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A NUMERICAL SOLUTION TO NONLINEAR ORDINARY

DIFFERENTIAL EQUATIONS BASED ON BELL POLYNOMIALS

KÜBRA ERDEM BİÇER1, GÖKÇE YILDIZ NOHUTCU2,∗, §

Abstract. This article examines the solutions of high-order nonlinear ordinary differ-
ential equations with cubic terms under initial conditions using Bell polynomials, their
derivatives, and collocation points. The nonlinear differential equation and the corre-
sponding conditions are transformed into matrix form by means of Bell polynomials and
reduced to an algebraic system. From the solution of this system, the unknown Bell
coefficients are determined. By substituting these coefficients, the approximate solution
of the problem is expressed in terms of Bell polynomials. To illustrate the method, some
numerical examples are presented. For these examples, the Bell solutions and the abso-
lute error functions are calculated, and the results are shown in tables and figures for
comparison with the exact solutions.
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lute Error.
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1. Introduction

Differential equations can be classified as linear or nonlinear. Differential equations
that are nonlinear play a significant role in different areas like finance, systems identifica-
tion, control theory, signal processing, fluid flow, biology, engineering, physics, chemistry,
viscoelasticity and fluid mechanics [5],[8],[12],[15],[16],[20],[25],[26],[27]. In science and en-
gineering, nonlinear differential equations are commonly used to simulate a wide range of
scientific phenomena. Finding analytical solutions to these equations can be difficult, hence
the use of numerical methods is required. In recent years, there has been a focus on non-
linear problems and a variety of numerical methods has been developed. Examples include
quasilinearization method for Blasius, Duffing, Lane–Emden and Thomas–Fermi equations
[29], Adomian decomposition method [13], [43], Legendre wavelets [36], wavelet analysis
method [21], B-spline method [9], He’s variational iteration for the Bratu-type equations
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[21], [30], solving Riccati differential equation in He’s VIM [2], homotopy perturbation
method (HPM)[1], [3], piecewise variational iteration method [17], using cubic B-spline
scaling functions and Chebyshev cardinal functions [24], Quasilinearization Methods [29],
[34], solving Duffing–Van der Pol’s equation in analytical perturbation method [11], [23],
differential transform method [33], Taylor collocation method [18], [28], [37], Chebyshev
series method [4], Legendre, Bernstein and Bessel [38],[39], Bernoulli collocation method
[14] and Lucas polynomial approach for solving nonlinear differential equations [19].

In this paper,we study a numerical method that involves Bell polynomials, their deriva-
tives and collocation points to solve nonlinear ordinary differential equations of the mth-
order in the form

m∑
k=0

Pk(x)y
(k)(x) +

2∑
p=0

p∑
q=0

q∑
r=0

Qp,q,r(x)y
(p)y(q)y(r) = g(x) (1)

with initial conditions

m−1∑
k=0

[akjy
(k)(a)] = λj , j = 0, 1, 2, . . . ,m− 1. (2)

where y(x) are unknown functions. The functions Pk(x), Q(p,q,r)(x) and g(x) are continu-
ous functions in the interval [a, b] and akj , λj are real constants.

1.1. Bell Polynomial Properties and Matrix Relation.

Let n, k be natural numbers and S(n, k) be the Stirling number of second kind [10]

S(n, k) =

k∑
j=0

(−1)j

k!

(
k

j

)
(k − j)n

and exponential Bell polynomials are defined by [6],[7],[42]

Bn(x) =
n∑

k=0

S(n, k)xk.

Generating function of the above defined type of Bell polynomials is [22]

∞∑
k=0

Bk(x)

k!
tk = e(e

t−1)x.

An alternative definition of Bn(x) is given by [32],[35]

Bn(x) = e−x
∞∑
k=0

knxk

k!

where B0(x) = 1 and

(
n

k

)
are binomial coefficients.
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We consider a nonlinear system of ordinary differential equations defined on the in-
terval [a, b]. Let N ∈ N denote the truncation level used in the collocation approach.
That is, the approximate solution is represented as a truncated series up to degree N .We
seek the approximate solution of the nonlinear ordinary differential system (1), (2) in the
form of the truncated Bell series

y(x) ∼= yN (x) =
N∑

n=0

anBn(x) (3)

where an, n = 0, 1, 2, . . . , N are coefficients and Bn(x) are Bell polynomials.

The Bell polynomials given by Equation (3) can be expressed in the matrix form

B(x) = [ B0(x) B1(x) . . . BN (x) ] = X(x)ST

where

X(x) = [ 1 x x2 . . . xN ]1×(N+1)

and

S =


S(0, 0) 0 0 . . . 0
S(1, 0) S(1, 1) 0 . . . 0
S(2, 0) S(2, 1) S(2, 2) . . . 0

...
...

