T \mathbf{A} \quad (6)$$

where

$$\mathbf{A} = [a_0 \ a_1 \ \dots \ a_N]_{1 \times (N+1)}^T.$$

In addition to this in [40], [41] there are relations between $\mathbf{X}(x)$ and its k th derivatives $\mathbf{X}^{(k)}(x)$

$$\begin{aligned} \mathbf{X}^{(1)}(x) &= \mathbf{X}(x) \mathbf{M} \\ \mathbf{X}^{(2)}(x) &= \mathbf{X}^{(1)}(x) \mathbf{M} = \mathbf{X}(x) \mathbf{M}^2 \\ \mathbf{X}^{(3)}(x) &= \mathbf{X}^{(2)}(x) \mathbf{M} = \mathbf{X}(x) \mathbf{M}^3 \\ &\vdots \\ \mathbf{X}^{(k)}(x) &= \mathbf{X}^{(k-1)}(x) \mathbf{M} = \mathbf{X}(x) \mathbf{M}^k \end{aligned} \quad (7)$$

where

$$\mathbf{M} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & N \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}_{(N+1) \times (N+1)}, \quad \mathbf{M}^0 = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}_{(N+1) \times (N+1)}.$$

2. FUNDAMENTAL MATRIX RELATION AND BELL COLLOCATION METHOD

In this section we construct the expressions defined in (1), (3) in the matrix form. Firstly the matrix relation (6) is substituted in the linear part of Equation (1) as follows

$$\sum_{k=0}^m P_k(x) \mathbf{B}^{(k)}(x) \mathbf{A} + \sum_{p=0}^2 \sum_{q=0}^p \sum_{r=0}^q Q_{p,q,r} y^{(p)} y^{(q)} y^{(r)} = g(x) \quad (8)$$

Furthermore, the nonlinear part of the matrix relations in Equation (8) can be represented using the relation in (6) as follows;

$$y^3(x) = \mathbf{B}(x) \bar{\mathbf{B}}(x) \bar{\bar{\mathbf{B}}}(x) \bar{\bar{\mathbf{A}}} \quad (9)$$

$$[y(x)]^2 y'(x) = \mathbf{B}(x) \bar{\mathbf{B}}(x) \bar{\bar{\mathbf{B}}}(x) \bar{\bar{\mathbf{M}}} \bar{\mathbf{A}} \quad (10)$$

$$[y'(x)]^2 y(x) = \mathbf{B}(x) \mathbf{M} \bar{\mathbf{B}}(x) \bar{\bar{\mathbf{B}}}(x) \bar{\bar{\mathbf{A}}} \quad (11)$$

$$y''(x) [y(x)]^2 = \mathbf{B}(x) \mathbf{M}^2 \mathbf{B}(x) \bar{\mathbf{B}}(x) \bar{\bar{\mathbf{A}}} \quad (12)$$

$$[y'(x)]^3 = \mathbf{B}(x) \mathbf{M} \bar{\mathbf{B}}(x) \bar{\bar{\mathbf{M}}} \bar{\bar{\mathbf{B}}}(x) \bar{\bar{\mathbf{M}}} \bar{\mathbf{A}} \quad (13)$$

$$y''(x) y'(x) y(x) = \mathbf{B}(x) \mathbf{M}^2 \bar{\mathbf{B}}(x) \bar{\bar{\mathbf{M}}} \bar{\bar{\mathbf{B}}}(x) \bar{\bar{\mathbf{A}}} \quad (14)$$

$$y''(x) [y'(x)]^2 = \mathbf{B}(x) \mathbf{M}^2 \bar{\mathbf{B}}(x) \bar{\bar{\mathbf{M}}} \bar{\bar{\mathbf{B}}}(x) \bar{\bar{\mathbf{M}}} \bar{\mathbf{A}} \quad (15)$$

$$[y''(x)]^2 y(x) = \mathbf{B}(x) \mathbf{M}^2 \bar{\mathbf{B}}(x) \bar{\bar{\mathbf{M}}}^2 \bar{\bar{\mathbf{B}}}(x) \bar{\bar{\mathbf{A}}} \quad (16)$$

$$[y''(x)]^2 y'(x) = \mathbf{B}(x) \mathbf{M}^2 \bar{\mathbf{B}}(x) \bar{\bar{\mathbf{M}}}^2 \bar{\bar{\mathbf{B}}}(x) \bar{\bar{\mathbf{M}}} \bar{\mathbf{A}} \quad (17)$$