...
. . .

...
S(N, 0) S(N, 1) S(N, 2) ... S(N,N)


(N+1)×(N+1)

(4)

The matrix relation of approximate solution in Equation (3) is in the form

y(x) ∼= yN (x) = B(x)A = X(x)STA (5)

and the kth derivative can be written

y(k)(x) ∼= y
(k)
N (x) = B(k)(x)A = X(k)(x)STA (6)

where

A =
[
a0 a1 . . . aN

]T
1×(N+1)

.

In addition to this in [40], [41] there are relations between X(x) and its kth derivatives

X(k)(x)

X(1)(x) = X(x)M

X(2)(x) = X(1)(x)M = X(x)M2

X(3)(x) = X(2)(x)M = X(x)M3

...

X(k)(x) = X(k−1)(x)M = X(x)Mk

(7)



K. ERDEM BİÇ̧ER, G. YILDIZ NOHUTCU: A NUMERICAL SOLUTION TO... 137

where

M =


0 1 0 . . . 0
0 0 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . N
0 0 0 . . . 0


(N+1)×(N+1)

,M0 =


1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


(N+1)×(N+1)

.

2. Fundamental Matrix Relation and Bell Collocation Method

In this section we construct the expressions defined in (1), (3) in the matrix form. Firstly
the matrix relation (6) is substituted in the linear part of Equation (1) as follows

m∑
k=0

Pk(x)B
(k)(x)A+

2∑
p=0

p∑
q=0

q∑
r=0

Qp,q,ry
(p)y(q)y(r) = g(x) (8)

Furthermore, the nonlinear part of the matrix relations in Equation (8) can be repre-
sented using the relation in (6) as follows;

y3(x) = B(x)B(x)B(x)A (9)

[y(x)]2 y′(x) = B(x)B(x)B(x)MA (10)

[y′(x)]2 y(x) = B(x)MB(x)B(x)A (11)

y′′(x) [y(x)]2 = B(x)M2B(x)B(x)A (12)

[y′(x)]3 = B(x)MB(x)MB(x)MA (13)

y′′(x) y′(x) y(x) = B(x)M2B(x)MB(x)A (14)

y′′(x) [y′(x)]2 = B(x)M2B(x)MB(x)MA (15)

[y′′(x)]2 y(x) = B(x)M2B(x)M2B(x)A (16)

[y′′(x)]2 y′(x) = B(x)M2B(x)M2B(x)MA (17)

[y′′(x)]3 = B(x)M2B(x)M2B(x)M2A (18)

where

B(x) =
[
B0(x) B1(x) . . . BN (x)

]
1×(N+1)

B(x) = diag
[
B(x) B(x) . . . B(x)

]
(N+1)×(N+1)2

B(x) = diag
[
B(x) B(x) . . . B(x)

]
(N+1)2×(N+1)3
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M = diag
[
M M . . . M

]
(N+1)2×(N+1)2

,M = diag
[
M M . . . M

]
(N+1)3×(N+1)3

A =
[
a0A

T a1A
T . . . aNAT

]T
1×(N+1)2

A =
[
a0A

T
a1A

T
. . . aNA

T
]T
1×(N+1)3

The collocation points xi are defined by

xi = a+
b− a

N
i, i = 0, 1, 2, . . . , Nwhere N is the truncation level. (19)

These collocation points expressed in relation (19) we substitute in the Equation (8) to
become

m∑
k=0

Pk(xi)B
k(xi)A+

2∑
p=0

p∑
q=0

q∑
r=0

Qp,q,r(xi)y
(p)(xi)y

(q)(xi)y
(r)(xi) = g(xi) (20)

Using matrix relation (6) in Equation (20) fundamental matrix relation can be written as

m∑
k=0

PkBMkA+

2∑
p=0

p∑
q=0

q∑
r=0

QpqrY
p,q,rA = G (21)

where

y(p)(xi) y
(q)(xi) y

(r)(xi) = Yp,q,r =


y(p)(x0) y

(q)(x0) y
(r)(x0)

y(p)(x1) y
(q)(x1) y

(r)(x1)
...

y(p)(xN ) y(q)(xN ) y(r)(xN )


(N+1)×(N+1)3

,

B =


B(x0) 0 · · · 0

0 B(x1) · · · 0
...

...
. . .

...
0 0 · · · B(xN )


(N+1)×(N+1)

, G =


g(x0)
g(x1)

...
g(xN )


(N+1)×1

Pk =


Pk(x0) 0 · · · 0

0 Pk(x1) · · · 0
...

...
. . .

...
0 0 · · · Pk(xN )


(N+1)×(N+1)

Qpqr =


Qpqr(x0) 0 · · · 0

0 Qpqr(x1) · · · 0
...

...
. . .

...
0 0 · · · Qpqr(xN )


(N+1)×(N+1)
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The fundamental matrix equation (21) can be briefly expressed in the form

WA+VA = G (22)

where the linear part of the relation (21) is

W = [wij ] =

m∑
k=0

PkBMk, i, j = 0, 1, 2, . . . , N

and the nonlinear part is

V =
2∑

p=0

p∑
q=0

q∑
r=0

QpqrY
p,q,r

Briefly,the augmented matrix form of the relation (22) is written as follows

[W;V;G] =


w0,0 . . . w0,N ; v0,0 v0,1 . . . v0,(N+1)3 ; g(x0)
w1,0 . . . w1,N ; v1,0 v1,1 . . . v1,(N+1)3 ; g(x1)
...

. . .
... ;

...
...

. . .
... ;

...
wN,0 . . . wN,N ; vN,0 vN,1 . . . vN,(N+1)3 ; g(xN )

 (23)

Now, a matrix representation of the initial conditions in Equation (2) can be found. Using
the initial condition (2) of problem (1) by matrix relation

m−1∑
k=0

[
akjB(a)Mk

]
A = λj ⇒ UA+ 0∗∗A = λ (24)

or

[U;0∗∗;λ] =


u0,0 u0,1 . . . u0,N ; 0 0 . . . 0 ; λ0

u1,0 u1,1 . . . u1,N ; 0 0 . . . 0 ; λ1
...

...
. . .

... ;
...

...
. . .

... ;
...

um−1,0 um−1,1 . . . um−1,N ; 0 0 . . . 0 ; λm−1


where

Uj =
[
uj,0 uj,1 · · · uj,N

]
1×(N+1)

for j = 0, 1, 2, . . . ,m− 1,

λ =


λ0

λ1
...

λm−1


m×1

, 0∗∗ =
[
0 0 · · · 0

]
m×(N+1)3

Since the conditions are linear, they were incorporated into the linear part of the formula-
tion. A zero column vector of size m× 1 is explicitly included in the nonlinear part of the
formulation to ensure dimensional consistency with Equation (24). After reviewing the
literature on all polynomial- and ordering-based methods, we found no explicit rule for this
step. Therefore, we prefer to remove the rows corresponding to the more complex values
as a heuristic choice aligned with common practice in similar approaches. By switching
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the order and replacing the m rows of the augmented matrix (23) by the row matrices
(24), we obtain the new augmented matrix

[W̃; Ṽ; G̃] (25)

Consequently, solving this nonlinear algebraic system Equation (20) we obtain unknown
Bell coefficients. Then, these coefficients are substituted in the solution (3) and the trun-
cated Bell series form of the equation (1) is found.

3. Error functions and Numerical Results

In this section, three examples are given in to demonstrate the accuracy and reliability
of the study. In the first example, the applicability of the solution is shown with the exact
solution. Numerical solutions and error estimation are included in the second and third
example. The exact solution of the y(x) problem, the approximate solution yN (x) of the
problem, the error function EN is defined as follows

EN (xt) =|
m∑
k=0

Pk(xt)y
(k)
N (xt) +

2∑
p=0

p∑
q=0

p∑
r=0

Qp,q,ry
(p)
N (xt)y

(q)
N (xt)y

(r)
N (xt)− g(xt) ∼= 0 | (26)

and the absolute error function

eN (x) =| y(x)− yN (x) | .

Example 1. Consider the exact solution to first order differential equation with a cubic
nonlinearity

y
′′
(x) + y

′
(x)− x2y(x) + y3(x) = 3x− 2x2 (27)

with the initial condition y(0) = −1 and y′(0) = 1 where P0(x) = −x2,P1(x) = 1,P2(x) =
1,Q000(x) = 1, and g(x) = 3x − 2x2. The solution to the problem can be represented by
a Bell series for N = 2

y(x) ∼= y2(x) =

2∑
n=0

anBn(x) = a0B0(x) + a1B1(x) + a2B2(x) (28)

and the collocation points using (19)

{x0 = 0, x1 = 1/2, x2 = 1}
From Equation (20), the fundamental matrix equation of the problem is

(P0B+P1BM+P2BM2)A+ (Q000Y
0,0,0)A = G (29)

where

P0 =

 0 0 0
0 −1

4 0
0 0 −1

 , P1 =

 1 0 0
0 1 0
0 0 1

 , P2 =

 1 0 0
0 1 0
0 0 1

 , Q000 =

 1 0 0
0 1 0
0 0 1


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M =

 0 1 0
0 0 2
0 0 0

 , M2 =

 0 0 2
0 0 0
0 0 0

 ,B =

 1 0 0
1 1

2
3
4

1 1 2

 ,Y0,0,0 =

 B(0)B(0)B(0)