$$[y''(x)]^3 = \mathbf{B}(x) \mathbf{M}^2 \bar{\mathbf{B}}(x) \bar{\bar{\mathbf{M}}}^2 \bar{\bar{\mathbf{B}}}(x) \bar{\bar{\mathbf{M}}}^2 \bar{\mathbf{A}} \quad (18)$$

where

$$\mathbf{B}(x) = [B_0(x) \ B_1(x) \ \dots \ B_N(x)]_{1 \times (N+1)}$$

$$\bar{\mathbf{B}}(x) = \text{diag} [\mathbf{B}(x) \ \mathbf{B}(x) \ \dots \ \mathbf{B}(x)]_{(N+1) \times (N+1)^2}$$

$$\bar{\bar{\mathbf{B}}}(x) = \text{diag} [\bar{\mathbf{B}}(x) \ \bar{\mathbf{B}}(x) \ \dots \ \bar{\mathbf{B}}(x)]_{(N+1)^2 \times (N+1)^3}$$

$$\overline{\mathbf{M}} = \text{diag} [\ \mathbf{M} \ \ \mathbf{M} \ \ \dots \ \ \mathbf{M} \]_{(N+1)^2 \times (N+1)^2}, \overline{\overline{\mathbf{M}}} = \text{diag} [\ \overline{\mathbf{M}} \ \ \overline{\mathbf{M}} \ \ \dots \ \ \overline{\mathbf{M}} \]_{(N+1)^3 \times (N+1)^3}$$

$$\overline{\mathbf{A}} = [\ a_0 \mathbf{A}^T \ \ a_1 \mathbf{A}^T \ \ \dots \ \ a_N \mathbf{A}^T \]_{1 \times (N+1)^2}^T \quad \overline{\overline{\mathbf{A}}} = [\ a_0 \overline{\mathbf{A}}^T \ \ a_1 \overline{\mathbf{A}}^T \ \ \dots \ \ a_N \overline{\mathbf{A}}^T \]_{1 \times (N+1)^3}^T$$

The collocation points x_i are defined by

$$x_i = a + \frac{b-a}{N}i, i = 0, 1, 2, \dots, N \text{ where } N \text{ is the truncation level.} \quad (19)$$

These collocation points expressed in relation (19) we substitute in the Equation (8) to become

$$\sum_{k=0}^m P_k(x_i) \mathbf{B}^k(x_i) \mathbf{A} + \sum_{p=0}^2 \sum_{q=0}^p \sum_{r=0}^q Q_{p,q,r}(x_i) y^{(p)}(x_i) y^{(q)}(x_i) y^{(r)}(x_i) = g(x_i) \quad (20)$$

Using matrix relation (6) in Equation (20) fundamental matrix relation can be written as

$$\sum_{k=0}^m \mathbf{P}_k \mathbf{B} \mathbf{M}^k \mathbf{A} + \sum_{p=0}^2 \sum_{q=0}^p \sum_{r=0}^q \mathbf{Q}_{p,q,r} \mathbf{Y}^{p,q,r} \overline{\overline{\mathbf{A}}} = \mathbf{G} \quad (21)$$

where

$$y^{(p)}(x_i) y^{(q)}(x_i) y^{(r)}(x_i) = \mathbf{Y}^{p,q,r} = \begin{bmatrix} y^{(p)}(x_0) y^{(q)}(x_0) y^{(r)}(x_0) \\ y^{(p)}(x_1) y^{(q)}(x_1) y^{(r)}(x_1) \\ \vdots \\ y^{(p)}(x_N) y^{(q)}(x_N) y^{(r)}(x_N) \end{bmatrix}_{(N+1) \times (N+1)^3},$$

$$\mathbf{B} = \begin{bmatrix} \mathbf{B}(x_0) & 0 & \dots & 0 \\ 0 & \mathbf{B}(x_1) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \mathbf{B}(x_N) \end{bmatrix}_{(N+1) \times (N+1)}, \quad \mathbf{G} = \begin{bmatrix} g(x_0) \\ g(x_1) \\ \vdots \\ g(x_N) \end{bmatrix}_{(N+1) \times 1}$$

$$\mathbf{P}_k = \begin{bmatrix} P_k(x_0) & 0 & \dots & 0 \\ 0 & P_k(x_1) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & P_k(x_N) \end{bmatrix}_{(N+1) \times (N+1)}$$

$$\mathbf{Q}_{pqr} = \begin{bmatrix} Q_{pqr}(x_0) & 0 & \dots & 0 \\ 0 & Q_{pqr}(x_1) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & Q_{pqr}(x_N) \end{bmatrix}_{(N+1) \times (N+1)}$$

The fundamental matrix equation (21) can be briefly expressed in the form

$$\mathbf{W}\mathbf{A} + \mathbf{V}\overline{\overline{\mathbf{A}}} = \mathbf{G} \quad (22)$$

where the linear part of the relation (21) is

$$\mathbf{W} = [w_{ij}] = \sum_{k=0}^m \mathbf{P}_k \mathbf{B} \mathbf{M}^k, i, j = 0, 1, 2, \dots, N$$

and the nonlinear part is

$$\mathbf{V} = \sum_{p=0}^2 \sum_{q=0}^p \sum_{r=0}^q \mathbf{Q}_{pqr} \mathbf{Y}^{p,q,r}$$

Briefly, the augmented matrix form of the relation (22) is written as follows

$$[\mathbf{W}; \mathbf{V}; \mathbf{G}] = \begin{bmatrix} w_{0,0} & \dots & w_{0,N} & ; & v_{0,0} & v_{0,1} & \dots & v_{0,(N+1)^3} & ; & g(x_0) \\ w_{1,0} & \dots & w_{1,N} & ; & v_{1,0} & v_{1,1} & \dots & v_{1,(N+1)^3} & ; & g(x_1) \\ \vdots & \ddots & \vdots & ; & \vdots & \vdots & \ddots & \vdots & ; & \vdots \\ w_{N,0} & \dots & w_{N,N} & ; & v_{N,0} & v_{N,1} & \dots & v_{N,(N+1)^3} & ; & g(x_N) \end{bmatrix} \quad (23)$$

Now, a matrix representation of the initial conditions in Equation (2) can be found. Using the initial condition (2) of problem (1) by matrix relation

$$\sum_{k=0}^{m-1} [a_{kj} \mathbf{B}(a) \mathbf{M}^k] \mathbf{A} = \lambda_j \Rightarrow \mathbf{U}\mathbf{A} + \mathbf{0}^{**} \overline{\overline{\mathbf{A}}} = \lambda \quad (24)$$

or

$$[\mathbf{U}; \mathbf{0}^{**}; \lambda] = \begin{bmatrix} u_{0,0} & u_{0,1} & \dots & u_{0,N} & ; & 0 & 0 & \dots & 0 & ; & \lambda_0 \\ u_{1,0} & u_{1,1} & \dots & u_{1,N} & ; & 0 & 0 & \dots & 0 & ; & \lambda_1 \\ \vdots & \vdots & \ddots & \vdots & ; & \vdots & \vdots & \ddots & \vdots & ; & \vdots \\ u_{m-1,0} & u_{m-1,1} & \dots & u_{m-1,N} & ; & 0 & 0 & \dots & 0 & ; & \lambda_{m-1} \end{bmatrix}$$

where

$$\begin{aligned} \mathbf{U}_j &= [u_{j,0} \ u_{j,1} \ \dots \ u_{j,N}]_{1 \times (N+1)} \quad \text{for } j = 0, 1, 2, \dots, m-1, \\ \boldsymbol{\lambda} &= \begin{bmatrix} \lambda_0 \\ \lambda_1 \\ \vdots \\ \lambda_{m-1} \end{bmatrix}_{m \times 1}, \quad \mathbf{0}^{**} = [0 \ 0 \ \dots \ 0]_{m \times (N+1)^3} \end{aligned}$$

Since the conditions are linear, they were incorporated into the linear part of the formulation. A zero column vector of size $m \times 1$ is explicitly included in the nonlinear part of the formulation to ensure dimensional consistency with Equation (24). After reviewing the literature on all polynomial- and ordering-based methods, we found no explicit rule for this step. Therefore, we prefer to remove the rows corresponding to the more complex values as a heuristic choice aligned with common practice in similar approaches. By switching

the order and replacing the m rows of the augmented matrix (23) by the row matrices (24), we obtain the new augmented matrix

$$[\tilde{\mathbf{W}}; \tilde{\mathbf{V}}; \tilde{\mathbf{G}}] \quad (25)$$

Consequently, solving this nonlinear algebraic system Equation (20) we obtain unknown Bell coefficients. Then, these coefficients are substituted in the solution (3) and the truncated Bell series form of the equation (1) is found.