B(12)B(12)B(12)

B(1)B(1)B(1)

 ,

B(0) =
[
1 0 0

]
,B(0) = diag

[
B(0) B(0) B(0)

]

B(0) = diag
[
B(0) B(0) B(0)

]
B(

1

2
) =

[
1 1

2
3
4

]
,B(

1

2
) = diag

[
B(12) B(12) B(12)

]
B(

1

2
) = diag

[
B(12) B(12) B(12)

]
B(1) =

[
1 1 2

]
,B(1) = diag

[
B(1) B(1) B(1)

]
B(1) = diag

[
B(1) B(1) B(1)

]
A =

 a0
a1
a2

 , A =

 a0A
a1A
a2A

 , A =

 a0A
a1A
a2A

 G =

 2
5
2
3

 .

From Equation (24) , the matrix form for initial conditions is

U0A+ 0∗∗A = λ0 and U1A+ 0∗∗A = λ1 (30)

where

[U0;λ0] =
[
1 0 0 ; −1

]
, [U1;λ1] =

[
0 1 1 ; 1

]
and

0∗∗ =

[
0 0 . . . 0
0 0 . . . 0

]
2×27

The matrix equation which is obtained by replacing the last row of (29) with the condition
matrix (30) is solved for the unknown Bell coefficients and we obtanined

A =
[
−1 1 0

]T
The Bell coefficients are substituted in (28), the approximate solution coincides with the
exact solution which is y(x) ∼= y2(x) = x− 1.

Example 2. As the second example, consider the second order differential equation with
a cubic nonlinearity

y
′′
(x) + 2y

′
(x) + y(x) + 8y3(x) = e−3x (31)

with initial conditions y(0) = 1
2 and y

′
(0) = −1

2 . The exact solution to (31)is y(x) = −1
2 e−x

[31]. For N = 3, 7 and 8, absolute error functions of problem (31)is calculated. The
absolute error functions are presented in Table 1. The exact and approximate solutions
are given in Figure 1, and the absolute error functions are shown in Figure 2.
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x | e3(x) | | e7(x) | | e8(x) |
0 0 0 0

0.2 5.7690e−05 6.7307e−10 2.6700e−11

0.4 2.2451e−04 1.0685e−09 4.3417e−11

0.6 1.6978e−05 1.1824e−09 4.9505e−11

0.8 1.5882e−03 1.0680e−09 4.0439e−11

1 6.0564e−03 8.9996e−08 4.0643e−09

Table 1. The absolute errors of y(x) for N = 3, 7, 8.
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Figure 1. Exact solution and numerical solutions for Example 2.
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Figure 2. Comparison of absolute error functions for Example 2.

Example 3. Finally, consider the Abel differential equation

y
′
(x)y(x) + xy(x) + y2(x) + x2y3(x) = xe−x + x2e−3x (32)

with the initial condition y(0) = 1, for 0 ≤ x ≤ 1, and the exact solution to the problem is
y(x) = e−x [18]. For N = 6, 8 and 9, approximate solution found by the Bell polynomial
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method are presented. These errors are shown in Table 2. The results are illustrated in
Figures 3 and 4.

x | e6(x) | | e8(x) | | e9(x) |
0 0 0 0

0.2 3.1456e−08 3.4062e−11 1.0587e−12

0.4 1.7311e−08 2.6415e−11 7.9803e−13

0.6 6.4375e−09 1.8837e−11 5.1270e−13

0.8 8.5865e−08 2.0391e−11 4.4048e−13

1 3.9523e−07 7.4277e−10 2.6891e−11

Table 2. The absolute errors of y(x) for N = 6, 8, 9.
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Figure 3. Exact solution and approximate solutions for Example 3.
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Figure 4. Comparison of the absolute error functions for Example 3.
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Conclusions

This study introduces a new approach that uses Bell polynomials and their derivatives to
solve nonlinear ordinary differential equations. The method’s efficiency is illustrated with
numerical examples, with the solutions and errors shown in tables and figures. An increase
in the value of N resulted in an improvement in the solution’s accuracy. The calculations
are performed using the MATLAB program, and this technique can be extended to other
types of nonlinear differential equations.
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[21] Kazemi, NA, Pashazadeh, A. Z., Kılıçman, A., (2013), An efficient approach for solving nonlinear
Troesch’s and Bratu’s problems by wavelet analysis method, Mathematical Problems in Engineering,
2013, Article ID 763920, 10 pages.
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