3. ERROR FUNCTIONS AND NUMERICAL RESULTS

In this section, three examples are given in to demonstrate the accuracy and reliability of the study. In the first example, the applicability of the solution is shown with the exact solution. Numerical solutions and error estimation are included in the second and third example. The exact solution of the $y(x)$ problem, the approximate solution $y_N(x)$ of the problem, the error function E_N is defined as follows

$$E_N(x_t) = \left| \sum_{k=0}^m P_k(x_t) y_N^{(k)}(x_t) + \sum_{p=0}^2 \sum_{q=0}^p \sum_{r=0}^p Q_{p,q,r} y_N^{(p)}(x_t) y_N^{(q)}(x_t) y_N^{(r)}(x_t) - g(x_t) \right| \cong 0 \quad (26)$$

and the absolute error function

$$e_N(x) = |y(x) - y_N(x)|.$$

Example 1. Consider the exact solution to first order differential equation with a cubic nonlinearity

$$y''(x) + y'(x) - x^2 y(x) + y^3(x) = 3x - 2x^2 \quad (27)$$

with the initial condition $y(0) = -1$ and $y'(0) = 1$ where $P_0(x) = -x^2, P_1(x) = 1, P_2(x) = 1, Q_{000}(x) = 1$, and $g(x) = 3x - 2x^2$. The solution to the problem can be represented by a Bell series for $N = 2$

$$y(x) \cong y_2(x) = \sum_{n=0}^2 a_n B_n(x) = a_0 B_0(x) + a_1 B_1(x) + a_2 B_2(x) \quad (28)$$

and the collocation points using (19)

$$\{x_0 = 0, x_1 = 1/2, x_2 = 1\}$$

From Equation (20), the fundamental matrix equation of the problem is

$$(\mathbf{P}_0 \mathbf{B} + \mathbf{P}_1 \mathbf{B} \mathbf{M} + \mathbf{P}_2 \mathbf{B} \mathbf{M}^2) \mathbf{A} + (\mathbf{Q}_{000} \mathbf{Y}^{0,0,0}) \overline{\overline{\mathbf{A}}} = \mathbf{G} \quad (29)$$

where

$$\mathbf{P}_0 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & \frac{-1}{4} & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad \mathbf{P}_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{P}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{Q}_{000} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{M}^2 = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & \frac{1}{2} & \frac{3}{4} \\ 1 & 1 & 2 \end{bmatrix}, \quad \mathbf{Y}^{0,0,0} = \begin{bmatrix} \mathbf{B}(0)\bar{\mathbf{B}}(0)\bar{\bar{\mathbf{B}}}(0) \\ \mathbf{B}(\frac{1}{2})\bar{\mathbf{B}}(\frac{1}{2})\bar{\bar{\mathbf{B}}}(\frac{1}{2}) \\ \mathbf{B}(1)\bar{\mathbf{B}}(1)\bar{\bar{\mathbf{B}}}(1) \end{bmatrix},$$

$$\mathbf{B}(0) = [1 \ 0 \ 0], \quad \bar{\mathbf{B}}(0) = \text{diag} [\mathbf{B}(0) \ \mathbf{B}(0) \ \mathbf{B}(0)]$$

$$\bar{\bar{\mathbf{B}}}(0) = \text{diag} [\bar{\mathbf{B}}(0) \ \bar{\mathbf{B}}(0) \ \bar{\mathbf{B}}(0)]$$

$$\mathbf{B}(\frac{1}{2}) = [1 \ \frac{1}{2} \ \frac{3}{4}], \quad \bar{\mathbf{B}}(\frac{1}{2}) = \text{diag} [\mathbf{B}(\frac{1}{2}) \ \mathbf{B}(\frac{1}{2}) \ \mathbf{B}(\frac{1}{2})]$$

$$\bar{\bar{\mathbf{B}}}(\frac{1}{2}) = \text{diag} [\bar{\mathbf{B}}(\frac{1}{2}) \ \bar{\mathbf{B}}(\frac{1}{2}) \ \bar{\mathbf{B}}(\frac{1}{2})]$$

$$\mathbf{B}(1) = [1 \ 1 \ 2], \quad \bar{\mathbf{B}}(1) = \text{diag} [\mathbf{B}(1) \ \mathbf{B}(1) \ \mathbf{B}(1)]$$

$$\bar{\bar{\mathbf{B}}}(1) = \text{diag} [\bar{\mathbf{B}}(1) \ \bar{\mathbf{B}}(1) \ \bar{\mathbf{B}}(1)]$$

$$\mathbf{A} = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix}, \quad \bar{\mathbf{A}} = \begin{bmatrix} a_0 \mathbf{A} \\ a_1 \mathbf{A} \\ a_2 \mathbf{A} \end{bmatrix}, \quad \bar{\bar{\mathbf{A}}} = \begin{bmatrix} a_0 \bar{\mathbf{A}} \\ a_1 \bar{\mathbf{A}} \\ a_2 \bar{\mathbf{A}} \end{bmatrix}, \quad \mathbf{G} = \begin{bmatrix} 2 \\ \frac{5}{2} \\ 3 \end{bmatrix}.$$

From Equation (24), the matrix form for initial conditions is

$$\mathbf{U}_0 \mathbf{A} + \mathbf{0}^{**} \bar{\bar{\mathbf{A}}} = \lambda_0 \quad \text{and} \quad \mathbf{U}_1 \mathbf{A} + \mathbf{0}^{**} \bar{\bar{\mathbf{A}}} = \lambda_1 \quad (30)$$

where

$$[\mathbf{U}_0; \lambda_0] = [1 \ 0 \ 0 \ ; \ -1], \quad [\mathbf{U}_1; \lambda_1] = [0 \ 1 \ 1 \ ; \ 1] \quad \text{and}$$

$$\mathbf{0}^{**} = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \end{bmatrix}_{2 \times 27}$$

The matrix equation which is obtained by replacing the last row of (29) with the condition matrix (30) is solved for the unknown Bell coefficients and we obtained

$$\mathbf{A} = [-1 \ 1 \ 0]^T$$

The Bell coefficients are substituted in (28), the approximate solution coincides with the exact solution which is $y(x) \cong y_2(x) = x - 1$.

Example 2. As the second example, consider the second order differential equation with a cubic nonlinearity

$$y''(x) + 2y'(x) + y(x) + 8y^3(x) = e^{-3x} \quad (31)$$

with initial conditions $y(0) = \frac{1}{2}$ and $y'(0) = \frac{-1}{2}$. The exact solution to (31) is $y(x) = \frac{-1}{2}e^{-x}$ [31]. For $N = 3, 7$ and 8 , absolute error functions of problem (31) is calculated. The absolute error functions are presented in Table 1. The exact and approximate solutions are given in Figure 1, and the absolute error functions are shown in Figure 2.

x	$ e_3(x) $	$ e_7(x) $	$ e_8(x) $
0	0	0	0
0.2	$5.7690e^{-05}$	$6.7307e^{-10}$	$2.6700e^{-11}$
0.4	$2.2451e^{-04}$	$1.0685e^{-09}$	$4.3417e^{-11}$
0.6	$1.6978e^{-05}$	$1.1824e^{-09}$	$4.9505e^{-11}$
0.8	$1.5882e^{-03}$	$1.0680e^{-09}$	$4.0439e^{-11}$
1	$6.0564e^{-03}$	$8.9996e^{-08}$	$4.0643e^{-09}$

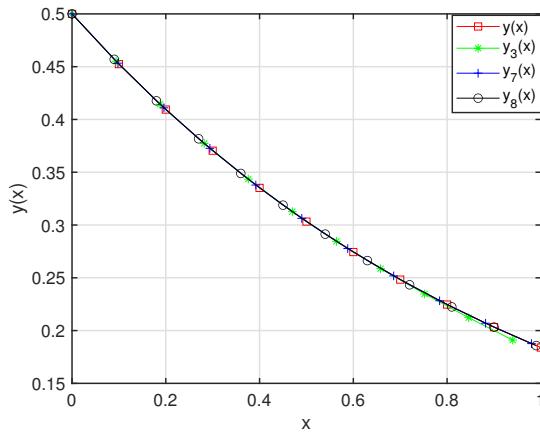
TABLE 1. The absolute errors of $y(x)$ for $N = 3, 7, 8$.

FIGURE 1. Exact solution and numerical solutions for Example 2.

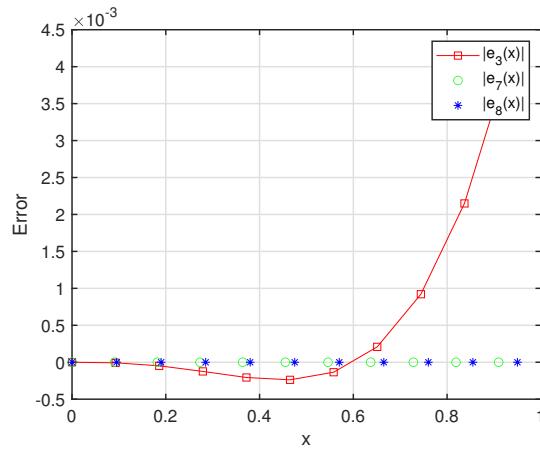


FIGURE 2. Comparison of absolute error functions for Example 2.

Example 3. Finally, consider the Abel differential equation

$$y'(x)y(x) + xy(x) + y^2(x) + x^2y^3(x) = xe^{-x} + x^2e^{-3x} \quad (32)$$

with the initial condition $y(0) = 1$, for $0 \leq x \leq 1$, and the exact solution to the problem is $y(x) = e^{-x}$ [18]. For $N = 6, 8$ and 9 , approximate solution found by the Bell polynomial

method are presented. These errors are shown in Table 2. The results are illustrated in Figures 3 and 4.

x	$ e_6(x) $	$ e_8(x) $	$ e_9(x) $
0	0	0	0
0.2	$3.1456e^{-08}$	$3.4062e^{-11}$	$1.0587e^{-12}$
0.4	$1.7311e^{-08}$	$2.6415e^{-11}$	$7.9803e^{-13}$
0.6	$6.4375e^{-09}$	$1.8837e^{-11}$	$5.1270e^{-13}$
0.8	$8.5865e^{-08}$	$2.0391e^{-11}$	$4.4048e^{-13}$
1	$3.9523e^{-07}$	$7.4277e^{-10}$	$2.6891e^{-11}$

TABLE 2. The absolute errors of $y(x)$ for $N = 6, 8, 9$.

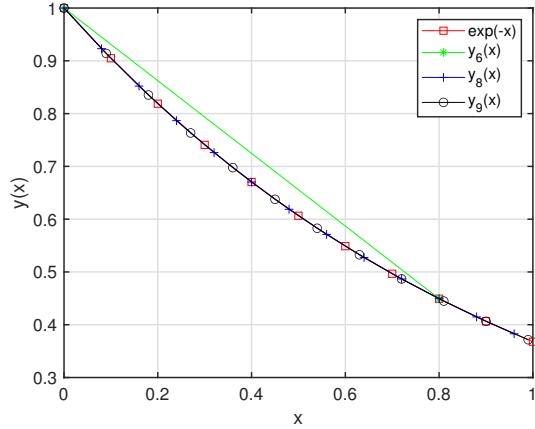


FIGURE 3. Exact solution and approximate solutions for Example 3.

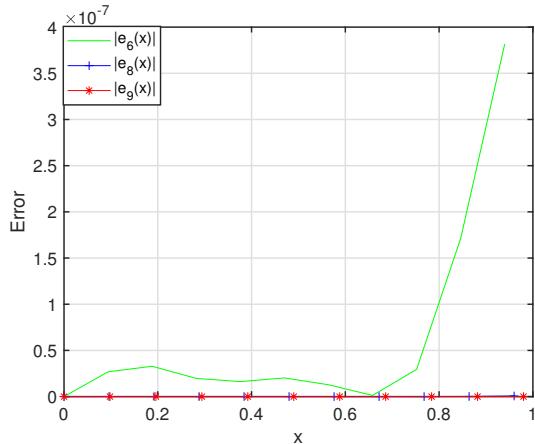


FIGURE 4. Comparison of the absolute error functions for Example 3.

CONCLUSIONS

This study introduces a new approach that uses Bell polynomials and their derivatives to solve nonlinear ordinary differential equations. The method's efficiency is illustrated with numerical examples, with the solutions and errors shown in tables and figures. An increase in the value of N resulted in an improvement in the solution's accuracy. The calculations are performed using the MATLAB program, and this technique can be extended to other types of nonlinear differential equations.

REFERENCES

- [1] Abbasbandy, S., (2006), Homotopy perturbation method for quadratic Riccati differential equation and comparison with Adomian's decomposition method, *Applied Mathematics and Computation*, 172 (1), pp. 459-464.
- [2] Abbasbandy, S., (2007), A new application of He's variational iteration method for quadratic Riccati differential equation by using Adomian's polynomials, *Journal of Computational and Applied Mathematics*, 207 (1), pp. 90-96.
- [3] Abbasbandy, S., (2006), Iterated He's homotopy perturbation method for quadratic Riccati differential equation, *Applied Mathematics and Computation*, 175 (1), pp. 18-23.
- [4] Akyüz Daşcioğlu, A., Yaslan, H. C., (2006), An approximation method for solution of nonlinear integral equations, *Applied Mathematics and Computation*, 174 (2), pp. 1050-1058.
- [5] Bayin, S. S., (1978), Solutions of Einstein's field equations for static fluid spheres, *Physical Review D*, 18 (8), pp. 2745-2751.
- [6] Belbachir, H., Mihoubi, M., (2009), A generalized recurrence for Bell polynomials: An alternate approach to Spivey and Gould-Quaintance formulas, *European Journal of Combinatorics*, 30 (5), pp. 1254-1256.
- [7] Bell, ET, (1934), Exponential polynomials, *Annals of Mathematics*, 35 (2), pp. 258-277.
- [8] Borghero, F., Melis, A., (1990), On Szebehely's problem for holonomic systems involving generalized potential functions, *Celestial Mechanics and Dynamical Astronomy*, 49 (3), pp. 273-284.
- [9] Çağlar, H., Çağlar, N., Özer, M., Valaristos, A., Anagnostopoulos, A. N., (2010), B-spline method for solving Bratu's problem, *International Journal of Computer Mathematics*, 87 (8), pp. 1753-1765.
- [10] Çam, Ş., (2005), Stirling Sayıları, *Matematik Dünyası*, (31), pp. 30-34.
- [11] Darvishi, M. T., Kheybari, S., (2011), An approximate solution of the classical Van der Pol oscillator coupled gyroscopically to a linear oscillator using parameter-expansion method, *International Journal of Engineering and Natural Sciences*, 5 (1), pp. 208-210.
- [12] Deeba, E., Khuri, S. A., Xie, S., (2000), An algorithm for solving boundary value problems, *Journal of Computational Physics*, 159 (1), pp. 264-283.
- [13] El-Tawil, M.A., Bahnasawi, A. A., Abdel-Naby, A., (2004), Solving Riccati differential equation using Adomian's decomposition method, *Applied Mathematics and Computation*, 157 (2), pp. 477-486.
- [14] Erdem Bicer, K., Sezer, M., (2019), A computational method for solving differential equations with quadratic nonlinearity by using Bernoulli polynomials, *Thermal Science*, 23 (Suppl. 1), pp. S345-S352.
- [15] Garcia Macias, A., Mielke, A., (1997), E.W: Stewart-Lyth second order approach as an Abel equation for reconstructing inflationary dynamics, *Physics Letters A*, 229 (1-2), pp. 32-36.
- [16] Gavrilov, V.R., Ivashchuk, V. D., Melnikov, V. N., (1996), Multidimensional integrable vacuum cosmology with two curvatures, *Classical and Quantum Gravity*, 13 (11), pp. 3039-3056.
- [17] Geng, FZ, Lin, Y. Z., Cui, M. G., (2009), A piecewise variational iteration method for Riccati differential equations, *Computers and Mathematics with Applications*, 58 (11-12), pp. 2379-2387.
- [18] Güler, C., (2007), A new numerical algorithm for the Abel equation of the second kind, *International Journal of Computer Mathematics*, 84 (6), pp. 803-813.
- [19] Gümgüm, S., Baykuş, N., Kürkçü, Ö., Sezer, M., (2020), Lucas polynomial approach for second order nonlinear differential equations, *Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi*, 24 (1), pp. 230-236.
- [20] Haager, G., Mars, M., (1998), A self-similar inhomogeneous dust cosmology, *Classical and Quantum Gravity*, 15 (5), pp. 1567-1580.
- [21] Kazemi, NA, Pashazadeh, A. Z., Kılıçman, A., (2013), An efficient approach for solving nonlinear Troesch's and Bratu's problems by wavelet analysis method, *Mathematical Problems in Engineering*, 2013, Article ID 763920, 10 pages.

- [22] Kim, T., Kim, D., WooJang, G., (2019), On central complete and incomplete Bell polynomials, *Symmetry*, 11 (3), Article 288.
- [23] Kimiaeifar, A., Saidi, A. R., Sohouli, A. R., Ganji, D., (2010), Analysis of modified Van der Pol's oscillator using He's parameter-expanding methods, *Current Applied Physics*, 10 (1), pp. 121-128.
- [24] Lakestani, M., Dehghan, M., (2010), Numerical solution of Riccati equation using the cubic B-spline scaling functions and Chebyshev cardinal functions, *Computer Physics Communications*, 181 (5), pp. 957-966.
- [25] Lebrun, JPM, (1990), On two coupled Abel-type differential equations arising in a magnetostatic problem, *Il Nuovo Cimento A*, 103 (11), pp. 1369-1379.
- [26] Mak, MK, Harko, T., (1998), Full causal bulk-viscous cosmological models, *Journal of Mathematical Physics*, 39 (9), pp. 5458-5476.
- [27] Mak, MK, Harko, T., (1999), Addendum to "Exact causal viscous cosmologies", *General Relativity and Gravitation*, 31 (2), pp. 273-274.
- [28] Maleknejad, K., Mahmoudi, Y., (2003), Taylor polynomial solutions of high-order nonlinear Volterra-Fredholm integro-differential equation, *Applied Mathematics and Computation*, 145 (2), pp. 641-653.
- [29] Mandelzweig, VB, Tabakin, F., (2001), Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs, *Computer Physics Communications*, 141 (2), pp. 268-281.
- [30] Mohseni, A., (2014), A simple solution of the Bratu problem, *Computers and Mathematics with Applications*, 67 (5), pp. 896-902.
- [31] Öztürk, Y., Gülsu, M., (2016), The approximate solution of high order nonlinear ordinary differential equations by improved collocation method with terms of shifted Chebyshev polynomials, *International Journal of Applied and Computational Mathematics*, 2 (4), pp. 529-531.
- [32] Roman, S., (1984), The exponential polynomials and the Bell polynomials, *The Umbral Calculus*, Academic Press, New York, pp. 63-67, 82-87.
- [33] Supriya, M., Banamali, R., Sourav, D., (2010), Solution of the Duffing-van der Pol oscillator equation by a differential transform method, *The Royal Swedish Academy of Sciences*, 83 (1), pp. 1-10.
- [34] Tang, BQ, Li, X. F., (2007), A new method for determining the solution of Riccati differential equations, *Applied Mathematics and Computation*, 194 (2), pp. 431-440.
- [35] Van Gorder, RA, (2010), Recursive relations for Bell polynomials of arbitrary positive non-integer order, *International Mathematical Forum*, 5 (37), pp. 1819-1821.
- [36] Venkatesh, SG, Ayyaswamy, S. R., Balachandar, S. R., (2012), The Legendre wavelet method for solving initial value problems of Bratu-type, *Computers and Mathematics with Applications*, 63 (7), pp. 1287-1295.
- [37] Yalçınbaş, S., (2002), Taylor polynomial solution of nonlinear Volterra-Fredholm integral equations, *Applied Mathematics and Computation*, 127 (2), pp. 196-206.
- [38] Yüzbaşı, Ş., (2017), A numerical scheme for solutions of a class of nonlinear differential equations, *Journal of Taibah University for Science*, 11 (4), pp. 1165-1181.
- [39] Yüzbaşı, Ş., Şahin, N., (2012), On the solutions of a class of nonlinear ordinary differential equations by the Bessel polynomials, *Journal of Numerical Mathematics*, 20 (1), pp. 55-79.
- [40] Yüzbaşı, Ş., (2015), A collocation method based on the Bessel functions of the first kind for singularly perturbed differential equations and residual correction, *Mathematical Methods in the Applied Sciences*, 38 (14), pp. 3033-3042.
- [41] Yüzbaşı, Ş., Şahin, N., Sezer, M., (2011), Numerical solutions of systems of linear Fredholm integro-differential equations with Bessel polynomial bases, *Computers and Mathematics with Applications*, 61 (9), pp. 3079-3096.
- [42] Yüzbaşı, Ş., Şahin, N., Sezer, M., (2024), Fractional Bell collocation method for solving linear fractional integro-differential equations, *Mathematical Sciences*, 18 (1), pp. 29-40.
- [43] Wazwaz, AM, (2005), Adomian decomposition method for a reliable treatment of the Bratu-type equations, *Applied Mathematics and Computation*, 166 (3), pp. 652-663.

Kübra ERDEM BİÇER is graduated from Manisa Celal Bayar University with a bachelor's degree in Mathematics in 2007. She went on to complete her M.S. in Applied Mathematics at the same university in 2010, followed by a Ph.D. in 2014. In 2011, she began her academic career as a research assistant at Manisa Celal Bayar University. She advanced to assistant professor in 2018 and, as of 2024, holds the position of associate professor. Her research primarily focuses on ordinary differential equations, partial differential equations, integral equations, and numerical analysis, through which she contributes to both theoretical and applied advancements in mathematics, as well as to academic development through teaching and mentorship.

Gökçe YILDIZ NOHUTCU is graduated from Dokuz Eylül University, Faculty of Science, Department of Mathematics, in 2018. She completed her M.S. in Applied Mathematics at Manisa Celal Bayar University in 2021 and has been pursuing her Ph.D. there since then. Her research focuses on ordinary differential equations, partial differential equations, integral equations, and numerical analysis. She wants to advancing her expertise in applied mathematics, contributing to developments in mathematical modeling and analytical techniques aimed at solving complex problems. Through her studies, she seeks to expand her knowledge and actively participate in the academic community.
